import torch from timm import create_model # 加载模型 def load_model(model_path): model = create_model('tf_efficientnet_b3_ns', num_classes=1605, pretrained=False) model.load_state_dict(torch.load(model_path)) return model # 模型融合 def model_soup(models, weights): if len(models) != len(weights): raise ValueError("Number of models and weights must match") # Normalize weights weights = [w / sum(weights) for w in weights] # Initialize the fused model with the structure of the first model fused_model = create_model('tf_efficientnet_b3_ns', num_classes=1605, pretrained=False) fused_model_dict = fused_model.state_dict() for key in fused_model_dict.keys(): fused_model_dict[key] = sum(weight * models[i].state_dict()[key] for i, weight in enumerate(weights)) fused_model.load_state_dict(fused_model_dict) return fused_model # 模型权重路径 model_paths = [ '/data/cjm/FungiCLEF2024/EfficientNet/output/trick_1.4.3/efficientnet_b3_epoch_28.pth', # 权重 4 '/data/cjm/FungiCLEF2024/EfficientNet/output/trick_1.4.3.2/efficientnet_b3_epoch_28.pth', # 权重 2.6 '/data/cjm/FungiCLEF2024/EfficientNet/output/trick_1.4.1/efficientnet_b3_epoch_23.pth', # 权重 2.4 '/data/cjm/FungiCLEF2024/EfficientNet/output/trick_1.5.2/efficientnet_b3_epoch_21.pth', # 权重 1 ] # 加载模型 models = [load_model(path) for path in model_paths] # 模型权重 weights = [4, 2.6, 2.4, 1] # 进行模型融合 fused_model = model_soup(models, weights) # 保存融合后的模型权重 fused_model_path = '/data/cjm/FungiCLEF2024/EfficientNet/output/fused_model_soup.pth' torch.save(fused_model.state_dict(), fused_model_path) print(f"Fused model saved to {fused_model_path}")