diff --git a/llava-v1.6-13b-unk-vqa-v1.0/config.json b/llava-v1.6-13b-unk-vqa-v1.0/config.json new file mode 100644 index 0000000000000000000000000000000000000000..88130fe3488dc2d74a11bd28b53c2962f8467c80 --- /dev/null +++ b/llava-v1.6-13b-unk-vqa-v1.0/config.json @@ -0,0 +1,74 @@ +{ + "_name_or_path": "../pretrained-models/llava-v1.6-vicuna-13b", + "architectures": [ + "LlavaLlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 1, + "eos_token_id": 2, + "freeze_mm_mlp_adapter": false, + "freeze_mm_vision_resampler": false, + "hidden_act": "silu", + "hidden_size": 5120, + "image_aspect_ratio": "pad", + "image_crop_resolution": 224, + "image_grid_pinpoints": [ + [ + 336, + 672 + ], + [ + 672, + 336 + ], + [ + 672, + 672 + ], + [ + 1008, + 336 + ], + [ + 336, + 1008 + ] + ], + "image_split_resolution": 224, + "initializer_range": 0.02, + "intermediate_size": 13824, + "max_length": 4096, + "max_position_embeddings": 4096, + "mm_hidden_size": 1024, + "mm_patch_merge_type": "flat", + "mm_projector_lr": null, + "mm_projector_type": "mlp2x_gelu", + "mm_resampler_type": null, + "mm_use_im_patch_token": false, + "mm_use_im_start_end": false, + "mm_vision_select_feature": "patch", + "mm_vision_select_layer": -2, + "mm_vision_tower": "openai/clip-vit-large-patch14-336", + "mm_vision_tower_lr": 2e-06, + "model_type": "llava_llama", + "num_attention_heads": 40, + "num_hidden_layers": 40, + "num_key_value_heads": 40, + "pad_token_id": 0, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": null, + "rope_theta": 10000.0, + "tie_word_embeddings": false, + "tokenizer_model_max_length": 2048, + "tokenizer_padding_side": "right", + "torch_dtype": "bfloat16", + "transformers_version": "4.37.2", + "tune_mm_mlp_adapter": false, + "tune_mm_vision_resampler": false, + "unfreeze_mm_vision_tower": true, + "use_cache": true, + "use_mm_proj": true, + "vocab_size": 32000 +} diff --git a/llava-v1.6-13b-unk-vqa-v1.0/special_tokens_map.json b/llava-v1.6-13b-unk-vqa-v1.0/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..14761dcf1466dc232bd41de9c21d4c617b15755e --- /dev/null +++ b/llava-v1.6-13b-unk-vqa-v1.0/special_tokens_map.json @@ -0,0 +1,24 @@ +{ + "bos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": "", + "unk_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/config.json new file mode 100644 index 0000000000000000000000000000000000000000..44e6d4e17930a42d0aa68dcd3790bd5f32ba4ec4 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/config.json @@ -0,0 +1,73 @@ +{ + "_name_or_path": "../pretrained-models/llava-v1.6-mistral-7b", + "architectures": [ + "LlavaLlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 1, + "eos_token_id": 2, + "freeze_mm_mlp_adapter": false, + "freeze_mm_vision_resampler": false, + "hidden_act": "silu", + "hidden_size": 4096, + "image_aspect_ratio": "pad", + "image_crop_resolution": 224, + "image_grid_pinpoints": [ + [ + 336, + 672 + ], + [ + 672, + 336 + ], + [ + 672, + 672 + ], + [ + 1008, + 336 + ], + [ + 336, + 1008 + ] + ], + "image_split_resolution": 224, + "initializer_range": 0.02, + "intermediate_size": 14336, + "max_position_embeddings": 32768, + "mm_hidden_size": 1024, + "mm_patch_merge_type": "flat", + "mm_projector_lr": null, + "mm_projector_type": "mlp2x_gelu", + "mm_resampler_type": null, + "mm_use_im_patch_token": false, + "mm_use_im_start_end": false, + "mm_vision_select_feature": "patch", + "mm_vision_select_layer": -2, + "mm_vision_tower": "openai/clip-vit-large-patch14-336", + "mm_vision_tower_lr": 2e-06, + "model_type": "llava_llama", + "num_attention_heads": 32, + "num_hidden_layers": 32, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": null, + "rope_theta": 1000000.0, + "sliding_window": null, + "tie_word_embeddings": false, + "tokenizer_model_max_length": 2048, + "tokenizer_padding_side": "right", + "torch_dtype": "bfloat16", + "transformers_version": "4.37.2", + "tune_mm_mlp_adapter": false, + "tune_mm_vision_resampler": false, + "unfreeze_mm_vision_tower": true, + "use_cache": false, + "use_mm_proj": true, + "vocab_size": 32000 +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/generation_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..69b7806611a4865cd48c3e991dbd7d8312e0c5d3 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/generation_config.json @@ -0,0 +1,6 @@ +{ + "_from_model_config": true, + "bos_token_id": 1, + "eos_token_id": 2, + "transformers_version": "4.37.2" +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/latest b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/latest new file mode 100644 index 0000000000000000000000000000000000000000..744ae7dbad571b6f37ec6c7066549494261bb59e --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/latest @@ -0,0 +1 @@ +global_step100 \ No newline at end of file diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/model.safetensors.index.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..927da5be7e6e3ec29d3a967a09ba6a421d7a2191 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/model.safetensors.index.json @@ -0,0 +1,694 @@ +{ + "metadata": { + "total_size": 15132446720 + }, + "weight_map": { + "lm_head.weight": "model-00004-of-00004.safetensors", + "model.embed_tokens.weight": "model-00001-of-00004.safetensors", + "model.image_newline": "model-00001-of-00004.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.mm_projector.0.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.0.weight": "model-00003-of-00004.safetensors", + "model.mm_projector.2.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.2.weight": "model-00003-of-00004.safetensors", + "model.norm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.class_embedding": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.weight": "model-00003-of-00004.safetensors" + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_0.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..b6473612e41c5cfd6973c2e71fa5f3ad2b2bcad1 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:575119a228f98110923ffa2dedcb50e3317251b26054355d015e0b2240d566f2 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_1.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..8506e00431b6ac7067699c0ea4f59adb6fa0ba20 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0728b56dab7abb5ef8a0d4bae3519c5767c97467bdd886d26bf19cc8599d0312 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_2.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_2.pth new file mode 100644 index 0000000000000000000000000000000000000000..ea499e285c97cca07fedd34662c3d4ab44ff6f47 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_2.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f4e481d4ef1546694da7337f6bb6c658b866dcb79b85deeb477da0d27ebe851e +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_3.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_3.pth new file mode 100644 index 0000000000000000000000000000000000000000..aeb38f92f106ac3f08bae4f82179a8a12243bccb --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_3.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:353c60be37ea56fc992fca446598ceca5d1fd002aa3bd6dbb9ad740e6f47ebb3 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_4.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_4.pth new file mode 100644 index 0000000000000000000000000000000000000000..9d5856cb7a3f15092fa5593507022316916f648e --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_4.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e9107fe964ba7205e354084b85210e5a5ea1c98cfd4d38adb9cd3926945dcae4 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_5.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_5.pth new file mode 100644 index 0000000000000000000000000000000000000000..b824ee24d256695aad4a69a62d8e7125f51a17f2 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_5.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:69d1bb1abee38b92e53f3f23549b642ce0f1edcdccf7b6129847ac61636e96d5 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_6.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_6.pth new file mode 100644 index 0000000000000000000000000000000000000000..a9fd0364bb8f1a8e91eca45be5e1b6672b4d9afd --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_6.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:afd5516048e20f36959601574e29e40106085a7d3cdc7bf425ce5e84633490e6 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_7.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_7.pth new file mode 100644 index 0000000000000000000000000000000000000000..4e80125fd18efcb1097384319888b699f4dce7e7 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/rng_state_7.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8e2c46927fc06939b4c976a01e4b95dec1f8b98ceaea86d31a5d756fc30ff006 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/scheduler.pt b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..fb6372408918017849d562bdfead314b0390dd30 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a4357adac8296985cb4b98d4cc54cbe1338e42459aa4150e5eb8b32da703ed47 +size 1064 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/special_tokens_map.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..14761dcf1466dc232bd41de9c21d4c617b15755e --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/special_tokens_map.json @@ -0,0 +1,24 @@ +{ + "bos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": "", + "unk_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/tokenizer.model b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/tokenizer.model new file mode 100644 index 0000000000000000000000000000000000000000..8b443ef19c2a19acc3ac64fb9c3db4a72921dff6 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/tokenizer.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055 +size 493443 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/tokenizer_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..23dcf70e8cfc9b16310b6ff3dc98fdbc5adc11f8 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/tokenizer_config.json @@ -0,0 +1,44 @@ +{ + "add_bos_token": true, + "add_eos_token": false, + "added_tokens_decoder": { + "0": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "1": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "2": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + } + }, + "additional_special_tokens": [], + "bos_token": "", + "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", + "clean_up_tokenization_spaces": false, + "eos_token": "", + "legacy": true, + "model_max_length": 2048, + "pad_token": "", + "padding_side": "right", + "sp_model_kwargs": {}, + "spaces_between_special_tokens": false, + "tokenizer_class": "LlamaTokenizer", + "unk_token": "", + "use_default_system_prompt": false +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/trainer_state.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..c20d476681dde7c51f92015a7f1821f819eb5721 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/trainer_state.json @@ -0,0 +1,621 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 0.19230769230769232, + "eval_steps": 500, + "global_step": 100, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 6.25e-07, + "loss": 3.7473, + "step": 1 + }, + { + "epoch": 0.0, + "learning_rate": 1.25e-06, + "loss": 0.0, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 1.8750000000000003e-06, + "loss": 0.0, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 2.5e-06, + "loss": 0.0, + "step": 4 + }, + { + "epoch": 0.01, + "learning_rate": 3.125e-06, + "loss": 0.0, + "step": 5 + }, + { + "epoch": 0.01, + "learning_rate": 3.7500000000000005e-06, + "loss": 0.0, + "step": 6 + }, + { + "epoch": 0.01, + "learning_rate": 4.3750000000000005e-06, + "loss": 0.0, + "step": 7 + }, + { + "epoch": 0.02, + "learning_rate": 5e-06, + "loss": 0.0, + "step": 8 + }, + { + "epoch": 0.02, + "learning_rate": 5.625e-06, + "loss": 0.0, + "step": 9 + }, + { + "epoch": 0.02, + "learning_rate": 6.25e-06, + "loss": 0.0, + "step": 10 + }, + { + "epoch": 0.02, + "learning_rate": 6.875e-06, + "loss": 0.0, + "step": 11 + }, + { + "epoch": 0.02, + "learning_rate": 7.500000000000001e-06, + "loss": 0.0, + "step": 12 + }, + { + "epoch": 0.03, + "learning_rate": 8.125000000000001e-06, + "loss": 0.0, + "step": 13 + }, + { + "epoch": 0.03, + "learning_rate": 8.750000000000001e-06, + "loss": 0.0, + "step": 14 + }, + { + "epoch": 0.03, + "learning_rate": 9.375000000000001e-06, + "loss": 0.0, + "step": 15 + }, + { + "epoch": 0.03, + "learning_rate": 1e-05, + "loss": 0.0, + "step": 16 + }, + { + "epoch": 0.03, + "learning_rate": 1.0625e-05, + "loss": 0.0, + "step": 17 + }, + { + "epoch": 0.03, + "learning_rate": 1.125e-05, + "loss": 0.0, + "step": 18 + }, + { + "epoch": 0.04, + "learning_rate": 1.1875e-05, + "loss": 0.0, + "step": 19 + }, + { + "epoch": 0.04, + "learning_rate": 1.25e-05, + "loss": 0.0, + "step": 20 + }, + { + "epoch": 0.04, + "learning_rate": 1.3125e-05, + "loss": 0.0, + "step": 21 + }, + { + "epoch": 0.04, + "learning_rate": 1.375e-05, + "loss": 0.0, + "step": 22 + }, + { + "epoch": 0.04, + "learning_rate": 1.4375e-05, + "loss": 0.0, + "step": 23 + }, + { + "epoch": 0.05, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0, + "step": 24 + }, + { + "epoch": 0.05, + "learning_rate": 1.5625e-05, + "loss": 0.0, + "step": 25 + }, + { + "epoch": 0.05, + "learning_rate": 1.6250000000000002e-05, + "loss": 0.0, + "step": 26 + }, + { + "epoch": 0.05, + "learning_rate": 1.6875e-05, + "loss": 0.0, + "step": 27 + }, + { + "epoch": 0.05, + "learning_rate": 1.7500000000000002e-05, + "loss": 0.0, + "step": 28 + }, + { + "epoch": 0.06, + "learning_rate": 1.8125e-05, + "loss": 0.0, + "step": 29 + }, + { + "epoch": 0.06, + "learning_rate": 1.8750000000000002e-05, + "loss": 0.0, + "step": 30 + }, + { + "epoch": 0.06, + "learning_rate": 1.9375e-05, + "loss": 0.0, + "step": 31 + }, + { + "epoch": 0.06, + "learning_rate": 2e-05, + "loss": 0.0, + "step": 32 + }, + { + "epoch": 0.06, + "learning_rate": 1.9999951432210905e-05, + "loss": 0.0, + "step": 33 + }, + { + "epoch": 0.07, + "learning_rate": 1.9999805729315383e-05, + "loss": 0.0, + "step": 34 + }, + { + "epoch": 0.07, + "learning_rate": 1.999956289272873e-05, + "loss": 0.0, + "step": 35 + }, + { + "epoch": 0.07, + "learning_rate": 1.999922292480975e-05, + "loss": 0.0, + "step": 36 + }, + { + "epoch": 0.07, + "learning_rate": 1.9998785828860744e-05, + "loss": 0.0, + "step": 37 + }, + { + "epoch": 0.07, + "learning_rate": 1.9998251609127465e-05, + "loss": 0.0, + "step": 38 + }, + { + "epoch": 0.07, + "learning_rate": 1.999762027079909e-05, + "loss": 0.0, + "step": 39 + }, + { + "epoch": 0.08, + "learning_rate": 1.9996891820008165e-05, + "loss": 0.0, + "step": 40 + }, + { + "epoch": 0.08, + "learning_rate": 1.9996066263830533e-05, + "loss": 0.0, + "step": 41 + }, + { + "epoch": 0.08, + "learning_rate": 1.9995143610285275e-05, + "loss": 0.0, + "step": 42 + }, + { + "epoch": 0.08, + "learning_rate": 1.9994123868334655e-05, + "loss": 0.0, + "step": 43 + }, + { + "epoch": 0.08, + "learning_rate": 1.9993007047883988e-05, + "loss": 0.0, + "step": 44 + }, + { + "epoch": 0.09, + "learning_rate": 1.999179315978157e-05, + "loss": 0.0, + "step": 45 + }, + { + "epoch": 0.09, + "learning_rate": 1.999048221581858e-05, + "loss": 0.0, + "step": 46 + }, + { + "epoch": 0.09, + "learning_rate": 1.9989074228728942e-05, + "loss": 0.0, + "step": 47 + }, + { + "epoch": 0.09, + "learning_rate": 1.9987569212189224e-05, + "loss": 0.0, + "step": 48 + }, + { + "epoch": 0.09, + "learning_rate": 1.9985967180818493e-05, + "loss": 0.0, + "step": 49 + }, + { + "epoch": 0.1, + "learning_rate": 1.998426815017817e-05, + "loss": 0.0, + "step": 50 + }, + { + "epoch": 0.1, + "learning_rate": 1.998247213677188e-05, + "loss": 0.0, + "step": 51 + }, + { + "epoch": 0.1, + "learning_rate": 1.9980579158045322e-05, + "loss": 0.0, + "step": 52 + }, + { + "epoch": 0.1, + "learning_rate": 1.9978589232386036e-05, + "loss": 0.0, + "step": 53 + }, + { + "epoch": 0.1, + "learning_rate": 1.997650237912329e-05, + "loss": 0.0, + "step": 54 + }, + { + "epoch": 0.11, + "learning_rate": 1.997431861852785e-05, + "loss": 0.0, + "step": 55 + }, + { + "epoch": 0.11, + "learning_rate": 1.9972037971811802e-05, + "loss": 0.0, + "step": 56 + }, + { + "epoch": 0.11, + "learning_rate": 1.996966046112834e-05, + "loss": 0.0, + "step": 57 + }, + { + "epoch": 0.11, + "learning_rate": 1.996718610957155e-05, + "loss": 0.0, + "step": 58 + }, + { + "epoch": 0.11, + "learning_rate": 1.9964614941176194e-05, + "loss": 0.0, + "step": 59 + }, + { + "epoch": 0.12, + "learning_rate": 1.9961946980917457e-05, + "loss": 0.0, + "step": 60 + }, + { + "epoch": 0.12, + "learning_rate": 1.995918225471073e-05, + "loss": 0.0, + "step": 61 + }, + { + "epoch": 0.12, + "learning_rate": 1.9956320789411338e-05, + "loss": 0.0, + "step": 62 + }, + { + "epoch": 0.12, + "learning_rate": 1.9953362612814294e-05, + "loss": 0.0, + "step": 63 + }, + { + "epoch": 0.12, + "learning_rate": 1.9950307753654016e-05, + "loss": 0.0, + "step": 64 + }, + { + "epoch": 0.12, + "learning_rate": 1.994715624160405e-05, + "loss": 0.0, + "step": 65 + }, + { + "epoch": 0.13, + "learning_rate": 1.99439081072768e-05, + "loss": 0.0, + "step": 66 + }, + { + "epoch": 0.13, + "learning_rate": 1.9940563382223196e-05, + "loss": 0.0, + "step": 67 + }, + { + "epoch": 0.13, + "learning_rate": 1.9937122098932428e-05, + "loss": 0.0, + "step": 68 + }, + { + "epoch": 0.13, + "learning_rate": 1.9933584290831593e-05, + "loss": 0.0, + "step": 69 + }, + { + "epoch": 0.13, + "learning_rate": 1.9929949992285397e-05, + "loss": 0.0, + "step": 70 + }, + { + "epoch": 0.14, + "learning_rate": 1.992621923859581e-05, + "loss": 0.0, + "step": 71 + }, + { + "epoch": 0.14, + "learning_rate": 1.9922392066001724e-05, + "loss": 0.0, + "step": 72 + }, + { + "epoch": 0.14, + "learning_rate": 1.99184685116786e-05, + "loss": 0.0, + "step": 73 + }, + { + "epoch": 0.14, + "learning_rate": 1.9914448613738107e-05, + "loss": 0.0, + "step": 74 + }, + { + "epoch": 0.14, + "learning_rate": 1.991033241122776e-05, + "loss": 0.0, + "step": 75 + }, + { + "epoch": 0.15, + "learning_rate": 1.9906119944130527e-05, + "loss": 0.0, + "step": 76 + }, + { + "epoch": 0.15, + "learning_rate": 1.9901811253364458e-05, + "loss": 0.0, + "step": 77 + }, + { + "epoch": 0.15, + "learning_rate": 1.9897406380782262e-05, + "loss": 0.0, + "step": 78 + }, + { + "epoch": 0.15, + "learning_rate": 1.989290536917093e-05, + "loss": 0.0, + "step": 79 + }, + { + "epoch": 0.15, + "learning_rate": 1.9888308262251286e-05, + "loss": 0.0, + "step": 80 + }, + { + "epoch": 0.16, + "learning_rate": 1.988361510467761e-05, + "loss": 0.0, + "step": 81 + }, + { + "epoch": 0.16, + "learning_rate": 1.9878825942037147e-05, + "loss": 0.0, + "step": 82 + }, + { + "epoch": 0.16, + "learning_rate": 1.9873940820849714e-05, + "loss": 0.0, + "step": 83 + }, + { + "epoch": 0.16, + "learning_rate": 1.9868959788567213e-05, + "loss": 0.0, + "step": 84 + }, + { + "epoch": 0.16, + "learning_rate": 1.9863882893573188e-05, + "loss": 0.0, + "step": 85 + }, + { + "epoch": 0.17, + "learning_rate": 1.985871018518236e-05, + "loss": 0.0, + "step": 86 + }, + { + "epoch": 0.17, + "learning_rate": 1.9853441713640123e-05, + "loss": 0.0, + "step": 87 + }, + { + "epoch": 0.17, + "learning_rate": 1.9848077530122083e-05, + "loss": 0.0, + "step": 88 + }, + { + "epoch": 0.17, + "learning_rate": 1.9842617686733546e-05, + "loss": 0.0, + "step": 89 + }, + { + "epoch": 0.17, + "learning_rate": 1.9837062236509013e-05, + "loss": 0.0, + "step": 90 + }, + { + "epoch": 0.17, + "learning_rate": 1.983141123341168e-05, + "loss": 0.0, + "step": 91 + }, + { + "epoch": 0.18, + "learning_rate": 1.9825664732332886e-05, + "loss": 0.0, + "step": 92 + }, + { + "epoch": 0.18, + "learning_rate": 1.9819822789091597e-05, + "loss": 0.0, + "step": 93 + }, + { + "epoch": 0.18, + "learning_rate": 1.981388546043388e-05, + "loss": 0.0, + "step": 94 + }, + { + "epoch": 0.18, + "learning_rate": 1.9807852804032306e-05, + "loss": 0.0, + "step": 95 + }, + { + "epoch": 0.18, + "learning_rate": 1.9801724878485438e-05, + "loss": 0.0, + "step": 96 + }, + { + "epoch": 0.19, + "learning_rate": 1.979550174331724e-05, + "loss": 0.0, + "step": 97 + }, + { + "epoch": 0.19, + "learning_rate": 1.9789183458976485e-05, + "loss": 0.0, + "step": 98 + }, + { + "epoch": 0.19, + "learning_rate": 1.97827700868362e-05, + "loss": 0.0, + "step": 99 + }, + { + "epoch": 0.19, + "learning_rate": 1.977626168919305e-05, + "loss": 0.0, + "step": 100 + } + ], + "logging_steps": 1.0, + "max_steps": 1040, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 100, + "total_flos": 4.989387064056218e+16, + "train_batch_size": 16, + "trial_name": null, + "trial_params": null +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/training_args.bin b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..2ca4d892afdd453b26723a9aa94e432cb44cc953 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:63da3a2d0bf1dde543b68e123590fcd7c42f45ec7eb68e86c6eadd439321f902 +size 6264 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/zero_to_fp32.py b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..c98caae31534368be22b67fc4ae906836c992a8d --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-100/zero_to_fp32.py @@ -0,0 +1,587 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: python zero_to_fp32.py . pytorch_model.bin + +import argparse +import torch +import glob +import math +import os +import re +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + + total_files = len(files) + state_dicts = [] + for f in files: + state_dict = torch.load(f, map_location=device) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + if zero_stage <= 2: + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + elif zero_stage == 3: + # if there is more than one param group, there will be multiple flattened tensors - one + # flattened tensor per group - for simplicity merge them into a single tensor + # + # XXX: could make the script more memory efficient for when there are multiple groups - it + # will require matching the sub-lists of param_shapes for each param group flattened tensor + + fp32_flat_groups = [ + torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) + ] + + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = fp32_flat_groups[0].numel() * world_size + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + for name, shape in param_shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # XXX: memory usage doubles here + state_dict[name] = torch.cat( + tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), + 0).narrow(0, 0, unpartitioned_numel).view(shape) + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + + Returns: + - pytorch ``state_dict`` + + Note: this approach may not work if your application doesn't have sufficient free CPU memory and + you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + """ + + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + print(f"Saving fp32 state dict to {output_file}") + torch.save(state_dict, output_file) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument( + "output_file", + type=str, + help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag) diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/config.json new file mode 100644 index 0000000000000000000000000000000000000000..44e6d4e17930a42d0aa68dcd3790bd5f32ba4ec4 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/config.json @@ -0,0 +1,73 @@ +{ + "_name_or_path": "../pretrained-models/llava-v1.6-mistral-7b", + "architectures": [ + "LlavaLlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 1, + "eos_token_id": 2, + "freeze_mm_mlp_adapter": false, + "freeze_mm_vision_resampler": false, + "hidden_act": "silu", + "hidden_size": 4096, + "image_aspect_ratio": "pad", + "image_crop_resolution": 224, + "image_grid_pinpoints": [ + [ + 336, + 672 + ], + [ + 672, + 336 + ], + [ + 672, + 672 + ], + [ + 1008, + 336 + ], + [ + 336, + 1008 + ] + ], + "image_split_resolution": 224, + "initializer_range": 0.02, + "intermediate_size": 14336, + "max_position_embeddings": 32768, + "mm_hidden_size": 1024, + "mm_patch_merge_type": "flat", + "mm_projector_lr": null, + "mm_projector_type": "mlp2x_gelu", + "mm_resampler_type": null, + "mm_use_im_patch_token": false, + "mm_use_im_start_end": false, + "mm_vision_select_feature": "patch", + "mm_vision_select_layer": -2, + "mm_vision_tower": "openai/clip-vit-large-patch14-336", + "mm_vision_tower_lr": 2e-06, + "model_type": "llava_llama", + "num_attention_heads": 32, + "num_hidden_layers": 32, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": null, + "rope_theta": 1000000.0, + "sliding_window": null, + "tie_word_embeddings": false, + "tokenizer_model_max_length": 2048, + "tokenizer_padding_side": "right", + "torch_dtype": "bfloat16", + "transformers_version": "4.37.2", + "tune_mm_mlp_adapter": false, + "tune_mm_vision_resampler": false, + "unfreeze_mm_vision_tower": true, + "use_cache": false, + "use_mm_proj": true, + "vocab_size": 32000 +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/generation_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..69b7806611a4865cd48c3e991dbd7d8312e0c5d3 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/generation_config.json @@ -0,0 +1,6 @@ +{ + "_from_model_config": true, + "bos_token_id": 1, + "eos_token_id": 2, + "transformers_version": "4.37.2" +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/latest b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/latest new file mode 100644 index 0000000000000000000000000000000000000000..753e24e10f3a2489150f458205cf759fd8b6081f --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/latest @@ -0,0 +1 @@ +global_step200 \ No newline at end of file diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/model.safetensors.index.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..927da5be7e6e3ec29d3a967a09ba6a421d7a2191 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/model.safetensors.index.json @@ -0,0 +1,694 @@ +{ + "metadata": { + "total_size": 15132446720 + }, + "weight_map": { + "lm_head.weight": "model-00004-of-00004.safetensors", + "model.embed_tokens.weight": "model-00001-of-00004.safetensors", + "model.image_newline": "model-00001-of-00004.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.mm_projector.0.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.0.weight": "model-00003-of-00004.safetensors", + "model.mm_projector.2.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.2.weight": "model-00003-of-00004.safetensors", + "model.norm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.class_embedding": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.weight": "model-00003-of-00004.safetensors" + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_2.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_2.pth new file mode 100644 index 0000000000000000000000000000000000000000..ea499e285c97cca07fedd34662c3d4ab44ff6f47 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_2.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f4e481d4ef1546694da7337f6bb6c658b866dcb79b85deeb477da0d27ebe851e +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_3.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_3.pth new file mode 100644 index 0000000000000000000000000000000000000000..aeb38f92f106ac3f08bae4f82179a8a12243bccb --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_3.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:353c60be37ea56fc992fca446598ceca5d1fd002aa3bd6dbb9ad740e6f47ebb3 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_4.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_4.pth new file mode 100644 index 0000000000000000000000000000000000000000..9d5856cb7a3f15092fa5593507022316916f648e --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_4.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e9107fe964ba7205e354084b85210e5a5ea1c98cfd4d38adb9cd3926945dcae4 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_5.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_5.pth new file mode 100644 index 0000000000000000000000000000000000000000..b824ee24d256695aad4a69a62d8e7125f51a17f2 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_5.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:69d1bb1abee38b92e53f3f23549b642ce0f1edcdccf7b6129847ac61636e96d5 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_6.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_6.pth new file mode 100644 index 0000000000000000000000000000000000000000..a9fd0364bb8f1a8e91eca45be5e1b6672b4d9afd --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_6.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:afd5516048e20f36959601574e29e40106085a7d3cdc7bf425ce5e84633490e6 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_7.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_7.pth new file mode 100644 index 0000000000000000000000000000000000000000..4e80125fd18efcb1097384319888b699f4dce7e7 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/rng_state_7.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8e2c46927fc06939b4c976a01e4b95dec1f8b98ceaea86d31a5d756fc30ff006 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/scheduler.pt b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..3832bd7d37c4d3f00a384304110b47fa49ad2648 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:004f6458d0b8aee88b5696089ea7003c7a93a0c86986070575b2c66175ae173b +size 1064 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/special_tokens_map.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..14761dcf1466dc232bd41de9c21d4c617b15755e --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/special_tokens_map.json @@ -0,0 +1,24 @@ +{ + "bos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": "", + "unk_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/tokenizer.model b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/tokenizer.model new file mode 100644 index 0000000000000000000000000000000000000000..8b443ef19c2a19acc3ac64fb9c3db4a72921dff6 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/tokenizer.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055 +size 493443 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/tokenizer_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..23dcf70e8cfc9b16310b6ff3dc98fdbc5adc11f8 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/tokenizer_config.json @@ -0,0 +1,44 @@ +{ + "add_bos_token": true, + "add_eos_token": false, + "added_tokens_decoder": { + "0": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "1": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "2": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + } + }, + "additional_special_tokens": [], + "bos_token": "", + "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", + "clean_up_tokenization_spaces": false, + "eos_token": "", + "legacy": true, + "model_max_length": 2048, + "pad_token": "", + "padding_side": "right", + "sp_model_kwargs": {}, + "spaces_between_special_tokens": false, + "tokenizer_class": "LlamaTokenizer", + "unk_token": "", + "use_default_system_prompt": false +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/trainer_state.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..f3a6b3edf200cb503a0ba77061d9ef715763ed26 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/trainer_state.json @@ -0,0 +1,1221 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 0.38461538461538464, + "eval_steps": 500, + "global_step": 200, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 6.25e-07, + "loss": 3.7473, + "step": 1 + }, + { + "epoch": 0.0, + "learning_rate": 1.25e-06, + "loss": 0.0, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 1.8750000000000003e-06, + "loss": 0.0, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 2.5e-06, + "loss": 0.0, + "step": 4 + }, + { + "epoch": 0.01, + "learning_rate": 3.125e-06, + "loss": 0.0, + "step": 5 + }, + { + "epoch": 0.01, + "learning_rate": 3.7500000000000005e-06, + "loss": 0.0, + "step": 6 + }, + { + "epoch": 0.01, + "learning_rate": 4.3750000000000005e-06, + "loss": 0.0, + "step": 7 + }, + { + "epoch": 0.02, + "learning_rate": 5e-06, + "loss": 0.0, + "step": 8 + }, + { + "epoch": 0.02, + "learning_rate": 5.625e-06, + "loss": 0.0, + "step": 9 + }, + { + "epoch": 0.02, + "learning_rate": 6.25e-06, + "loss": 0.0, + "step": 10 + }, + { + "epoch": 0.02, + "learning_rate": 6.875e-06, + "loss": 0.0, + "step": 11 + }, + { + "epoch": 0.02, + "learning_rate": 7.500000000000001e-06, + "loss": 0.0, + "step": 12 + }, + { + "epoch": 0.03, + "learning_rate": 8.125000000000001e-06, + "loss": 0.0, + "step": 13 + }, + { + "epoch": 0.03, + "learning_rate": 8.750000000000001e-06, + "loss": 0.0, + "step": 14 + }, + { + "epoch": 0.03, + "learning_rate": 9.375000000000001e-06, + "loss": 0.0, + "step": 15 + }, + { + "epoch": 0.03, + "learning_rate": 1e-05, + "loss": 0.0, + "step": 16 + }, + { + "epoch": 0.03, + "learning_rate": 1.0625e-05, + "loss": 0.0, + "step": 17 + }, + { + "epoch": 0.03, + "learning_rate": 1.125e-05, + "loss": 0.0, + "step": 18 + }, + { + "epoch": 0.04, + "learning_rate": 1.1875e-05, + "loss": 0.0, + "step": 19 + }, + { + "epoch": 0.04, + "learning_rate": 1.25e-05, + "loss": 0.0, + "step": 20 + }, + { + "epoch": 0.04, + "learning_rate": 1.3125e-05, + "loss": 0.0, + "step": 21 + }, + { + "epoch": 0.04, + "learning_rate": 1.375e-05, + "loss": 0.0, + "step": 22 + }, + { + "epoch": 0.04, + "learning_rate": 1.4375e-05, + "loss": 0.0, + "step": 23 + }, + { + "epoch": 0.05, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0, + "step": 24 + }, + { + "epoch": 0.05, + "learning_rate": 1.5625e-05, + "loss": 0.0, + "step": 25 + }, + { + "epoch": 0.05, + "learning_rate": 1.6250000000000002e-05, + "loss": 0.0, + "step": 26 + }, + { + "epoch": 0.05, + "learning_rate": 1.6875e-05, + "loss": 0.0, + "step": 27 + }, + { + "epoch": 0.05, + "learning_rate": 1.7500000000000002e-05, + "loss": 0.0, + "step": 28 + }, + { + "epoch": 0.06, + "learning_rate": 1.8125e-05, + "loss": 0.0, + "step": 29 + }, + { + "epoch": 0.06, + "learning_rate": 1.8750000000000002e-05, + "loss": 0.0, + "step": 30 + }, + { + "epoch": 0.06, + "learning_rate": 1.9375e-05, + "loss": 0.0, + "step": 31 + }, + { + "epoch": 0.06, + "learning_rate": 2e-05, + "loss": 0.0, + "step": 32 + }, + { + "epoch": 0.06, + "learning_rate": 1.9999951432210905e-05, + "loss": 0.0, + "step": 33 + }, + { + "epoch": 0.07, + "learning_rate": 1.9999805729315383e-05, + "loss": 0.0, + "step": 34 + }, + { + "epoch": 0.07, + "learning_rate": 1.999956289272873e-05, + "loss": 0.0, + "step": 35 + }, + { + "epoch": 0.07, + "learning_rate": 1.999922292480975e-05, + "loss": 0.0, + "step": 36 + }, + { + "epoch": 0.07, + "learning_rate": 1.9998785828860744e-05, + "loss": 0.0, + "step": 37 + }, + { + "epoch": 0.07, + "learning_rate": 1.9998251609127465e-05, + "loss": 0.0, + "step": 38 + }, + { + "epoch": 0.07, + "learning_rate": 1.999762027079909e-05, + "loss": 0.0, + "step": 39 + }, + { + "epoch": 0.08, + "learning_rate": 1.9996891820008165e-05, + "loss": 0.0, + "step": 40 + }, + { + "epoch": 0.08, + "learning_rate": 1.9996066263830533e-05, + "loss": 0.0, + "step": 41 + }, + { + "epoch": 0.08, + "learning_rate": 1.9995143610285275e-05, + "loss": 0.0, + "step": 42 + }, + { + "epoch": 0.08, + "learning_rate": 1.9994123868334655e-05, + "loss": 0.0, + "step": 43 + }, + { + "epoch": 0.08, + "learning_rate": 1.9993007047883988e-05, + "loss": 0.0, + "step": 44 + }, + { + "epoch": 0.09, + "learning_rate": 1.999179315978157e-05, + "loss": 0.0, + "step": 45 + }, + { + "epoch": 0.09, + "learning_rate": 1.999048221581858e-05, + "loss": 0.0, + "step": 46 + }, + { + "epoch": 0.09, + "learning_rate": 1.9989074228728942e-05, + "loss": 0.0, + "step": 47 + }, + { + "epoch": 0.09, + "learning_rate": 1.9987569212189224e-05, + "loss": 0.0, + "step": 48 + }, + { + "epoch": 0.09, + "learning_rate": 1.9985967180818493e-05, + "loss": 0.0, + "step": 49 + }, + { + "epoch": 0.1, + "learning_rate": 1.998426815017817e-05, + "loss": 0.0, + "step": 50 + }, + { + "epoch": 0.1, + "learning_rate": 1.998247213677188e-05, + "loss": 0.0, + "step": 51 + }, + { + "epoch": 0.1, + "learning_rate": 1.9980579158045322e-05, + "loss": 0.0, + "step": 52 + }, + { + "epoch": 0.1, + "learning_rate": 1.9978589232386036e-05, + "loss": 0.0, + "step": 53 + }, + { + "epoch": 0.1, + "learning_rate": 1.997650237912329e-05, + "loss": 0.0, + "step": 54 + }, + { + "epoch": 0.11, + "learning_rate": 1.997431861852785e-05, + "loss": 0.0, + "step": 55 + }, + { + "epoch": 0.11, + "learning_rate": 1.9972037971811802e-05, + "loss": 0.0, + "step": 56 + }, + { + "epoch": 0.11, + "learning_rate": 1.996966046112834e-05, + "loss": 0.0, + "step": 57 + }, + { + "epoch": 0.11, + "learning_rate": 1.996718610957155e-05, + "loss": 0.0, + "step": 58 + }, + { + "epoch": 0.11, + "learning_rate": 1.9964614941176194e-05, + "loss": 0.0, + "step": 59 + }, + { + "epoch": 0.12, + "learning_rate": 1.9961946980917457e-05, + "loss": 0.0, + "step": 60 + }, + { + "epoch": 0.12, + "learning_rate": 1.995918225471073e-05, + "loss": 0.0, + "step": 61 + }, + { + "epoch": 0.12, + "learning_rate": 1.9956320789411338e-05, + "loss": 0.0, + "step": 62 + }, + { + "epoch": 0.12, + "learning_rate": 1.9953362612814294e-05, + "loss": 0.0, + "step": 63 + }, + { + "epoch": 0.12, + "learning_rate": 1.9950307753654016e-05, + "loss": 0.0, + "step": 64 + }, + { + "epoch": 0.12, + "learning_rate": 1.994715624160405e-05, + "loss": 0.0, + "step": 65 + }, + { + "epoch": 0.13, + "learning_rate": 1.99439081072768e-05, + "loss": 0.0, + "step": 66 + }, + { + "epoch": 0.13, + "learning_rate": 1.9940563382223196e-05, + "loss": 0.0, + "step": 67 + }, + { + "epoch": 0.13, + "learning_rate": 1.9937122098932428e-05, + "loss": 0.0, + "step": 68 + }, + { + "epoch": 0.13, + "learning_rate": 1.9933584290831593e-05, + "loss": 0.0, + "step": 69 + }, + { + "epoch": 0.13, + "learning_rate": 1.9929949992285397e-05, + "loss": 0.0, + "step": 70 + }, + { + "epoch": 0.14, + "learning_rate": 1.992621923859581e-05, + "loss": 0.0, + "step": 71 + }, + { + "epoch": 0.14, + "learning_rate": 1.9922392066001724e-05, + "loss": 0.0, + "step": 72 + }, + { + "epoch": 0.14, + "learning_rate": 1.99184685116786e-05, + "loss": 0.0, + "step": 73 + }, + { + "epoch": 0.14, + "learning_rate": 1.9914448613738107e-05, + "loss": 0.0, + "step": 74 + }, + { + "epoch": 0.14, + "learning_rate": 1.991033241122776e-05, + "loss": 0.0, + "step": 75 + }, + { + "epoch": 0.15, + "learning_rate": 1.9906119944130527e-05, + "loss": 0.0, + "step": 76 + }, + { + "epoch": 0.15, + "learning_rate": 1.9901811253364458e-05, + "loss": 0.0, + "step": 77 + }, + { + "epoch": 0.15, + "learning_rate": 1.9897406380782262e-05, + "loss": 0.0, + "step": 78 + }, + { + "epoch": 0.15, + "learning_rate": 1.989290536917093e-05, + "loss": 0.0, + "step": 79 + }, + { + "epoch": 0.15, + "learning_rate": 1.9888308262251286e-05, + "loss": 0.0, + "step": 80 + }, + { + "epoch": 0.16, + "learning_rate": 1.988361510467761e-05, + "loss": 0.0, + "step": 81 + }, + { + "epoch": 0.16, + "learning_rate": 1.9878825942037147e-05, + "loss": 0.0, + "step": 82 + }, + { + "epoch": 0.16, + "learning_rate": 1.9873940820849714e-05, + "loss": 0.0, + "step": 83 + }, + { + "epoch": 0.16, + "learning_rate": 1.9868959788567213e-05, + "loss": 0.0, + "step": 84 + }, + { + "epoch": 0.16, + "learning_rate": 1.9863882893573188e-05, + "loss": 0.0, + "step": 85 + }, + { + "epoch": 0.17, + "learning_rate": 1.985871018518236e-05, + "loss": 0.0, + "step": 86 + }, + { + "epoch": 0.17, + "learning_rate": 1.9853441713640123e-05, + "loss": 0.0, + "step": 87 + }, + { + "epoch": 0.17, + "learning_rate": 1.9848077530122083e-05, + "loss": 0.0, + "step": 88 + }, + { + "epoch": 0.17, + "learning_rate": 1.9842617686733546e-05, + "loss": 0.0, + "step": 89 + }, + { + "epoch": 0.17, + "learning_rate": 1.9837062236509013e-05, + "loss": 0.0, + "step": 90 + }, + { + "epoch": 0.17, + "learning_rate": 1.983141123341168e-05, + "loss": 0.0, + "step": 91 + }, + { + "epoch": 0.18, + "learning_rate": 1.9825664732332886e-05, + "loss": 0.0, + "step": 92 + }, + { + "epoch": 0.18, + "learning_rate": 1.9819822789091597e-05, + "loss": 0.0, + "step": 93 + }, + { + "epoch": 0.18, + "learning_rate": 1.981388546043388e-05, + "loss": 0.0, + "step": 94 + }, + { + "epoch": 0.18, + "learning_rate": 1.9807852804032306e-05, + "loss": 0.0, + "step": 95 + }, + { + "epoch": 0.18, + "learning_rate": 1.9801724878485438e-05, + "loss": 0.0, + "step": 96 + }, + { + "epoch": 0.19, + "learning_rate": 1.979550174331724e-05, + "loss": 0.0, + "step": 97 + }, + { + "epoch": 0.19, + "learning_rate": 1.9789183458976485e-05, + "loss": 0.0, + "step": 98 + }, + { + "epoch": 0.19, + "learning_rate": 1.97827700868362e-05, + "loss": 0.0, + "step": 99 + }, + { + "epoch": 0.19, + "learning_rate": 1.977626168919305e-05, + "loss": 0.0, + "step": 100 + }, + { + "epoch": 0.19, + "learning_rate": 1.9769658329266718e-05, + "loss": 0.0, + "step": 101 + }, + { + "epoch": 0.2, + "learning_rate": 1.9762960071199334e-05, + "loss": 0.0, + "step": 102 + }, + { + "epoch": 0.2, + "learning_rate": 1.9756166980054812e-05, + "loss": 0.0, + "step": 103 + }, + { + "epoch": 0.2, + "learning_rate": 1.9749279121818235e-05, + "loss": 0.0, + "step": 104 + }, + { + "epoch": 0.2, + "learning_rate": 1.9742296563395218e-05, + "loss": 0.0, + "step": 105 + }, + { + "epoch": 0.2, + "learning_rate": 1.9735219372611232e-05, + "loss": 0.0, + "step": 106 + }, + { + "epoch": 0.21, + "learning_rate": 1.9728047618210995e-05, + "loss": 0.0, + "step": 107 + }, + { + "epoch": 0.21, + "learning_rate": 1.9720781369857747e-05, + "loss": 0.0, + "step": 108 + }, + { + "epoch": 0.21, + "learning_rate": 1.9713420698132614e-05, + "loss": 0.0, + "step": 109 + }, + { + "epoch": 0.21, + "learning_rate": 1.970596567453391e-05, + "loss": 0.0, + "step": 110 + }, + { + "epoch": 0.21, + "learning_rate": 1.9698416371476434e-05, + "loss": 0.0, + "step": 111 + }, + { + "epoch": 0.22, + "learning_rate": 1.969077286229078e-05, + "loss": 0.0, + "step": 112 + }, + { + "epoch": 0.22, + "learning_rate": 1.9683035221222617e-05, + "loss": 0.0, + "step": 113 + }, + { + "epoch": 0.22, + "learning_rate": 1.9675203523431964e-05, + "loss": 0.0, + "step": 114 + }, + { + "epoch": 0.22, + "learning_rate": 1.9667277844992476e-05, + "loss": 0.0, + "step": 115 + }, + { + "epoch": 0.22, + "learning_rate": 1.9659258262890683e-05, + "loss": 0.0, + "step": 116 + }, + { + "epoch": 0.23, + "learning_rate": 1.9651144855025265e-05, + "loss": 0.0, + "step": 117 + }, + { + "epoch": 0.23, + "learning_rate": 1.964293770020628e-05, + "loss": 0.0, + "step": 118 + }, + { + "epoch": 0.23, + "learning_rate": 1.9634636878154393e-05, + "loss": 0.0, + "step": 119 + }, + { + "epoch": 0.23, + "learning_rate": 1.962624246950012e-05, + "loss": 0.0, + "step": 120 + }, + { + "epoch": 0.23, + "learning_rate": 1.9617754555783045e-05, + "loss": 0.0, + "step": 121 + }, + { + "epoch": 0.23, + "learning_rate": 1.9609173219450998e-05, + "loss": 0.0, + "step": 122 + }, + { + "epoch": 0.24, + "learning_rate": 1.960049854385929e-05, + "loss": 0.0, + "step": 123 + }, + { + "epoch": 0.24, + "learning_rate": 1.9591730613269878e-05, + "loss": 0.0, + "step": 124 + }, + { + "epoch": 0.24, + "learning_rate": 1.9582869512850576e-05, + "loss": 0.0, + "step": 125 + }, + { + "epoch": 0.24, + "learning_rate": 1.957391532867418e-05, + "loss": 0.0, + "step": 126 + }, + { + "epoch": 0.24, + "learning_rate": 1.956486814771769e-05, + "loss": 0.0, + "step": 127 + }, + { + "epoch": 0.25, + "learning_rate": 1.955572805786141e-05, + "loss": 0.0, + "step": 128 + }, + { + "epoch": 0.25, + "learning_rate": 1.9546495147888134e-05, + "loss": 0.0, + "step": 129 + }, + { + "epoch": 0.25, + "learning_rate": 1.953716950748227e-05, + "loss": 0.0, + "step": 130 + }, + { + "epoch": 0.25, + "learning_rate": 1.9527751227228964e-05, + "loss": 0.0, + "step": 131 + }, + { + "epoch": 0.25, + "learning_rate": 1.9518240398613226e-05, + "loss": 0.0, + "step": 132 + }, + { + "epoch": 0.26, + "learning_rate": 1.9508637114019037e-05, + "loss": 0.0, + "step": 133 + }, + { + "epoch": 0.26, + "learning_rate": 1.9498941466728462e-05, + "loss": 0.0, + "step": 134 + }, + { + "epoch": 0.26, + "learning_rate": 1.9489153550920726e-05, + "loss": 0.0, + "step": 135 + }, + { + "epoch": 0.26, + "learning_rate": 1.947927346167132e-05, + "loss": 0.0, + "step": 136 + }, + { + "epoch": 0.26, + "learning_rate": 1.946930129495106e-05, + "loss": 0.0, + "step": 137 + }, + { + "epoch": 0.27, + "learning_rate": 1.945923714762516e-05, + "loss": 0.0, + "step": 138 + }, + { + "epoch": 0.27, + "learning_rate": 1.9449081117452304e-05, + "loss": 0.0, + "step": 139 + }, + { + "epoch": 0.27, + "learning_rate": 1.9438833303083677e-05, + "loss": 0.0, + "step": 140 + }, + { + "epoch": 0.27, + "learning_rate": 1.9428493804062013e-05, + "loss": 0.0, + "step": 141 + }, + { + "epoch": 0.27, + "learning_rate": 1.9418062720820636e-05, + "loss": 0.0, + "step": 142 + }, + { + "epoch": 0.28, + "learning_rate": 1.9407540154682473e-05, + "loss": 0.0, + "step": 143 + }, + { + "epoch": 0.28, + "learning_rate": 1.9396926207859085e-05, + "loss": 0.0, + "step": 144 + }, + { + "epoch": 0.28, + "learning_rate": 1.9386220983449652e-05, + "loss": 0.0, + "step": 145 + }, + { + "epoch": 0.28, + "learning_rate": 1.9375424585439994e-05, + "loss": 0.0, + "step": 146 + }, + { + "epoch": 0.28, + "learning_rate": 1.9364537118701542e-05, + "loss": 0.0, + "step": 147 + }, + { + "epoch": 0.28, + "learning_rate": 1.935355868899034e-05, + "loss": 0.0, + "step": 148 + }, + { + "epoch": 0.29, + "learning_rate": 1.9342489402945997e-05, + "loss": 0.0, + "step": 149 + }, + { + "epoch": 0.29, + "learning_rate": 1.9331329368090664e-05, + "loss": 0.0, + "step": 150 + }, + { + "epoch": 0.29, + "learning_rate": 1.932007869282799e-05, + "loss": 0.0, + "step": 151 + }, + { + "epoch": 0.29, + "learning_rate": 1.9308737486442045e-05, + "loss": 0.0, + "step": 152 + }, + { + "epoch": 0.29, + "learning_rate": 1.9297305859096305e-05, + "loss": 0.0, + "step": 153 + }, + { + "epoch": 0.3, + "learning_rate": 1.9285783921832537e-05, + "loss": 0.0, + "step": 154 + }, + { + "epoch": 0.3, + "learning_rate": 1.927417178656975e-05, + "loss": 0.0, + "step": 155 + }, + { + "epoch": 0.3, + "learning_rate": 1.926246956610309e-05, + "loss": 0.0, + "step": 156 + }, + { + "epoch": 0.3, + "learning_rate": 1.9250677374102752e-05, + "loss": 0.0, + "step": 157 + }, + { + "epoch": 0.3, + "learning_rate": 1.9238795325112867e-05, + "loss": 0.0, + "step": 158 + }, + { + "epoch": 0.31, + "learning_rate": 1.9226823534550418e-05, + "loss": 0.0, + "step": 159 + }, + { + "epoch": 0.31, + "learning_rate": 1.921476211870408e-05, + "loss": 0.0, + "step": 160 + }, + { + "epoch": 0.31, + "learning_rate": 1.9202611194733107e-05, + "loss": 0.0, + "step": 161 + }, + { + "epoch": 0.31, + "learning_rate": 1.9190370880666206e-05, + "loss": 0.0, + "step": 162 + }, + { + "epoch": 0.31, + "learning_rate": 1.9178041295400383e-05, + "loss": 0.0, + "step": 163 + }, + { + "epoch": 0.32, + "learning_rate": 1.9165622558699763e-05, + "loss": 0.0, + "step": 164 + }, + { + "epoch": 0.32, + "learning_rate": 1.9153114791194475e-05, + "loss": 0.0, + "step": 165 + }, + { + "epoch": 0.32, + "learning_rate": 1.9140518114379433e-05, + "loss": 0.0, + "step": 166 + }, + { + "epoch": 0.32, + "learning_rate": 1.912783265061319e-05, + "loss": 0.0, + "step": 167 + }, + { + "epoch": 0.32, + "learning_rate": 1.9115058523116734e-05, + "loss": 0.0, + "step": 168 + }, + { + "epoch": 0.33, + "learning_rate": 1.9102195855972287e-05, + "loss": 0.0, + "step": 169 + }, + { + "epoch": 0.33, + "learning_rate": 1.908924477412211e-05, + "loss": 0.0, + "step": 170 + }, + { + "epoch": 0.33, + "learning_rate": 1.9076205403367287e-05, + "loss": 0.0, + "step": 171 + }, + { + "epoch": 0.33, + "learning_rate": 1.9063077870366504e-05, + "loss": 0.0, + "step": 172 + }, + { + "epoch": 0.33, + "learning_rate": 1.90498623026348e-05, + "loss": 0.0, + "step": 173 + }, + { + "epoch": 0.33, + "learning_rate": 1.903655882854237e-05, + "loss": 0.0, + "step": 174 + }, + { + "epoch": 0.34, + "learning_rate": 1.9023167577313267e-05, + "loss": 0.0, + "step": 175 + }, + { + "epoch": 0.34, + "learning_rate": 1.900968867902419e-05, + "loss": 0.0, + "step": 176 + }, + { + "epoch": 0.34, + "learning_rate": 1.8996122264603202e-05, + "loss": 0.0, + "step": 177 + }, + { + "epoch": 0.34, + "learning_rate": 1.898246846582844e-05, + "loss": 0.0, + "step": 178 + }, + { + "epoch": 0.34, + "learning_rate": 1.8968727415326885e-05, + "loss": 0.0, + "step": 179 + }, + { + "epoch": 0.35, + "learning_rate": 1.895489924657301e-05, + "loss": 0.0, + "step": 180 + }, + { + "epoch": 0.35, + "learning_rate": 1.894098409388754e-05, + "loss": 0.0, + "step": 181 + }, + { + "epoch": 0.35, + "learning_rate": 1.8926982092436117e-05, + "loss": 0.0, + "step": 182 + }, + { + "epoch": 0.35, + "learning_rate": 1.8912893378227984e-05, + "loss": 0.0, + "step": 183 + }, + { + "epoch": 0.35, + "learning_rate": 1.8898718088114688e-05, + "loss": 0.0, + "step": 184 + }, + { + "epoch": 0.36, + "learning_rate": 1.8884456359788725e-05, + "loss": 0.0, + "step": 185 + }, + { + "epoch": 0.36, + "learning_rate": 1.887010833178222e-05, + "loss": 0.0, + "step": 186 + }, + { + "epoch": 0.36, + "learning_rate": 1.8855674143465567e-05, + "loss": 0.0, + "step": 187 + }, + { + "epoch": 0.36, + "learning_rate": 1.8841153935046098e-05, + "loss": 0.0, + "step": 188 + }, + { + "epoch": 0.36, + "learning_rate": 1.8826547847566692e-05, + "loss": 0.0, + "step": 189 + }, + { + "epoch": 0.37, + "learning_rate": 1.8811856022904423e-05, + "loss": 0.0, + "step": 190 + }, + { + "epoch": 0.37, + "learning_rate": 1.8797078603769184e-05, + "loss": 0.0, + "step": 191 + }, + { + "epoch": 0.37, + "learning_rate": 1.8782215733702286e-05, + "loss": 0.0, + "step": 192 + }, + { + "epoch": 0.37, + "learning_rate": 1.876726755707508e-05, + "loss": 0.0, + "step": 193 + }, + { + "epoch": 0.37, + "learning_rate": 1.8752234219087538e-05, + "loss": 0.0, + "step": 194 + }, + { + "epoch": 0.38, + "learning_rate": 1.8737115865766865e-05, + "loss": 0.0, + "step": 195 + }, + { + "epoch": 0.38, + "learning_rate": 1.8721912643966055e-05, + "loss": 0.0, + "step": 196 + }, + { + "epoch": 0.38, + "learning_rate": 1.8706624701362485e-05, + "loss": 0.0, + "step": 197 + }, + { + "epoch": 0.38, + "learning_rate": 1.8691252186456465e-05, + "loss": 0.0, + "step": 198 + }, + { + "epoch": 0.38, + "learning_rate": 1.8675795248569816e-05, + "loss": 0.0, + "step": 199 + }, + { + "epoch": 0.38, + "learning_rate": 1.866025403784439e-05, + "loss": 0.0, + "step": 200 + } + ], + "logging_steps": 1.0, + "max_steps": 1040, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 100, + "total_flos": 9.983413310193664e+16, + "train_batch_size": 16, + "trial_name": null, + "trial_params": null +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/training_args.bin b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..2ca4d892afdd453b26723a9aa94e432cb44cc953 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:63da3a2d0bf1dde543b68e123590fcd7c42f45ec7eb68e86c6eadd439321f902 +size 6264 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/zero_to_fp32.py b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..c98caae31534368be22b67fc4ae906836c992a8d --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-200/zero_to_fp32.py @@ -0,0 +1,587 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: python zero_to_fp32.py . pytorch_model.bin + +import argparse +import torch +import glob +import math +import os +import re +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + + total_files = len(files) + state_dicts = [] + for f in files: + state_dict = torch.load(f, map_location=device) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + if zero_stage <= 2: + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + elif zero_stage == 3: + # if there is more than one param group, there will be multiple flattened tensors - one + # flattened tensor per group - for simplicity merge them into a single tensor + # + # XXX: could make the script more memory efficient for when there are multiple groups - it + # will require matching the sub-lists of param_shapes for each param group flattened tensor + + fp32_flat_groups = [ + torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) + ] + + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = fp32_flat_groups[0].numel() * world_size + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + for name, shape in param_shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # XXX: memory usage doubles here + state_dict[name] = torch.cat( + tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), + 0).narrow(0, 0, unpartitioned_numel).view(shape) + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + + Returns: + - pytorch ``state_dict`` + + Note: this approach may not work if your application doesn't have sufficient free CPU memory and + you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + """ + + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + print(f"Saving fp32 state dict to {output_file}") + torch.save(state_dict, output_file) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument( + "output_file", + type=str, + help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag) diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/config.json new file mode 100644 index 0000000000000000000000000000000000000000..44e6d4e17930a42d0aa68dcd3790bd5f32ba4ec4 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/config.json @@ -0,0 +1,73 @@ +{ + "_name_or_path": "../pretrained-models/llava-v1.6-mistral-7b", + "architectures": [ + "LlavaLlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 1, + "eos_token_id": 2, + "freeze_mm_mlp_adapter": false, + "freeze_mm_vision_resampler": false, + "hidden_act": "silu", + "hidden_size": 4096, + "image_aspect_ratio": "pad", + "image_crop_resolution": 224, + "image_grid_pinpoints": [ + [ + 336, + 672 + ], + [ + 672, + 336 + ], + [ + 672, + 672 + ], + [ + 1008, + 336 + ], + [ + 336, + 1008 + ] + ], + "image_split_resolution": 224, + "initializer_range": 0.02, + "intermediate_size": 14336, + "max_position_embeddings": 32768, + "mm_hidden_size": 1024, + "mm_patch_merge_type": "flat", + "mm_projector_lr": null, + "mm_projector_type": "mlp2x_gelu", + "mm_resampler_type": null, + "mm_use_im_patch_token": false, + "mm_use_im_start_end": false, + "mm_vision_select_feature": "patch", + "mm_vision_select_layer": -2, + "mm_vision_tower": "openai/clip-vit-large-patch14-336", + "mm_vision_tower_lr": 2e-06, + "model_type": "llava_llama", + "num_attention_heads": 32, + "num_hidden_layers": 32, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": null, + "rope_theta": 1000000.0, + "sliding_window": null, + "tie_word_embeddings": false, + "tokenizer_model_max_length": 2048, + "tokenizer_padding_side": "right", + "torch_dtype": "bfloat16", + "transformers_version": "4.37.2", + "tune_mm_mlp_adapter": false, + "tune_mm_vision_resampler": false, + "unfreeze_mm_vision_tower": true, + "use_cache": false, + "use_mm_proj": true, + "vocab_size": 32000 +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/generation_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..69b7806611a4865cd48c3e991dbd7d8312e0c5d3 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/generation_config.json @@ -0,0 +1,6 @@ +{ + "_from_model_config": true, + "bos_token_id": 1, + "eos_token_id": 2, + "transformers_version": "4.37.2" +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/latest b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/latest new file mode 100644 index 0000000000000000000000000000000000000000..6761b575fffac7f1984044dcb6446b3a51da04c8 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/latest @@ -0,0 +1 @@ +global_step300 \ No newline at end of file diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/model.safetensors.index.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..927da5be7e6e3ec29d3a967a09ba6a421d7a2191 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/model.safetensors.index.json @@ -0,0 +1,694 @@ +{ + "metadata": { + "total_size": 15132446720 + }, + "weight_map": { + "lm_head.weight": "model-00004-of-00004.safetensors", + "model.embed_tokens.weight": "model-00001-of-00004.safetensors", + "model.image_newline": "model-00001-of-00004.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.mm_projector.0.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.0.weight": "model-00003-of-00004.safetensors", + "model.mm_projector.2.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.2.weight": "model-00003-of-00004.safetensors", + "model.norm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.class_embedding": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.weight": "model-00003-of-00004.safetensors" + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_0.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..b6473612e41c5cfd6973c2e71fa5f3ad2b2bcad1 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:575119a228f98110923ffa2dedcb50e3317251b26054355d015e0b2240d566f2 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_1.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..8506e00431b6ac7067699c0ea4f59adb6fa0ba20 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0728b56dab7abb5ef8a0d4bae3519c5767c97467bdd886d26bf19cc8599d0312 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_2.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_2.pth new file mode 100644 index 0000000000000000000000000000000000000000..ea499e285c97cca07fedd34662c3d4ab44ff6f47 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_2.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f4e481d4ef1546694da7337f6bb6c658b866dcb79b85deeb477da0d27ebe851e +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_3.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_3.pth new file mode 100644 index 0000000000000000000000000000000000000000..aeb38f92f106ac3f08bae4f82179a8a12243bccb --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_3.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:353c60be37ea56fc992fca446598ceca5d1fd002aa3bd6dbb9ad740e6f47ebb3 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_4.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_4.pth new file mode 100644 index 0000000000000000000000000000000000000000..9d5856cb7a3f15092fa5593507022316916f648e --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_4.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e9107fe964ba7205e354084b85210e5a5ea1c98cfd4d38adb9cd3926945dcae4 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_5.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_5.pth new file mode 100644 index 0000000000000000000000000000000000000000..b824ee24d256695aad4a69a62d8e7125f51a17f2 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_5.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:69d1bb1abee38b92e53f3f23549b642ce0f1edcdccf7b6129847ac61636e96d5 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_6.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_6.pth new file mode 100644 index 0000000000000000000000000000000000000000..a9fd0364bb8f1a8e91eca45be5e1b6672b4d9afd --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_6.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:afd5516048e20f36959601574e29e40106085a7d3cdc7bf425ce5e84633490e6 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_7.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_7.pth new file mode 100644 index 0000000000000000000000000000000000000000..4e80125fd18efcb1097384319888b699f4dce7e7 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/rng_state_7.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8e2c46927fc06939b4c976a01e4b95dec1f8b98ceaea86d31a5d756fc30ff006 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/scheduler.pt b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..07c142e4fa627f224d9f4f0e1b661f274a96532f --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d8e0c47defe64b52adb69462bbb40710426836b1ff0a9bd9ee95694e9751adbc +size 1064 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/special_tokens_map.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..14761dcf1466dc232bd41de9c21d4c617b15755e --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/special_tokens_map.json @@ -0,0 +1,24 @@ +{ + "bos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": "", + "unk_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/tokenizer.model b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/tokenizer.model new file mode 100644 index 0000000000000000000000000000000000000000..8b443ef19c2a19acc3ac64fb9c3db4a72921dff6 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/tokenizer.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055 +size 493443 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/tokenizer_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..23dcf70e8cfc9b16310b6ff3dc98fdbc5adc11f8 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/tokenizer_config.json @@ -0,0 +1,44 @@ +{ + "add_bos_token": true, + "add_eos_token": false, + "added_tokens_decoder": { + "0": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "1": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "2": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + } + }, + "additional_special_tokens": [], + "bos_token": "", + "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", + "clean_up_tokenization_spaces": false, + "eos_token": "", + "legacy": true, + "model_max_length": 2048, + "pad_token": "", + "padding_side": "right", + "sp_model_kwargs": {}, + "spaces_between_special_tokens": false, + "tokenizer_class": "LlamaTokenizer", + "unk_token": "", + "use_default_system_prompt": false +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/trainer_state.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..4df39cdb9767c5ef34b8152b4b12212c3aad2357 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/trainer_state.json @@ -0,0 +1,1821 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 0.5769230769230769, + "eval_steps": 500, + "global_step": 300, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 6.25e-07, + "loss": 3.7473, + "step": 1 + }, + { + "epoch": 0.0, + "learning_rate": 1.25e-06, + "loss": 0.0, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 1.8750000000000003e-06, + "loss": 0.0, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 2.5e-06, + "loss": 0.0, + "step": 4 + }, + { + "epoch": 0.01, + "learning_rate": 3.125e-06, + "loss": 0.0, + "step": 5 + }, + { + "epoch": 0.01, + "learning_rate": 3.7500000000000005e-06, + "loss": 0.0, + "step": 6 + }, + { + "epoch": 0.01, + "learning_rate": 4.3750000000000005e-06, + "loss": 0.0, + "step": 7 + }, + { + "epoch": 0.02, + "learning_rate": 5e-06, + "loss": 0.0, + "step": 8 + }, + { + "epoch": 0.02, + "learning_rate": 5.625e-06, + "loss": 0.0, + "step": 9 + }, + { + "epoch": 0.02, + "learning_rate": 6.25e-06, + "loss": 0.0, + "step": 10 + }, + { + "epoch": 0.02, + "learning_rate": 6.875e-06, + "loss": 0.0, + "step": 11 + }, + { + "epoch": 0.02, + "learning_rate": 7.500000000000001e-06, + "loss": 0.0, + "step": 12 + }, + { + "epoch": 0.03, + "learning_rate": 8.125000000000001e-06, + "loss": 0.0, + "step": 13 + }, + { + "epoch": 0.03, + "learning_rate": 8.750000000000001e-06, + "loss": 0.0, + "step": 14 + }, + { + "epoch": 0.03, + "learning_rate": 9.375000000000001e-06, + "loss": 0.0, + "step": 15 + }, + { + "epoch": 0.03, + "learning_rate": 1e-05, + "loss": 0.0, + "step": 16 + }, + { + "epoch": 0.03, + "learning_rate": 1.0625e-05, + "loss": 0.0, + "step": 17 + }, + { + "epoch": 0.03, + "learning_rate": 1.125e-05, + "loss": 0.0, + "step": 18 + }, + { + "epoch": 0.04, + "learning_rate": 1.1875e-05, + "loss": 0.0, + "step": 19 + }, + { + "epoch": 0.04, + "learning_rate": 1.25e-05, + "loss": 0.0, + "step": 20 + }, + { + "epoch": 0.04, + "learning_rate": 1.3125e-05, + "loss": 0.0, + "step": 21 + }, + { + "epoch": 0.04, + "learning_rate": 1.375e-05, + "loss": 0.0, + "step": 22 + }, + { + "epoch": 0.04, + "learning_rate": 1.4375e-05, + "loss": 0.0, + "step": 23 + }, + { + "epoch": 0.05, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0, + "step": 24 + }, + { + "epoch": 0.05, + "learning_rate": 1.5625e-05, + "loss": 0.0, + "step": 25 + }, + { + "epoch": 0.05, + "learning_rate": 1.6250000000000002e-05, + "loss": 0.0, + "step": 26 + }, + { + "epoch": 0.05, + "learning_rate": 1.6875e-05, + "loss": 0.0, + "step": 27 + }, + { + "epoch": 0.05, + "learning_rate": 1.7500000000000002e-05, + "loss": 0.0, + "step": 28 + }, + { + "epoch": 0.06, + "learning_rate": 1.8125e-05, + "loss": 0.0, + "step": 29 + }, + { + "epoch": 0.06, + "learning_rate": 1.8750000000000002e-05, + "loss": 0.0, + "step": 30 + }, + { + "epoch": 0.06, + "learning_rate": 1.9375e-05, + "loss": 0.0, + "step": 31 + }, + { + "epoch": 0.06, + "learning_rate": 2e-05, + "loss": 0.0, + "step": 32 + }, + { + "epoch": 0.06, + "learning_rate": 1.9999951432210905e-05, + "loss": 0.0, + "step": 33 + }, + { + "epoch": 0.07, + "learning_rate": 1.9999805729315383e-05, + "loss": 0.0, + "step": 34 + }, + { + "epoch": 0.07, + "learning_rate": 1.999956289272873e-05, + "loss": 0.0, + "step": 35 + }, + { + "epoch": 0.07, + "learning_rate": 1.999922292480975e-05, + "loss": 0.0, + "step": 36 + }, + { + "epoch": 0.07, + "learning_rate": 1.9998785828860744e-05, + "loss": 0.0, + "step": 37 + }, + { + "epoch": 0.07, + "learning_rate": 1.9998251609127465e-05, + "loss": 0.0, + "step": 38 + }, + { + "epoch": 0.07, + "learning_rate": 1.999762027079909e-05, + "loss": 0.0, + "step": 39 + }, + { + "epoch": 0.08, + "learning_rate": 1.9996891820008165e-05, + "loss": 0.0, + "step": 40 + }, + { + "epoch": 0.08, + "learning_rate": 1.9996066263830533e-05, + "loss": 0.0, + "step": 41 + }, + { + "epoch": 0.08, + "learning_rate": 1.9995143610285275e-05, + "loss": 0.0, + "step": 42 + }, + { + "epoch": 0.08, + "learning_rate": 1.9994123868334655e-05, + "loss": 0.0, + "step": 43 + }, + { + "epoch": 0.08, + "learning_rate": 1.9993007047883988e-05, + "loss": 0.0, + "step": 44 + }, + { + "epoch": 0.09, + "learning_rate": 1.999179315978157e-05, + "loss": 0.0, + "step": 45 + }, + { + "epoch": 0.09, + "learning_rate": 1.999048221581858e-05, + "loss": 0.0, + "step": 46 + }, + { + "epoch": 0.09, + "learning_rate": 1.9989074228728942e-05, + "loss": 0.0, + "step": 47 + }, + { + "epoch": 0.09, + "learning_rate": 1.9987569212189224e-05, + "loss": 0.0, + "step": 48 + }, + { + "epoch": 0.09, + "learning_rate": 1.9985967180818493e-05, + "loss": 0.0, + "step": 49 + }, + { + "epoch": 0.1, + "learning_rate": 1.998426815017817e-05, + "loss": 0.0, + "step": 50 + }, + { + "epoch": 0.1, + "learning_rate": 1.998247213677188e-05, + "loss": 0.0, + "step": 51 + }, + { + "epoch": 0.1, + "learning_rate": 1.9980579158045322e-05, + "loss": 0.0, + "step": 52 + }, + { + "epoch": 0.1, + "learning_rate": 1.9978589232386036e-05, + "loss": 0.0, + "step": 53 + }, + { + "epoch": 0.1, + "learning_rate": 1.997650237912329e-05, + "loss": 0.0, + "step": 54 + }, + { + "epoch": 0.11, + "learning_rate": 1.997431861852785e-05, + "loss": 0.0, + "step": 55 + }, + { + "epoch": 0.11, + "learning_rate": 1.9972037971811802e-05, + "loss": 0.0, + "step": 56 + }, + { + "epoch": 0.11, + "learning_rate": 1.996966046112834e-05, + "loss": 0.0, + "step": 57 + }, + { + "epoch": 0.11, + "learning_rate": 1.996718610957155e-05, + "loss": 0.0, + "step": 58 + }, + { + "epoch": 0.11, + "learning_rate": 1.9964614941176194e-05, + "loss": 0.0, + "step": 59 + }, + { + "epoch": 0.12, + "learning_rate": 1.9961946980917457e-05, + "loss": 0.0, + "step": 60 + }, + { + "epoch": 0.12, + "learning_rate": 1.995918225471073e-05, + "loss": 0.0, + "step": 61 + }, + { + "epoch": 0.12, + "learning_rate": 1.9956320789411338e-05, + "loss": 0.0, + "step": 62 + }, + { + "epoch": 0.12, + "learning_rate": 1.9953362612814294e-05, + "loss": 0.0, + "step": 63 + }, + { + "epoch": 0.12, + "learning_rate": 1.9950307753654016e-05, + "loss": 0.0, + "step": 64 + }, + { + "epoch": 0.12, + "learning_rate": 1.994715624160405e-05, + "loss": 0.0, + "step": 65 + }, + { + "epoch": 0.13, + "learning_rate": 1.99439081072768e-05, + "loss": 0.0, + "step": 66 + }, + { + "epoch": 0.13, + "learning_rate": 1.9940563382223196e-05, + "loss": 0.0, + "step": 67 + }, + { + "epoch": 0.13, + "learning_rate": 1.9937122098932428e-05, + "loss": 0.0, + "step": 68 + }, + { + "epoch": 0.13, + "learning_rate": 1.9933584290831593e-05, + "loss": 0.0, + "step": 69 + }, + { + "epoch": 0.13, + "learning_rate": 1.9929949992285397e-05, + "loss": 0.0, + "step": 70 + }, + { + "epoch": 0.14, + "learning_rate": 1.992621923859581e-05, + "loss": 0.0, + "step": 71 + }, + { + "epoch": 0.14, + "learning_rate": 1.9922392066001724e-05, + "loss": 0.0, + "step": 72 + }, + { + "epoch": 0.14, + "learning_rate": 1.99184685116786e-05, + "loss": 0.0, + "step": 73 + }, + { + "epoch": 0.14, + "learning_rate": 1.9914448613738107e-05, + "loss": 0.0, + "step": 74 + }, + { + "epoch": 0.14, + "learning_rate": 1.991033241122776e-05, + "loss": 0.0, + "step": 75 + }, + { + "epoch": 0.15, + "learning_rate": 1.9906119944130527e-05, + "loss": 0.0, + "step": 76 + }, + { + "epoch": 0.15, + "learning_rate": 1.9901811253364458e-05, + "loss": 0.0, + "step": 77 + }, + { + "epoch": 0.15, + "learning_rate": 1.9897406380782262e-05, + "loss": 0.0, + "step": 78 + }, + { + "epoch": 0.15, + "learning_rate": 1.989290536917093e-05, + "loss": 0.0, + "step": 79 + }, + { + "epoch": 0.15, + "learning_rate": 1.9888308262251286e-05, + "loss": 0.0, + "step": 80 + }, + { + "epoch": 0.16, + "learning_rate": 1.988361510467761e-05, + "loss": 0.0, + "step": 81 + }, + { + "epoch": 0.16, + "learning_rate": 1.9878825942037147e-05, + "loss": 0.0, + "step": 82 + }, + { + "epoch": 0.16, + "learning_rate": 1.9873940820849714e-05, + "loss": 0.0, + "step": 83 + }, + { + "epoch": 0.16, + "learning_rate": 1.9868959788567213e-05, + "loss": 0.0, + "step": 84 + }, + { + "epoch": 0.16, + "learning_rate": 1.9863882893573188e-05, + "loss": 0.0, + "step": 85 + }, + { + "epoch": 0.17, + "learning_rate": 1.985871018518236e-05, + "loss": 0.0, + "step": 86 + }, + { + "epoch": 0.17, + "learning_rate": 1.9853441713640123e-05, + "loss": 0.0, + "step": 87 + }, + { + "epoch": 0.17, + "learning_rate": 1.9848077530122083e-05, + "loss": 0.0, + "step": 88 + }, + { + "epoch": 0.17, + "learning_rate": 1.9842617686733546e-05, + "loss": 0.0, + "step": 89 + }, + { + "epoch": 0.17, + "learning_rate": 1.9837062236509013e-05, + "loss": 0.0, + "step": 90 + }, + { + "epoch": 0.17, + "learning_rate": 1.983141123341168e-05, + "loss": 0.0, + "step": 91 + }, + { + "epoch": 0.18, + "learning_rate": 1.9825664732332886e-05, + "loss": 0.0, + "step": 92 + }, + { + "epoch": 0.18, + "learning_rate": 1.9819822789091597e-05, + "loss": 0.0, + "step": 93 + }, + { + "epoch": 0.18, + "learning_rate": 1.981388546043388e-05, + "loss": 0.0, + "step": 94 + }, + { + "epoch": 0.18, + "learning_rate": 1.9807852804032306e-05, + "loss": 0.0, + "step": 95 + }, + { + "epoch": 0.18, + "learning_rate": 1.9801724878485438e-05, + "loss": 0.0, + "step": 96 + }, + { + "epoch": 0.19, + "learning_rate": 1.979550174331724e-05, + "loss": 0.0, + "step": 97 + }, + { + "epoch": 0.19, + "learning_rate": 1.9789183458976485e-05, + "loss": 0.0, + "step": 98 + }, + { + "epoch": 0.19, + "learning_rate": 1.97827700868362e-05, + "loss": 0.0, + "step": 99 + }, + { + "epoch": 0.19, + "learning_rate": 1.977626168919305e-05, + "loss": 0.0, + "step": 100 + }, + { + "epoch": 0.19, + "learning_rate": 1.9769658329266718e-05, + "loss": 0.0, + "step": 101 + }, + { + "epoch": 0.2, + "learning_rate": 1.9762960071199334e-05, + "loss": 0.0, + "step": 102 + }, + { + "epoch": 0.2, + "learning_rate": 1.9756166980054812e-05, + "loss": 0.0, + "step": 103 + }, + { + "epoch": 0.2, + "learning_rate": 1.9749279121818235e-05, + "loss": 0.0, + "step": 104 + }, + { + "epoch": 0.2, + "learning_rate": 1.9742296563395218e-05, + "loss": 0.0, + "step": 105 + }, + { + "epoch": 0.2, + "learning_rate": 1.9735219372611232e-05, + "loss": 0.0, + "step": 106 + }, + { + "epoch": 0.21, + "learning_rate": 1.9728047618210995e-05, + "loss": 0.0, + "step": 107 + }, + { + "epoch": 0.21, + "learning_rate": 1.9720781369857747e-05, + "loss": 0.0, + "step": 108 + }, + { + "epoch": 0.21, + "learning_rate": 1.9713420698132614e-05, + "loss": 0.0, + "step": 109 + }, + { + "epoch": 0.21, + "learning_rate": 1.970596567453391e-05, + "loss": 0.0, + "step": 110 + }, + { + "epoch": 0.21, + "learning_rate": 1.9698416371476434e-05, + "loss": 0.0, + "step": 111 + }, + { + "epoch": 0.22, + "learning_rate": 1.969077286229078e-05, + "loss": 0.0, + "step": 112 + }, + { + "epoch": 0.22, + "learning_rate": 1.9683035221222617e-05, + "loss": 0.0, + "step": 113 + }, + { + "epoch": 0.22, + "learning_rate": 1.9675203523431964e-05, + "loss": 0.0, + "step": 114 + }, + { + "epoch": 0.22, + "learning_rate": 1.9667277844992476e-05, + "loss": 0.0, + "step": 115 + }, + { + "epoch": 0.22, + "learning_rate": 1.9659258262890683e-05, + "loss": 0.0, + "step": 116 + }, + { + "epoch": 0.23, + "learning_rate": 1.9651144855025265e-05, + "loss": 0.0, + "step": 117 + }, + { + "epoch": 0.23, + "learning_rate": 1.964293770020628e-05, + "loss": 0.0, + "step": 118 + }, + { + "epoch": 0.23, + "learning_rate": 1.9634636878154393e-05, + "loss": 0.0, + "step": 119 + }, + { + "epoch": 0.23, + "learning_rate": 1.962624246950012e-05, + "loss": 0.0, + "step": 120 + }, + { + "epoch": 0.23, + "learning_rate": 1.9617754555783045e-05, + "loss": 0.0, + "step": 121 + }, + { + "epoch": 0.23, + "learning_rate": 1.9609173219450998e-05, + "loss": 0.0, + "step": 122 + }, + { + "epoch": 0.24, + "learning_rate": 1.960049854385929e-05, + "loss": 0.0, + "step": 123 + }, + { + "epoch": 0.24, + "learning_rate": 1.9591730613269878e-05, + "loss": 0.0, + "step": 124 + }, + { + "epoch": 0.24, + "learning_rate": 1.9582869512850576e-05, + "loss": 0.0, + "step": 125 + }, + { + "epoch": 0.24, + "learning_rate": 1.957391532867418e-05, + "loss": 0.0, + "step": 126 + }, + { + "epoch": 0.24, + "learning_rate": 1.956486814771769e-05, + "loss": 0.0, + "step": 127 + }, + { + "epoch": 0.25, + "learning_rate": 1.955572805786141e-05, + "loss": 0.0, + "step": 128 + }, + { + "epoch": 0.25, + "learning_rate": 1.9546495147888134e-05, + "loss": 0.0, + "step": 129 + }, + { + "epoch": 0.25, + "learning_rate": 1.953716950748227e-05, + "loss": 0.0, + "step": 130 + }, + { + "epoch": 0.25, + "learning_rate": 1.9527751227228964e-05, + "loss": 0.0, + "step": 131 + }, + { + "epoch": 0.25, + "learning_rate": 1.9518240398613226e-05, + "loss": 0.0, + "step": 132 + }, + { + "epoch": 0.26, + "learning_rate": 1.9508637114019037e-05, + "loss": 0.0, + "step": 133 + }, + { + "epoch": 0.26, + "learning_rate": 1.9498941466728462e-05, + "loss": 0.0, + "step": 134 + }, + { + "epoch": 0.26, + "learning_rate": 1.9489153550920726e-05, + "loss": 0.0, + "step": 135 + }, + { + "epoch": 0.26, + "learning_rate": 1.947927346167132e-05, + "loss": 0.0, + "step": 136 + }, + { + "epoch": 0.26, + "learning_rate": 1.946930129495106e-05, + "loss": 0.0, + "step": 137 + }, + { + "epoch": 0.27, + "learning_rate": 1.945923714762516e-05, + "loss": 0.0, + "step": 138 + }, + { + "epoch": 0.27, + "learning_rate": 1.9449081117452304e-05, + "loss": 0.0, + "step": 139 + }, + { + "epoch": 0.27, + "learning_rate": 1.9438833303083677e-05, + "loss": 0.0, + "step": 140 + }, + { + "epoch": 0.27, + "learning_rate": 1.9428493804062013e-05, + "loss": 0.0, + "step": 141 + }, + { + "epoch": 0.27, + "learning_rate": 1.9418062720820636e-05, + "loss": 0.0, + "step": 142 + }, + { + "epoch": 0.28, + "learning_rate": 1.9407540154682473e-05, + "loss": 0.0, + "step": 143 + }, + { + "epoch": 0.28, + "learning_rate": 1.9396926207859085e-05, + "loss": 0.0, + "step": 144 + }, + { + "epoch": 0.28, + "learning_rate": 1.9386220983449652e-05, + "loss": 0.0, + "step": 145 + }, + { + "epoch": 0.28, + "learning_rate": 1.9375424585439994e-05, + "loss": 0.0, + "step": 146 + }, + { + "epoch": 0.28, + "learning_rate": 1.9364537118701542e-05, + "loss": 0.0, + "step": 147 + }, + { + "epoch": 0.28, + "learning_rate": 1.935355868899034e-05, + "loss": 0.0, + "step": 148 + }, + { + "epoch": 0.29, + "learning_rate": 1.9342489402945997e-05, + "loss": 0.0, + "step": 149 + }, + { + "epoch": 0.29, + "learning_rate": 1.9331329368090664e-05, + "loss": 0.0, + "step": 150 + }, + { + "epoch": 0.29, + "learning_rate": 1.932007869282799e-05, + "loss": 0.0, + "step": 151 + }, + { + "epoch": 0.29, + "learning_rate": 1.9308737486442045e-05, + "loss": 0.0, + "step": 152 + }, + { + "epoch": 0.29, + "learning_rate": 1.9297305859096305e-05, + "loss": 0.0, + "step": 153 + }, + { + "epoch": 0.3, + "learning_rate": 1.9285783921832537e-05, + "loss": 0.0, + "step": 154 + }, + { + "epoch": 0.3, + "learning_rate": 1.927417178656975e-05, + "loss": 0.0, + "step": 155 + }, + { + "epoch": 0.3, + "learning_rate": 1.926246956610309e-05, + "loss": 0.0, + "step": 156 + }, + { + "epoch": 0.3, + "learning_rate": 1.9250677374102752e-05, + "loss": 0.0, + "step": 157 + }, + { + "epoch": 0.3, + "learning_rate": 1.9238795325112867e-05, + "loss": 0.0, + "step": 158 + }, + { + "epoch": 0.31, + "learning_rate": 1.9226823534550418e-05, + "loss": 0.0, + "step": 159 + }, + { + "epoch": 0.31, + "learning_rate": 1.921476211870408e-05, + "loss": 0.0, + "step": 160 + }, + { + "epoch": 0.31, + "learning_rate": 1.9202611194733107e-05, + "loss": 0.0, + "step": 161 + }, + { + "epoch": 0.31, + "learning_rate": 1.9190370880666206e-05, + "loss": 0.0, + "step": 162 + }, + { + "epoch": 0.31, + "learning_rate": 1.9178041295400383e-05, + "loss": 0.0, + "step": 163 + }, + { + "epoch": 0.32, + "learning_rate": 1.9165622558699763e-05, + "loss": 0.0, + "step": 164 + }, + { + "epoch": 0.32, + "learning_rate": 1.9153114791194475e-05, + "loss": 0.0, + "step": 165 + }, + { + "epoch": 0.32, + "learning_rate": 1.9140518114379433e-05, + "loss": 0.0, + "step": 166 + }, + { + "epoch": 0.32, + "learning_rate": 1.912783265061319e-05, + "loss": 0.0, + "step": 167 + }, + { + "epoch": 0.32, + "learning_rate": 1.9115058523116734e-05, + "loss": 0.0, + "step": 168 + }, + { + "epoch": 0.33, + "learning_rate": 1.9102195855972287e-05, + "loss": 0.0, + "step": 169 + }, + { + "epoch": 0.33, + "learning_rate": 1.908924477412211e-05, + "loss": 0.0, + "step": 170 + }, + { + "epoch": 0.33, + "learning_rate": 1.9076205403367287e-05, + "loss": 0.0, + "step": 171 + }, + { + "epoch": 0.33, + "learning_rate": 1.9063077870366504e-05, + "loss": 0.0, + "step": 172 + }, + { + "epoch": 0.33, + "learning_rate": 1.90498623026348e-05, + "loss": 0.0, + "step": 173 + }, + { + "epoch": 0.33, + "learning_rate": 1.903655882854237e-05, + "loss": 0.0, + "step": 174 + }, + { + "epoch": 0.34, + "learning_rate": 1.9023167577313267e-05, + "loss": 0.0, + "step": 175 + }, + { + "epoch": 0.34, + "learning_rate": 1.900968867902419e-05, + "loss": 0.0, + "step": 176 + }, + { + "epoch": 0.34, + "learning_rate": 1.8996122264603202e-05, + "loss": 0.0, + "step": 177 + }, + { + "epoch": 0.34, + "learning_rate": 1.898246846582844e-05, + "loss": 0.0, + "step": 178 + }, + { + "epoch": 0.34, + "learning_rate": 1.8968727415326885e-05, + "loss": 0.0, + "step": 179 + }, + { + "epoch": 0.35, + "learning_rate": 1.895489924657301e-05, + "loss": 0.0, + "step": 180 + }, + { + "epoch": 0.35, + "learning_rate": 1.894098409388754e-05, + "loss": 0.0, + "step": 181 + }, + { + "epoch": 0.35, + "learning_rate": 1.8926982092436117e-05, + "loss": 0.0, + "step": 182 + }, + { + "epoch": 0.35, + "learning_rate": 1.8912893378227984e-05, + "loss": 0.0, + "step": 183 + }, + { + "epoch": 0.35, + "learning_rate": 1.8898718088114688e-05, + "loss": 0.0, + "step": 184 + }, + { + "epoch": 0.36, + "learning_rate": 1.8884456359788725e-05, + "loss": 0.0, + "step": 185 + }, + { + "epoch": 0.36, + "learning_rate": 1.887010833178222e-05, + "loss": 0.0, + "step": 186 + }, + { + "epoch": 0.36, + "learning_rate": 1.8855674143465567e-05, + "loss": 0.0, + "step": 187 + }, + { + "epoch": 0.36, + "learning_rate": 1.8841153935046098e-05, + "loss": 0.0, + "step": 188 + }, + { + "epoch": 0.36, + "learning_rate": 1.8826547847566692e-05, + "loss": 0.0, + "step": 189 + }, + { + "epoch": 0.37, + "learning_rate": 1.8811856022904423e-05, + "loss": 0.0, + "step": 190 + }, + { + "epoch": 0.37, + "learning_rate": 1.8797078603769184e-05, + "loss": 0.0, + "step": 191 + }, + { + "epoch": 0.37, + "learning_rate": 1.8782215733702286e-05, + "loss": 0.0, + "step": 192 + }, + { + "epoch": 0.37, + "learning_rate": 1.876726755707508e-05, + "loss": 0.0, + "step": 193 + }, + { + "epoch": 0.37, + "learning_rate": 1.8752234219087538e-05, + "loss": 0.0, + "step": 194 + }, + { + "epoch": 0.38, + "learning_rate": 1.8737115865766865e-05, + "loss": 0.0, + "step": 195 + }, + { + "epoch": 0.38, + "learning_rate": 1.8721912643966055e-05, + "loss": 0.0, + "step": 196 + }, + { + "epoch": 0.38, + "learning_rate": 1.8706624701362485e-05, + "loss": 0.0, + "step": 197 + }, + { + "epoch": 0.38, + "learning_rate": 1.8691252186456465e-05, + "loss": 0.0, + "step": 198 + }, + { + "epoch": 0.38, + "learning_rate": 1.8675795248569816e-05, + "loss": 0.0, + "step": 199 + }, + { + "epoch": 0.38, + "learning_rate": 1.866025403784439e-05, + "loss": 0.0, + "step": 200 + }, + { + "epoch": 0.39, + "learning_rate": 1.8644628705240636e-05, + "loss": 0.0, + "step": 201 + }, + { + "epoch": 0.39, + "learning_rate": 1.862891940253613e-05, + "loss": 0.0, + "step": 202 + }, + { + "epoch": 0.39, + "learning_rate": 1.8613126282324092e-05, + "loss": 0.0, + "step": 203 + }, + { + "epoch": 0.39, + "learning_rate": 1.8597249498011906e-05, + "loss": 0.0, + "step": 204 + }, + { + "epoch": 0.39, + "learning_rate": 1.858128920381963e-05, + "loss": 0.0, + "step": 205 + }, + { + "epoch": 0.4, + "learning_rate": 1.8565245554778516e-05, + "loss": 0.0, + "step": 206 + }, + { + "epoch": 0.4, + "learning_rate": 1.854911870672947e-05, + "loss": 0.0, + "step": 207 + }, + { + "epoch": 0.4, + "learning_rate": 1.8532908816321557e-05, + "loss": 0.0, + "step": 208 + }, + { + "epoch": 0.4, + "learning_rate": 1.8516616041010495e-05, + "loss": 0.0, + "step": 209 + }, + { + "epoch": 0.4, + "learning_rate": 1.8500240539057093e-05, + "loss": 0.0, + "step": 210 + }, + { + "epoch": 0.41, + "learning_rate": 1.848378246952574e-05, + "loss": 0.0, + "step": 211 + }, + { + "epoch": 0.41, + "learning_rate": 1.8467241992282842e-05, + "loss": 0.0, + "step": 212 + }, + { + "epoch": 0.41, + "learning_rate": 1.8450619267995283e-05, + "loss": 0.0, + "step": 213 + }, + { + "epoch": 0.41, + "learning_rate": 1.843391445812886e-05, + "loss": 0.0, + "step": 214 + }, + { + "epoch": 0.41, + "learning_rate": 1.84171277249467e-05, + "loss": 0.0, + "step": 215 + }, + { + "epoch": 0.42, + "learning_rate": 1.8400259231507716e-05, + "loss": 0.0, + "step": 216 + }, + { + "epoch": 0.42, + "learning_rate": 1.8383309141664992e-05, + "loss": 0.0, + "step": 217 + }, + { + "epoch": 0.42, + "learning_rate": 1.83662776200642e-05, + "loss": 0.0, + "step": 218 + }, + { + "epoch": 0.42, + "learning_rate": 1.8349164832142015e-05, + "loss": 0.0, + "step": 219 + }, + { + "epoch": 0.42, + "learning_rate": 1.833197094412449e-05, + "loss": 0.0, + "step": 220 + }, + { + "epoch": 0.42, + "learning_rate": 1.8314696123025456e-05, + "loss": 0.0, + "step": 221 + }, + { + "epoch": 0.43, + "learning_rate": 1.8297340536644877e-05, + "loss": 0.0, + "step": 222 + }, + { + "epoch": 0.43, + "learning_rate": 1.827990435356725e-05, + "loss": 0.0, + "step": 223 + }, + { + "epoch": 0.43, + "learning_rate": 1.826238774315995e-05, + "loss": 0.0, + "step": 224 + }, + { + "epoch": 0.43, + "learning_rate": 1.8244790875571582e-05, + "loss": 0.0, + "step": 225 + }, + { + "epoch": 0.43, + "learning_rate": 1.8227113921730336e-05, + "loss": 0.0, + "step": 226 + }, + { + "epoch": 0.44, + "learning_rate": 1.8209357053342325e-05, + "loss": 0.0, + "step": 227 + }, + { + "epoch": 0.44, + "learning_rate": 1.819152044288992e-05, + "loss": 0.0, + "step": 228 + }, + { + "epoch": 0.44, + "learning_rate": 1.8173604263630066e-05, + "loss": 0.0, + "step": 229 + }, + { + "epoch": 0.44, + "learning_rate": 1.8155608689592604e-05, + "loss": 0.0, + "step": 230 + }, + { + "epoch": 0.44, + "learning_rate": 1.8137533895578585e-05, + "loss": 0.0, + "step": 231 + }, + { + "epoch": 0.45, + "learning_rate": 1.811938005715857e-05, + "loss": 0.0, + "step": 232 + }, + { + "epoch": 0.45, + "learning_rate": 1.8101147350670905e-05, + "loss": 0.0, + "step": 233 + }, + { + "epoch": 0.45, + "learning_rate": 1.8082835953220055e-05, + "loss": 0.0, + "step": 234 + }, + { + "epoch": 0.45, + "learning_rate": 1.806444604267483e-05, + "loss": 0.0, + "step": 235 + }, + { + "epoch": 0.45, + "learning_rate": 1.8045977797666685e-05, + "loss": 0.0, + "step": 236 + }, + { + "epoch": 0.46, + "learning_rate": 1.8027431397587993e-05, + "loss": 0.0, + "step": 237 + }, + { + "epoch": 0.46, + "learning_rate": 1.8008807022590283e-05, + "loss": 0.0, + "step": 238 + }, + { + "epoch": 0.46, + "learning_rate": 1.7990104853582494e-05, + "loss": 0.0, + "step": 239 + }, + { + "epoch": 0.46, + "learning_rate": 1.7971325072229227e-05, + "loss": 0.0, + "step": 240 + }, + { + "epoch": 0.46, + "learning_rate": 1.7952467860948975e-05, + "loss": 0.0, + "step": 241 + }, + { + "epoch": 0.47, + "learning_rate": 1.7933533402912354e-05, + "loss": 0.0, + "step": 242 + }, + { + "epoch": 0.47, + "learning_rate": 1.791452188204031e-05, + "loss": 0.0, + "step": 243 + }, + { + "epoch": 0.47, + "learning_rate": 1.7895433483002356e-05, + "loss": 0.0, + "step": 244 + }, + { + "epoch": 0.47, + "learning_rate": 1.7876268391214756e-05, + "loss": 0.0, + "step": 245 + }, + { + "epoch": 0.47, + "learning_rate": 1.785702679283874e-05, + "loss": 0.0, + "step": 246 + }, + { + "epoch": 0.47, + "learning_rate": 1.7837708874778683e-05, + "loss": 0.0, + "step": 247 + }, + { + "epoch": 0.48, + "learning_rate": 1.78183148246803e-05, + "loss": 0.0, + "step": 248 + }, + { + "epoch": 0.48, + "learning_rate": 1.7798844830928818e-05, + "loss": 0.0, + "step": 249 + }, + { + "epoch": 0.48, + "learning_rate": 1.777929908264715e-05, + "loss": 0.0, + "step": 250 + }, + { + "epoch": 0.48, + "learning_rate": 1.775967776969405e-05, + "loss": 0.0, + "step": 251 + }, + { + "epoch": 0.48, + "learning_rate": 1.7739981082662275e-05, + "loss": 0.0, + "step": 252 + }, + { + "epoch": 0.49, + "learning_rate": 1.772020921287674e-05, + "loss": 0.0, + "step": 253 + }, + { + "epoch": 0.49, + "learning_rate": 1.7700362352392632e-05, + "loss": 0.0, + "step": 254 + }, + { + "epoch": 0.49, + "learning_rate": 1.7680440693993586e-05, + "loss": 0.0, + "step": 255 + }, + { + "epoch": 0.49, + "learning_rate": 1.766044443118978e-05, + "loss": 0.0, + "step": 256 + }, + { + "epoch": 0.49, + "learning_rate": 1.7640373758216075e-05, + "loss": 0.0, + "step": 257 + }, + { + "epoch": 0.5, + "learning_rate": 1.762022887003011e-05, + "loss": 0.0, + "step": 258 + }, + { + "epoch": 0.5, + "learning_rate": 1.7600009962310417e-05, + "loss": 0.0, + "step": 259 + }, + { + "epoch": 0.5, + "learning_rate": 1.757971723145453e-05, + "loss": 0.0, + "step": 260 + }, + { + "epoch": 0.5, + "learning_rate": 1.7559350874577066e-05, + "loss": 0.0, + "step": 261 + }, + { + "epoch": 0.5, + "learning_rate": 1.75389110895078e-05, + "loss": 0.0, + "step": 262 + }, + { + "epoch": 0.51, + "learning_rate": 1.7518398074789776e-05, + "loss": 0.0, + "step": 263 + }, + { + "epoch": 0.51, + "learning_rate": 1.7497812029677344e-05, + "loss": 0.0, + "step": 264 + }, + { + "epoch": 0.51, + "learning_rate": 1.7477153154134244e-05, + "loss": 0.0, + "step": 265 + }, + { + "epoch": 0.51, + "learning_rate": 1.7456421648831658e-05, + "loss": 0.0, + "step": 266 + }, + { + "epoch": 0.51, + "learning_rate": 1.743561771514626e-05, + "loss": 0.0, + "step": 267 + }, + { + "epoch": 0.52, + "learning_rate": 1.741474155515827e-05, + "loss": 0.0, + "step": 268 + }, + { + "epoch": 0.52, + "learning_rate": 1.739379337164946e-05, + "loss": 0.0, + "step": 269 + }, + { + "epoch": 0.52, + "learning_rate": 1.737277336810124e-05, + "loss": 0.0, + "step": 270 + }, + { + "epoch": 0.52, + "learning_rate": 1.7351681748692622e-05, + "loss": 0.0, + "step": 271 + }, + { + "epoch": 0.52, + "learning_rate": 1.7330518718298263e-05, + "loss": 0.0, + "step": 272 + }, + { + "epoch": 0.53, + "learning_rate": 1.7309284482486494e-05, + "loss": 0.0, + "step": 273 + }, + { + "epoch": 0.53, + "learning_rate": 1.7287979247517285e-05, + "loss": 0.0, + "step": 274 + }, + { + "epoch": 0.53, + "learning_rate": 1.7266603220340273e-05, + "loss": 0.0, + "step": 275 + }, + { + "epoch": 0.53, + "learning_rate": 1.7245156608592727e-05, + "loss": 0.0, + "step": 276 + }, + { + "epoch": 0.53, + "learning_rate": 1.7223639620597556e-05, + "loss": 0.0, + "step": 277 + }, + { + "epoch": 0.53, + "learning_rate": 1.7202052465361268e-05, + "loss": 0.0, + "step": 278 + }, + { + "epoch": 0.54, + "learning_rate": 1.718039535257194e-05, + "loss": 0.0, + "step": 279 + }, + { + "epoch": 0.54, + "learning_rate": 1.7158668492597186e-05, + "loss": 0.0, + "step": 280 + }, + { + "epoch": 0.54, + "learning_rate": 1.7136872096482123e-05, + "loss": 0.0, + "step": 281 + }, + { + "epoch": 0.54, + "learning_rate": 1.7115006375947304e-05, + "loss": 0.0, + "step": 282 + }, + { + "epoch": 0.54, + "learning_rate": 1.7093071543386667e-05, + "loss": 0.0, + "step": 283 + }, + { + "epoch": 0.55, + "learning_rate": 1.7071067811865477e-05, + "loss": 0.0, + "step": 284 + }, + { + "epoch": 0.55, + "learning_rate": 1.7048995395118253e-05, + "loss": 0.0, + "step": 285 + }, + { + "epoch": 0.55, + "learning_rate": 1.7026854507546694e-05, + "loss": 0.0, + "step": 286 + }, + { + "epoch": 0.55, + "learning_rate": 1.7004645364217584e-05, + "loss": 0.0, + "step": 287 + }, + { + "epoch": 0.55, + "learning_rate": 1.698236818086073e-05, + "loss": 0.0, + "step": 288 + }, + { + "epoch": 0.56, + "learning_rate": 1.6960023173866834e-05, + "loss": 0.0, + "step": 289 + }, + { + "epoch": 0.56, + "learning_rate": 1.693761056028542e-05, + "loss": 0.0, + "step": 290 + }, + { + "epoch": 0.56, + "learning_rate": 1.6915130557822698e-05, + "loss": 0.0, + "step": 291 + }, + { + "epoch": 0.56, + "learning_rate": 1.689258338483947e-05, + "loss": 0.0, + "step": 292 + }, + { + "epoch": 0.56, + "learning_rate": 1.686996926034902e-05, + "loss": 0.0, + "step": 293 + }, + { + "epoch": 0.57, + "learning_rate": 1.6847288404014937e-05, + "loss": 0.0, + "step": 294 + }, + { + "epoch": 0.57, + "learning_rate": 1.682454103614904e-05, + "loss": 0.0, + "step": 295 + }, + { + "epoch": 0.57, + "learning_rate": 1.6801727377709195e-05, + "loss": 0.0, + "step": 296 + }, + { + "epoch": 0.57, + "learning_rate": 1.67788476502972e-05, + "loss": 0.0, + "step": 297 + }, + { + "epoch": 0.57, + "learning_rate": 1.6755902076156606e-05, + "loss": 0.0, + "step": 298 + }, + { + "epoch": 0.57, + "learning_rate": 1.6732890878170573e-05, + "loss": 0.0, + "step": 299 + }, + { + "epoch": 0.58, + "learning_rate": 1.67098142798597e-05, + "loss": 0.0, + "step": 300 + } + ], + "logging_steps": 1.0, + "max_steps": 1040, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 100, + "total_flos": 1.4961737722966835e+17, + "train_batch_size": 16, + "trial_name": null, + "trial_params": null +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/training_args.bin b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..2ca4d892afdd453b26723a9aa94e432cb44cc953 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:63da3a2d0bf1dde543b68e123590fcd7c42f45ec7eb68e86c6eadd439321f902 +size 6264 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/zero_to_fp32.py b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..c98caae31534368be22b67fc4ae906836c992a8d --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-300/zero_to_fp32.py @@ -0,0 +1,587 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: python zero_to_fp32.py . pytorch_model.bin + +import argparse +import torch +import glob +import math +import os +import re +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + + total_files = len(files) + state_dicts = [] + for f in files: + state_dict = torch.load(f, map_location=device) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + if zero_stage <= 2: + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + elif zero_stage == 3: + # if there is more than one param group, there will be multiple flattened tensors - one + # flattened tensor per group - for simplicity merge them into a single tensor + # + # XXX: could make the script more memory efficient for when there are multiple groups - it + # will require matching the sub-lists of param_shapes for each param group flattened tensor + + fp32_flat_groups = [ + torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) + ] + + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = fp32_flat_groups[0].numel() * world_size + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + for name, shape in param_shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # XXX: memory usage doubles here + state_dict[name] = torch.cat( + tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), + 0).narrow(0, 0, unpartitioned_numel).view(shape) + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + + Returns: + - pytorch ``state_dict`` + + Note: this approach may not work if your application doesn't have sufficient free CPU memory and + you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + """ + + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + print(f"Saving fp32 state dict to {output_file}") + torch.save(state_dict, output_file) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument( + "output_file", + type=str, + help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag) diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/config.json new file mode 100644 index 0000000000000000000000000000000000000000..44e6d4e17930a42d0aa68dcd3790bd5f32ba4ec4 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/config.json @@ -0,0 +1,73 @@ +{ + "_name_or_path": "../pretrained-models/llava-v1.6-mistral-7b", + "architectures": [ + "LlavaLlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 1, + "eos_token_id": 2, + "freeze_mm_mlp_adapter": false, + "freeze_mm_vision_resampler": false, + "hidden_act": "silu", + "hidden_size": 4096, + "image_aspect_ratio": "pad", + "image_crop_resolution": 224, + "image_grid_pinpoints": [ + [ + 336, + 672 + ], + [ + 672, + 336 + ], + [ + 672, + 672 + ], + [ + 1008, + 336 + ], + [ + 336, + 1008 + ] + ], + "image_split_resolution": 224, + "initializer_range": 0.02, + "intermediate_size": 14336, + "max_position_embeddings": 32768, + "mm_hidden_size": 1024, + "mm_patch_merge_type": "flat", + "mm_projector_lr": null, + "mm_projector_type": "mlp2x_gelu", + "mm_resampler_type": null, + "mm_use_im_patch_token": false, + "mm_use_im_start_end": false, + "mm_vision_select_feature": "patch", + "mm_vision_select_layer": -2, + "mm_vision_tower": "openai/clip-vit-large-patch14-336", + "mm_vision_tower_lr": 2e-06, + "model_type": "llava_llama", + "num_attention_heads": 32, + "num_hidden_layers": 32, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": null, + "rope_theta": 1000000.0, + "sliding_window": null, + "tie_word_embeddings": false, + "tokenizer_model_max_length": 2048, + "tokenizer_padding_side": "right", + "torch_dtype": "bfloat16", + "transformers_version": "4.37.2", + "tune_mm_mlp_adapter": false, + "tune_mm_vision_resampler": false, + "unfreeze_mm_vision_tower": true, + "use_cache": false, + "use_mm_proj": true, + "vocab_size": 32000 +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/generation_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..69b7806611a4865cd48c3e991dbd7d8312e0c5d3 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/generation_config.json @@ -0,0 +1,6 @@ +{ + "_from_model_config": true, + "bos_token_id": 1, + "eos_token_id": 2, + "transformers_version": "4.37.2" +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/latest b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/latest new file mode 100644 index 0000000000000000000000000000000000000000..e5bdf58d4f29d34e909da25905fad376f73e7c29 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/latest @@ -0,0 +1 @@ +global_step400 \ No newline at end of file diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/model.safetensors.index.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..927da5be7e6e3ec29d3a967a09ba6a421d7a2191 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/model.safetensors.index.json @@ -0,0 +1,694 @@ +{ + "metadata": { + "total_size": 15132446720 + }, + "weight_map": { + "lm_head.weight": "model-00004-of-00004.safetensors", + "model.embed_tokens.weight": "model-00001-of-00004.safetensors", + "model.image_newline": "model-00001-of-00004.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.mm_projector.0.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.0.weight": "model-00003-of-00004.safetensors", + "model.mm_projector.2.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.2.weight": "model-00003-of-00004.safetensors", + "model.norm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.class_embedding": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.weight": "model-00003-of-00004.safetensors" + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/special_tokens_map.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..14761dcf1466dc232bd41de9c21d4c617b15755e --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/special_tokens_map.json @@ -0,0 +1,24 @@ +{ + "bos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": "", + "unk_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/tokenizer_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..23dcf70e8cfc9b16310b6ff3dc98fdbc5adc11f8 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/tokenizer_config.json @@ -0,0 +1,44 @@ +{ + "add_bos_token": true, + "add_eos_token": false, + "added_tokens_decoder": { + "0": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "1": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "2": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + } + }, + "additional_special_tokens": [], + "bos_token": "", + "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", + "clean_up_tokenization_spaces": false, + "eos_token": "", + "legacy": true, + "model_max_length": 2048, + "pad_token": "", + "padding_side": "right", + "sp_model_kwargs": {}, + "spaces_between_special_tokens": false, + "tokenizer_class": "LlamaTokenizer", + "unk_token": "", + "use_default_system_prompt": false +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/trainer_state.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..69a7fe721a444c4237dd0c9a70ed2cffc710e495 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/trainer_state.json @@ -0,0 +1,2421 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 0.7692307692307693, + "eval_steps": 500, + "global_step": 400, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 6.25e-07, + "loss": 3.7473, + "step": 1 + }, + { + "epoch": 0.0, + "learning_rate": 1.25e-06, + "loss": 0.0, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 1.8750000000000003e-06, + "loss": 0.0, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 2.5e-06, + "loss": 0.0, + "step": 4 + }, + { + "epoch": 0.01, + "learning_rate": 3.125e-06, + "loss": 0.0, + "step": 5 + }, + { + "epoch": 0.01, + "learning_rate": 3.7500000000000005e-06, + "loss": 0.0, + "step": 6 + }, + { + "epoch": 0.01, + "learning_rate": 4.3750000000000005e-06, + "loss": 0.0, + "step": 7 + }, + { + "epoch": 0.02, + "learning_rate": 5e-06, + "loss": 0.0, + "step": 8 + }, + { + "epoch": 0.02, + "learning_rate": 5.625e-06, + "loss": 0.0, + "step": 9 + }, + { + "epoch": 0.02, + "learning_rate": 6.25e-06, + "loss": 0.0, + "step": 10 + }, + { + "epoch": 0.02, + "learning_rate": 6.875e-06, + "loss": 0.0, + "step": 11 + }, + { + "epoch": 0.02, + "learning_rate": 7.500000000000001e-06, + "loss": 0.0, + "step": 12 + }, + { + "epoch": 0.03, + "learning_rate": 8.125000000000001e-06, + "loss": 0.0, + "step": 13 + }, + { + "epoch": 0.03, + "learning_rate": 8.750000000000001e-06, + "loss": 0.0, + "step": 14 + }, + { + "epoch": 0.03, + "learning_rate": 9.375000000000001e-06, + "loss": 0.0, + "step": 15 + }, + { + "epoch": 0.03, + "learning_rate": 1e-05, + "loss": 0.0, + "step": 16 + }, + { + "epoch": 0.03, + "learning_rate": 1.0625e-05, + "loss": 0.0, + "step": 17 + }, + { + "epoch": 0.03, + "learning_rate": 1.125e-05, + "loss": 0.0, + "step": 18 + }, + { + "epoch": 0.04, + "learning_rate": 1.1875e-05, + "loss": 0.0, + "step": 19 + }, + { + "epoch": 0.04, + "learning_rate": 1.25e-05, + "loss": 0.0, + "step": 20 + }, + { + "epoch": 0.04, + "learning_rate": 1.3125e-05, + "loss": 0.0, + "step": 21 + }, + { + "epoch": 0.04, + "learning_rate": 1.375e-05, + "loss": 0.0, + "step": 22 + }, + { + "epoch": 0.04, + "learning_rate": 1.4375e-05, + "loss": 0.0, + "step": 23 + }, + { + "epoch": 0.05, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0, + "step": 24 + }, + { + "epoch": 0.05, + "learning_rate": 1.5625e-05, + "loss": 0.0, + "step": 25 + }, + { + "epoch": 0.05, + "learning_rate": 1.6250000000000002e-05, + "loss": 0.0, + "step": 26 + }, + { + "epoch": 0.05, + "learning_rate": 1.6875e-05, + "loss": 0.0, + "step": 27 + }, + { + "epoch": 0.05, + "learning_rate": 1.7500000000000002e-05, + "loss": 0.0, + "step": 28 + }, + { + "epoch": 0.06, + "learning_rate": 1.8125e-05, + "loss": 0.0, + "step": 29 + }, + { + "epoch": 0.06, + "learning_rate": 1.8750000000000002e-05, + "loss": 0.0, + "step": 30 + }, + { + "epoch": 0.06, + "learning_rate": 1.9375e-05, + "loss": 0.0, + "step": 31 + }, + { + "epoch": 0.06, + "learning_rate": 2e-05, + "loss": 0.0, + "step": 32 + }, + { + "epoch": 0.06, + "learning_rate": 1.9999951432210905e-05, + "loss": 0.0, + "step": 33 + }, + { + "epoch": 0.07, + "learning_rate": 1.9999805729315383e-05, + "loss": 0.0, + "step": 34 + }, + { + "epoch": 0.07, + "learning_rate": 1.999956289272873e-05, + "loss": 0.0, + "step": 35 + }, + { + "epoch": 0.07, + "learning_rate": 1.999922292480975e-05, + "loss": 0.0, + "step": 36 + }, + { + "epoch": 0.07, + "learning_rate": 1.9998785828860744e-05, + "loss": 0.0, + "step": 37 + }, + { + "epoch": 0.07, + "learning_rate": 1.9998251609127465e-05, + "loss": 0.0, + "step": 38 + }, + { + "epoch": 0.07, + "learning_rate": 1.999762027079909e-05, + "loss": 0.0, + "step": 39 + }, + { + "epoch": 0.08, + "learning_rate": 1.9996891820008165e-05, + "loss": 0.0, + "step": 40 + }, + { + "epoch": 0.08, + "learning_rate": 1.9996066263830533e-05, + "loss": 0.0, + "step": 41 + }, + { + "epoch": 0.08, + "learning_rate": 1.9995143610285275e-05, + "loss": 0.0, + "step": 42 + }, + { + "epoch": 0.08, + "learning_rate": 1.9994123868334655e-05, + "loss": 0.0, + "step": 43 + }, + { + "epoch": 0.08, + "learning_rate": 1.9993007047883988e-05, + "loss": 0.0, + "step": 44 + }, + { + "epoch": 0.09, + "learning_rate": 1.999179315978157e-05, + "loss": 0.0, + "step": 45 + }, + { + "epoch": 0.09, + "learning_rate": 1.999048221581858e-05, + "loss": 0.0, + "step": 46 + }, + { + "epoch": 0.09, + "learning_rate": 1.9989074228728942e-05, + "loss": 0.0, + "step": 47 + }, + { + "epoch": 0.09, + "learning_rate": 1.9987569212189224e-05, + "loss": 0.0, + "step": 48 + }, + { + "epoch": 0.09, + "learning_rate": 1.9985967180818493e-05, + "loss": 0.0, + "step": 49 + }, + { + "epoch": 0.1, + "learning_rate": 1.998426815017817e-05, + "loss": 0.0, + "step": 50 + }, + { + "epoch": 0.1, + "learning_rate": 1.998247213677188e-05, + "loss": 0.0, + "step": 51 + }, + { + "epoch": 0.1, + "learning_rate": 1.9980579158045322e-05, + "loss": 0.0, + "step": 52 + }, + { + "epoch": 0.1, + "learning_rate": 1.9978589232386036e-05, + "loss": 0.0, + "step": 53 + }, + { + "epoch": 0.1, + "learning_rate": 1.997650237912329e-05, + "loss": 0.0, + "step": 54 + }, + { + "epoch": 0.11, + "learning_rate": 1.997431861852785e-05, + "loss": 0.0, + "step": 55 + }, + { + "epoch": 0.11, + "learning_rate": 1.9972037971811802e-05, + "loss": 0.0, + "step": 56 + }, + { + "epoch": 0.11, + "learning_rate": 1.996966046112834e-05, + "loss": 0.0, + "step": 57 + }, + { + "epoch": 0.11, + "learning_rate": 1.996718610957155e-05, + "loss": 0.0, + "step": 58 + }, + { + "epoch": 0.11, + "learning_rate": 1.9964614941176194e-05, + "loss": 0.0, + "step": 59 + }, + { + "epoch": 0.12, + "learning_rate": 1.9961946980917457e-05, + "loss": 0.0, + "step": 60 + }, + { + "epoch": 0.12, + "learning_rate": 1.995918225471073e-05, + "loss": 0.0, + "step": 61 + }, + { + "epoch": 0.12, + "learning_rate": 1.9956320789411338e-05, + "loss": 0.0, + "step": 62 + }, + { + "epoch": 0.12, + "learning_rate": 1.9953362612814294e-05, + "loss": 0.0, + "step": 63 + }, + { + "epoch": 0.12, + "learning_rate": 1.9950307753654016e-05, + "loss": 0.0, + "step": 64 + }, + { + "epoch": 0.12, + "learning_rate": 1.994715624160405e-05, + "loss": 0.0, + "step": 65 + }, + { + "epoch": 0.13, + "learning_rate": 1.99439081072768e-05, + "loss": 0.0, + "step": 66 + }, + { + "epoch": 0.13, + "learning_rate": 1.9940563382223196e-05, + "loss": 0.0, + "step": 67 + }, + { + "epoch": 0.13, + "learning_rate": 1.9937122098932428e-05, + "loss": 0.0, + "step": 68 + }, + { + "epoch": 0.13, + "learning_rate": 1.9933584290831593e-05, + "loss": 0.0, + "step": 69 + }, + { + "epoch": 0.13, + "learning_rate": 1.9929949992285397e-05, + "loss": 0.0, + "step": 70 + }, + { + "epoch": 0.14, + "learning_rate": 1.992621923859581e-05, + "loss": 0.0, + "step": 71 + }, + { + "epoch": 0.14, + "learning_rate": 1.9922392066001724e-05, + "loss": 0.0, + "step": 72 + }, + { + "epoch": 0.14, + "learning_rate": 1.99184685116786e-05, + "loss": 0.0, + "step": 73 + }, + { + "epoch": 0.14, + "learning_rate": 1.9914448613738107e-05, + "loss": 0.0, + "step": 74 + }, + { + "epoch": 0.14, + "learning_rate": 1.991033241122776e-05, + "loss": 0.0, + "step": 75 + }, + { + "epoch": 0.15, + "learning_rate": 1.9906119944130527e-05, + "loss": 0.0, + "step": 76 + }, + { + "epoch": 0.15, + "learning_rate": 1.9901811253364458e-05, + "loss": 0.0, + "step": 77 + }, + { + "epoch": 0.15, + "learning_rate": 1.9897406380782262e-05, + "loss": 0.0, + "step": 78 + }, + { + "epoch": 0.15, + "learning_rate": 1.989290536917093e-05, + "loss": 0.0, + "step": 79 + }, + { + "epoch": 0.15, + "learning_rate": 1.9888308262251286e-05, + "loss": 0.0, + "step": 80 + }, + { + "epoch": 0.16, + "learning_rate": 1.988361510467761e-05, + "loss": 0.0, + "step": 81 + }, + { + "epoch": 0.16, + "learning_rate": 1.9878825942037147e-05, + "loss": 0.0, + "step": 82 + }, + { + "epoch": 0.16, + "learning_rate": 1.9873940820849714e-05, + "loss": 0.0, + "step": 83 + }, + { + "epoch": 0.16, + "learning_rate": 1.9868959788567213e-05, + "loss": 0.0, + "step": 84 + }, + { + "epoch": 0.16, + "learning_rate": 1.9863882893573188e-05, + "loss": 0.0, + "step": 85 + }, + { + "epoch": 0.17, + "learning_rate": 1.985871018518236e-05, + "loss": 0.0, + "step": 86 + }, + { + "epoch": 0.17, + "learning_rate": 1.9853441713640123e-05, + "loss": 0.0, + "step": 87 + }, + { + "epoch": 0.17, + "learning_rate": 1.9848077530122083e-05, + "loss": 0.0, + "step": 88 + }, + { + "epoch": 0.17, + "learning_rate": 1.9842617686733546e-05, + "loss": 0.0, + "step": 89 + }, + { + "epoch": 0.17, + "learning_rate": 1.9837062236509013e-05, + "loss": 0.0, + "step": 90 + }, + { + "epoch": 0.17, + "learning_rate": 1.983141123341168e-05, + "loss": 0.0, + "step": 91 + }, + { + "epoch": 0.18, + "learning_rate": 1.9825664732332886e-05, + "loss": 0.0, + "step": 92 + }, + { + "epoch": 0.18, + "learning_rate": 1.9819822789091597e-05, + "loss": 0.0, + "step": 93 + }, + { + "epoch": 0.18, + "learning_rate": 1.981388546043388e-05, + "loss": 0.0, + "step": 94 + }, + { + "epoch": 0.18, + "learning_rate": 1.9807852804032306e-05, + "loss": 0.0, + "step": 95 + }, + { + "epoch": 0.18, + "learning_rate": 1.9801724878485438e-05, + "loss": 0.0, + "step": 96 + }, + { + "epoch": 0.19, + "learning_rate": 1.979550174331724e-05, + "loss": 0.0, + "step": 97 + }, + { + "epoch": 0.19, + "learning_rate": 1.9789183458976485e-05, + "loss": 0.0, + "step": 98 + }, + { + "epoch": 0.19, + "learning_rate": 1.97827700868362e-05, + "loss": 0.0, + "step": 99 + }, + { + "epoch": 0.19, + "learning_rate": 1.977626168919305e-05, + "loss": 0.0, + "step": 100 + }, + { + "epoch": 0.19, + "learning_rate": 1.9769658329266718e-05, + "loss": 0.0, + "step": 101 + }, + { + "epoch": 0.2, + "learning_rate": 1.9762960071199334e-05, + "loss": 0.0, + "step": 102 + }, + { + "epoch": 0.2, + "learning_rate": 1.9756166980054812e-05, + "loss": 0.0, + "step": 103 + }, + { + "epoch": 0.2, + "learning_rate": 1.9749279121818235e-05, + "loss": 0.0, + "step": 104 + }, + { + "epoch": 0.2, + "learning_rate": 1.9742296563395218e-05, + "loss": 0.0, + "step": 105 + }, + { + "epoch": 0.2, + "learning_rate": 1.9735219372611232e-05, + "loss": 0.0, + "step": 106 + }, + { + "epoch": 0.21, + "learning_rate": 1.9728047618210995e-05, + "loss": 0.0, + "step": 107 + }, + { + "epoch": 0.21, + "learning_rate": 1.9720781369857747e-05, + "loss": 0.0, + "step": 108 + }, + { + "epoch": 0.21, + "learning_rate": 1.9713420698132614e-05, + "loss": 0.0, + "step": 109 + }, + { + "epoch": 0.21, + "learning_rate": 1.970596567453391e-05, + "loss": 0.0, + "step": 110 + }, + { + "epoch": 0.21, + "learning_rate": 1.9698416371476434e-05, + "loss": 0.0, + "step": 111 + }, + { + "epoch": 0.22, + "learning_rate": 1.969077286229078e-05, + "loss": 0.0, + "step": 112 + }, + { + "epoch": 0.22, + "learning_rate": 1.9683035221222617e-05, + "loss": 0.0, + "step": 113 + }, + { + "epoch": 0.22, + "learning_rate": 1.9675203523431964e-05, + "loss": 0.0, + "step": 114 + }, + { + "epoch": 0.22, + "learning_rate": 1.9667277844992476e-05, + "loss": 0.0, + "step": 115 + }, + { + "epoch": 0.22, + "learning_rate": 1.9659258262890683e-05, + "loss": 0.0, + "step": 116 + }, + { + "epoch": 0.23, + "learning_rate": 1.9651144855025265e-05, + "loss": 0.0, + "step": 117 + }, + { + "epoch": 0.23, + "learning_rate": 1.964293770020628e-05, + "loss": 0.0, + "step": 118 + }, + { + "epoch": 0.23, + "learning_rate": 1.9634636878154393e-05, + "loss": 0.0, + "step": 119 + }, + { + "epoch": 0.23, + "learning_rate": 1.962624246950012e-05, + "loss": 0.0, + "step": 120 + }, + { + "epoch": 0.23, + "learning_rate": 1.9617754555783045e-05, + "loss": 0.0, + "step": 121 + }, + { + "epoch": 0.23, + "learning_rate": 1.9609173219450998e-05, + "loss": 0.0, + "step": 122 + }, + { + "epoch": 0.24, + "learning_rate": 1.960049854385929e-05, + "loss": 0.0, + "step": 123 + }, + { + "epoch": 0.24, + "learning_rate": 1.9591730613269878e-05, + "loss": 0.0, + "step": 124 + }, + { + "epoch": 0.24, + "learning_rate": 1.9582869512850576e-05, + "loss": 0.0, + "step": 125 + }, + { + "epoch": 0.24, + "learning_rate": 1.957391532867418e-05, + "loss": 0.0, + "step": 126 + }, + { + "epoch": 0.24, + "learning_rate": 1.956486814771769e-05, + "loss": 0.0, + "step": 127 + }, + { + "epoch": 0.25, + "learning_rate": 1.955572805786141e-05, + "loss": 0.0, + "step": 128 + }, + { + "epoch": 0.25, + "learning_rate": 1.9546495147888134e-05, + "loss": 0.0, + "step": 129 + }, + { + "epoch": 0.25, + "learning_rate": 1.953716950748227e-05, + "loss": 0.0, + "step": 130 + }, + { + "epoch": 0.25, + "learning_rate": 1.9527751227228964e-05, + "loss": 0.0, + "step": 131 + }, + { + "epoch": 0.25, + "learning_rate": 1.9518240398613226e-05, + "loss": 0.0, + "step": 132 + }, + { + "epoch": 0.26, + "learning_rate": 1.9508637114019037e-05, + "loss": 0.0, + "step": 133 + }, + { + "epoch": 0.26, + "learning_rate": 1.9498941466728462e-05, + "loss": 0.0, + "step": 134 + }, + { + "epoch": 0.26, + "learning_rate": 1.9489153550920726e-05, + "loss": 0.0, + "step": 135 + }, + { + "epoch": 0.26, + "learning_rate": 1.947927346167132e-05, + "loss": 0.0, + "step": 136 + }, + { + "epoch": 0.26, + "learning_rate": 1.946930129495106e-05, + "loss": 0.0, + "step": 137 + }, + { + "epoch": 0.27, + "learning_rate": 1.945923714762516e-05, + "loss": 0.0, + "step": 138 + }, + { + "epoch": 0.27, + "learning_rate": 1.9449081117452304e-05, + "loss": 0.0, + "step": 139 + }, + { + "epoch": 0.27, + "learning_rate": 1.9438833303083677e-05, + "loss": 0.0, + "step": 140 + }, + { + "epoch": 0.27, + "learning_rate": 1.9428493804062013e-05, + "loss": 0.0, + "step": 141 + }, + { + "epoch": 0.27, + "learning_rate": 1.9418062720820636e-05, + "loss": 0.0, + "step": 142 + }, + { + "epoch": 0.28, + "learning_rate": 1.9407540154682473e-05, + "loss": 0.0, + "step": 143 + }, + { + "epoch": 0.28, + "learning_rate": 1.9396926207859085e-05, + "loss": 0.0, + "step": 144 + }, + { + "epoch": 0.28, + "learning_rate": 1.9386220983449652e-05, + "loss": 0.0, + "step": 145 + }, + { + "epoch": 0.28, + "learning_rate": 1.9375424585439994e-05, + "loss": 0.0, + "step": 146 + }, + { + "epoch": 0.28, + "learning_rate": 1.9364537118701542e-05, + "loss": 0.0, + "step": 147 + }, + { + "epoch": 0.28, + "learning_rate": 1.935355868899034e-05, + "loss": 0.0, + "step": 148 + }, + { + "epoch": 0.29, + "learning_rate": 1.9342489402945997e-05, + "loss": 0.0, + "step": 149 + }, + { + "epoch": 0.29, + "learning_rate": 1.9331329368090664e-05, + "loss": 0.0, + "step": 150 + }, + { + "epoch": 0.29, + "learning_rate": 1.932007869282799e-05, + "loss": 0.0, + "step": 151 + }, + { + "epoch": 0.29, + "learning_rate": 1.9308737486442045e-05, + "loss": 0.0, + "step": 152 + }, + { + "epoch": 0.29, + "learning_rate": 1.9297305859096305e-05, + "loss": 0.0, + "step": 153 + }, + { + "epoch": 0.3, + "learning_rate": 1.9285783921832537e-05, + "loss": 0.0, + "step": 154 + }, + { + "epoch": 0.3, + "learning_rate": 1.927417178656975e-05, + "loss": 0.0, + "step": 155 + }, + { + "epoch": 0.3, + "learning_rate": 1.926246956610309e-05, + "loss": 0.0, + "step": 156 + }, + { + "epoch": 0.3, + "learning_rate": 1.9250677374102752e-05, + "loss": 0.0, + "step": 157 + }, + { + "epoch": 0.3, + "learning_rate": 1.9238795325112867e-05, + "loss": 0.0, + "step": 158 + }, + { + "epoch": 0.31, + "learning_rate": 1.9226823534550418e-05, + "loss": 0.0, + "step": 159 + }, + { + "epoch": 0.31, + "learning_rate": 1.921476211870408e-05, + "loss": 0.0, + "step": 160 + }, + { + "epoch": 0.31, + "learning_rate": 1.9202611194733107e-05, + "loss": 0.0, + "step": 161 + }, + { + "epoch": 0.31, + "learning_rate": 1.9190370880666206e-05, + "loss": 0.0, + "step": 162 + }, + { + "epoch": 0.31, + "learning_rate": 1.9178041295400383e-05, + "loss": 0.0, + "step": 163 + }, + { + "epoch": 0.32, + "learning_rate": 1.9165622558699763e-05, + "loss": 0.0, + "step": 164 + }, + { + "epoch": 0.32, + "learning_rate": 1.9153114791194475e-05, + "loss": 0.0, + "step": 165 + }, + { + "epoch": 0.32, + "learning_rate": 1.9140518114379433e-05, + "loss": 0.0, + "step": 166 + }, + { + "epoch": 0.32, + "learning_rate": 1.912783265061319e-05, + "loss": 0.0, + "step": 167 + }, + { + "epoch": 0.32, + "learning_rate": 1.9115058523116734e-05, + "loss": 0.0, + "step": 168 + }, + { + "epoch": 0.33, + "learning_rate": 1.9102195855972287e-05, + "loss": 0.0, + "step": 169 + }, + { + "epoch": 0.33, + "learning_rate": 1.908924477412211e-05, + "loss": 0.0, + "step": 170 + }, + { + "epoch": 0.33, + "learning_rate": 1.9076205403367287e-05, + "loss": 0.0, + "step": 171 + }, + { + "epoch": 0.33, + "learning_rate": 1.9063077870366504e-05, + "loss": 0.0, + "step": 172 + }, + { + "epoch": 0.33, + "learning_rate": 1.90498623026348e-05, + "loss": 0.0, + "step": 173 + }, + { + "epoch": 0.33, + "learning_rate": 1.903655882854237e-05, + "loss": 0.0, + "step": 174 + }, + { + "epoch": 0.34, + "learning_rate": 1.9023167577313267e-05, + "loss": 0.0, + "step": 175 + }, + { + "epoch": 0.34, + "learning_rate": 1.900968867902419e-05, + "loss": 0.0, + "step": 176 + }, + { + "epoch": 0.34, + "learning_rate": 1.8996122264603202e-05, + "loss": 0.0, + "step": 177 + }, + { + "epoch": 0.34, + "learning_rate": 1.898246846582844e-05, + "loss": 0.0, + "step": 178 + }, + { + "epoch": 0.34, + "learning_rate": 1.8968727415326885e-05, + "loss": 0.0, + "step": 179 + }, + { + "epoch": 0.35, + "learning_rate": 1.895489924657301e-05, + "loss": 0.0, + "step": 180 + }, + { + "epoch": 0.35, + "learning_rate": 1.894098409388754e-05, + "loss": 0.0, + "step": 181 + }, + { + "epoch": 0.35, + "learning_rate": 1.8926982092436117e-05, + "loss": 0.0, + "step": 182 + }, + { + "epoch": 0.35, + "learning_rate": 1.8912893378227984e-05, + "loss": 0.0, + "step": 183 + }, + { + "epoch": 0.35, + "learning_rate": 1.8898718088114688e-05, + "loss": 0.0, + "step": 184 + }, + { + "epoch": 0.36, + "learning_rate": 1.8884456359788725e-05, + "loss": 0.0, + "step": 185 + }, + { + "epoch": 0.36, + "learning_rate": 1.887010833178222e-05, + "loss": 0.0, + "step": 186 + }, + { + "epoch": 0.36, + "learning_rate": 1.8855674143465567e-05, + "loss": 0.0, + "step": 187 + }, + { + "epoch": 0.36, + "learning_rate": 1.8841153935046098e-05, + "loss": 0.0, + "step": 188 + }, + { + "epoch": 0.36, + "learning_rate": 1.8826547847566692e-05, + "loss": 0.0, + "step": 189 + }, + { + "epoch": 0.37, + "learning_rate": 1.8811856022904423e-05, + "loss": 0.0, + "step": 190 + }, + { + "epoch": 0.37, + "learning_rate": 1.8797078603769184e-05, + "loss": 0.0, + "step": 191 + }, + { + "epoch": 0.37, + "learning_rate": 1.8782215733702286e-05, + "loss": 0.0, + "step": 192 + }, + { + "epoch": 0.37, + "learning_rate": 1.876726755707508e-05, + "loss": 0.0, + "step": 193 + }, + { + "epoch": 0.37, + "learning_rate": 1.8752234219087538e-05, + "loss": 0.0, + "step": 194 + }, + { + "epoch": 0.38, + "learning_rate": 1.8737115865766865e-05, + "loss": 0.0, + "step": 195 + }, + { + "epoch": 0.38, + "learning_rate": 1.8721912643966055e-05, + "loss": 0.0, + "step": 196 + }, + { + "epoch": 0.38, + "learning_rate": 1.8706624701362485e-05, + "loss": 0.0, + "step": 197 + }, + { + "epoch": 0.38, + "learning_rate": 1.8691252186456465e-05, + "loss": 0.0, + "step": 198 + }, + { + "epoch": 0.38, + "learning_rate": 1.8675795248569816e-05, + "loss": 0.0, + "step": 199 + }, + { + "epoch": 0.38, + "learning_rate": 1.866025403784439e-05, + "loss": 0.0, + "step": 200 + }, + { + "epoch": 0.39, + "learning_rate": 1.8644628705240636e-05, + "loss": 0.0, + "step": 201 + }, + { + "epoch": 0.39, + "learning_rate": 1.862891940253613e-05, + "loss": 0.0, + "step": 202 + }, + { + "epoch": 0.39, + "learning_rate": 1.8613126282324092e-05, + "loss": 0.0, + "step": 203 + }, + { + "epoch": 0.39, + "learning_rate": 1.8597249498011906e-05, + "loss": 0.0, + "step": 204 + }, + { + "epoch": 0.39, + "learning_rate": 1.858128920381963e-05, + "loss": 0.0, + "step": 205 + }, + { + "epoch": 0.4, + "learning_rate": 1.8565245554778516e-05, + "loss": 0.0, + "step": 206 + }, + { + "epoch": 0.4, + "learning_rate": 1.854911870672947e-05, + "loss": 0.0, + "step": 207 + }, + { + "epoch": 0.4, + "learning_rate": 1.8532908816321557e-05, + "loss": 0.0, + "step": 208 + }, + { + "epoch": 0.4, + "learning_rate": 1.8516616041010495e-05, + "loss": 0.0, + "step": 209 + }, + { + "epoch": 0.4, + "learning_rate": 1.8500240539057093e-05, + "loss": 0.0, + "step": 210 + }, + { + "epoch": 0.41, + "learning_rate": 1.848378246952574e-05, + "loss": 0.0, + "step": 211 + }, + { + "epoch": 0.41, + "learning_rate": 1.8467241992282842e-05, + "loss": 0.0, + "step": 212 + }, + { + "epoch": 0.41, + "learning_rate": 1.8450619267995283e-05, + "loss": 0.0, + "step": 213 + }, + { + "epoch": 0.41, + "learning_rate": 1.843391445812886e-05, + "loss": 0.0, + "step": 214 + }, + { + "epoch": 0.41, + "learning_rate": 1.84171277249467e-05, + "loss": 0.0, + "step": 215 + }, + { + "epoch": 0.42, + "learning_rate": 1.8400259231507716e-05, + "loss": 0.0, + "step": 216 + }, + { + "epoch": 0.42, + "learning_rate": 1.8383309141664992e-05, + "loss": 0.0, + "step": 217 + }, + { + "epoch": 0.42, + "learning_rate": 1.83662776200642e-05, + "loss": 0.0, + "step": 218 + }, + { + "epoch": 0.42, + "learning_rate": 1.8349164832142015e-05, + "loss": 0.0, + "step": 219 + }, + { + "epoch": 0.42, + "learning_rate": 1.833197094412449e-05, + "loss": 0.0, + "step": 220 + }, + { + "epoch": 0.42, + "learning_rate": 1.8314696123025456e-05, + "loss": 0.0, + "step": 221 + }, + { + "epoch": 0.43, + "learning_rate": 1.8297340536644877e-05, + "loss": 0.0, + "step": 222 + }, + { + "epoch": 0.43, + "learning_rate": 1.827990435356725e-05, + "loss": 0.0, + "step": 223 + }, + { + "epoch": 0.43, + "learning_rate": 1.826238774315995e-05, + "loss": 0.0, + "step": 224 + }, + { + "epoch": 0.43, + "learning_rate": 1.8244790875571582e-05, + "loss": 0.0, + "step": 225 + }, + { + "epoch": 0.43, + "learning_rate": 1.8227113921730336e-05, + "loss": 0.0, + "step": 226 + }, + { + "epoch": 0.44, + "learning_rate": 1.8209357053342325e-05, + "loss": 0.0, + "step": 227 + }, + { + "epoch": 0.44, + "learning_rate": 1.819152044288992e-05, + "loss": 0.0, + "step": 228 + }, + { + "epoch": 0.44, + "learning_rate": 1.8173604263630066e-05, + "loss": 0.0, + "step": 229 + }, + { + "epoch": 0.44, + "learning_rate": 1.8155608689592604e-05, + "loss": 0.0, + "step": 230 + }, + { + "epoch": 0.44, + "learning_rate": 1.8137533895578585e-05, + "loss": 0.0, + "step": 231 + }, + { + "epoch": 0.45, + "learning_rate": 1.811938005715857e-05, + "loss": 0.0, + "step": 232 + }, + { + "epoch": 0.45, + "learning_rate": 1.8101147350670905e-05, + "loss": 0.0, + "step": 233 + }, + { + "epoch": 0.45, + "learning_rate": 1.8082835953220055e-05, + "loss": 0.0, + "step": 234 + }, + { + "epoch": 0.45, + "learning_rate": 1.806444604267483e-05, + "loss": 0.0, + "step": 235 + }, + { + "epoch": 0.45, + "learning_rate": 1.8045977797666685e-05, + "loss": 0.0, + "step": 236 + }, + { + "epoch": 0.46, + "learning_rate": 1.8027431397587993e-05, + "loss": 0.0, + "step": 237 + }, + { + "epoch": 0.46, + "learning_rate": 1.8008807022590283e-05, + "loss": 0.0, + "step": 238 + }, + { + "epoch": 0.46, + "learning_rate": 1.7990104853582494e-05, + "loss": 0.0, + "step": 239 + }, + { + "epoch": 0.46, + "learning_rate": 1.7971325072229227e-05, + "loss": 0.0, + "step": 240 + }, + { + "epoch": 0.46, + "learning_rate": 1.7952467860948975e-05, + "loss": 0.0, + "step": 241 + }, + { + "epoch": 0.47, + "learning_rate": 1.7933533402912354e-05, + "loss": 0.0, + "step": 242 + }, + { + "epoch": 0.47, + "learning_rate": 1.791452188204031e-05, + "loss": 0.0, + "step": 243 + }, + { + "epoch": 0.47, + "learning_rate": 1.7895433483002356e-05, + "loss": 0.0, + "step": 244 + }, + { + "epoch": 0.47, + "learning_rate": 1.7876268391214756e-05, + "loss": 0.0, + "step": 245 + }, + { + "epoch": 0.47, + "learning_rate": 1.785702679283874e-05, + "loss": 0.0, + "step": 246 + }, + { + "epoch": 0.47, + "learning_rate": 1.7837708874778683e-05, + "loss": 0.0, + "step": 247 + }, + { + "epoch": 0.48, + "learning_rate": 1.78183148246803e-05, + "loss": 0.0, + "step": 248 + }, + { + "epoch": 0.48, + "learning_rate": 1.7798844830928818e-05, + "loss": 0.0, + "step": 249 + }, + { + "epoch": 0.48, + "learning_rate": 1.777929908264715e-05, + "loss": 0.0, + "step": 250 + }, + { + "epoch": 0.48, + "learning_rate": 1.775967776969405e-05, + "loss": 0.0, + "step": 251 + }, + { + "epoch": 0.48, + "learning_rate": 1.7739981082662275e-05, + "loss": 0.0, + "step": 252 + }, + { + "epoch": 0.49, + "learning_rate": 1.772020921287674e-05, + "loss": 0.0, + "step": 253 + }, + { + "epoch": 0.49, + "learning_rate": 1.7700362352392632e-05, + "loss": 0.0, + "step": 254 + }, + { + "epoch": 0.49, + "learning_rate": 1.7680440693993586e-05, + "loss": 0.0, + "step": 255 + }, + { + "epoch": 0.49, + "learning_rate": 1.766044443118978e-05, + "loss": 0.0, + "step": 256 + }, + { + "epoch": 0.49, + "learning_rate": 1.7640373758216075e-05, + "loss": 0.0, + "step": 257 + }, + { + "epoch": 0.5, + "learning_rate": 1.762022887003011e-05, + "loss": 0.0, + "step": 258 + }, + { + "epoch": 0.5, + "learning_rate": 1.7600009962310417e-05, + "loss": 0.0, + "step": 259 + }, + { + "epoch": 0.5, + "learning_rate": 1.757971723145453e-05, + "loss": 0.0, + "step": 260 + }, + { + "epoch": 0.5, + "learning_rate": 1.7559350874577066e-05, + "loss": 0.0, + "step": 261 + }, + { + "epoch": 0.5, + "learning_rate": 1.75389110895078e-05, + "loss": 0.0, + "step": 262 + }, + { + "epoch": 0.51, + "learning_rate": 1.7518398074789776e-05, + "loss": 0.0, + "step": 263 + }, + { + "epoch": 0.51, + "learning_rate": 1.7497812029677344e-05, + "loss": 0.0, + "step": 264 + }, + { + "epoch": 0.51, + "learning_rate": 1.7477153154134244e-05, + "loss": 0.0, + "step": 265 + }, + { + "epoch": 0.51, + "learning_rate": 1.7456421648831658e-05, + "loss": 0.0, + "step": 266 + }, + { + "epoch": 0.51, + "learning_rate": 1.743561771514626e-05, + "loss": 0.0, + "step": 267 + }, + { + "epoch": 0.52, + "learning_rate": 1.741474155515827e-05, + "loss": 0.0, + "step": 268 + }, + { + "epoch": 0.52, + "learning_rate": 1.739379337164946e-05, + "loss": 0.0, + "step": 269 + }, + { + "epoch": 0.52, + "learning_rate": 1.737277336810124e-05, + "loss": 0.0, + "step": 270 + }, + { + "epoch": 0.52, + "learning_rate": 1.7351681748692622e-05, + "loss": 0.0, + "step": 271 + }, + { + "epoch": 0.52, + "learning_rate": 1.7330518718298263e-05, + "loss": 0.0, + "step": 272 + }, + { + "epoch": 0.53, + "learning_rate": 1.7309284482486494e-05, + "loss": 0.0, + "step": 273 + }, + { + "epoch": 0.53, + "learning_rate": 1.7287979247517285e-05, + "loss": 0.0, + "step": 274 + }, + { + "epoch": 0.53, + "learning_rate": 1.7266603220340273e-05, + "loss": 0.0, + "step": 275 + }, + { + "epoch": 0.53, + "learning_rate": 1.7245156608592727e-05, + "loss": 0.0, + "step": 276 + }, + { + "epoch": 0.53, + "learning_rate": 1.7223639620597556e-05, + "loss": 0.0, + "step": 277 + }, + { + "epoch": 0.53, + "learning_rate": 1.7202052465361268e-05, + "loss": 0.0, + "step": 278 + }, + { + "epoch": 0.54, + "learning_rate": 1.718039535257194e-05, + "loss": 0.0, + "step": 279 + }, + { + "epoch": 0.54, + "learning_rate": 1.7158668492597186e-05, + "loss": 0.0, + "step": 280 + }, + { + "epoch": 0.54, + "learning_rate": 1.7136872096482123e-05, + "loss": 0.0, + "step": 281 + }, + { + "epoch": 0.54, + "learning_rate": 1.7115006375947304e-05, + "loss": 0.0, + "step": 282 + }, + { + "epoch": 0.54, + "learning_rate": 1.7093071543386667e-05, + "loss": 0.0, + "step": 283 + }, + { + "epoch": 0.55, + "learning_rate": 1.7071067811865477e-05, + "loss": 0.0, + "step": 284 + }, + { + "epoch": 0.55, + "learning_rate": 1.7048995395118253e-05, + "loss": 0.0, + "step": 285 + }, + { + "epoch": 0.55, + "learning_rate": 1.7026854507546694e-05, + "loss": 0.0, + "step": 286 + }, + { + "epoch": 0.55, + "learning_rate": 1.7004645364217584e-05, + "loss": 0.0, + "step": 287 + }, + { + "epoch": 0.55, + "learning_rate": 1.698236818086073e-05, + "loss": 0.0, + "step": 288 + }, + { + "epoch": 0.56, + "learning_rate": 1.6960023173866834e-05, + "loss": 0.0, + "step": 289 + }, + { + "epoch": 0.56, + "learning_rate": 1.693761056028542e-05, + "loss": 0.0, + "step": 290 + }, + { + "epoch": 0.56, + "learning_rate": 1.6915130557822698e-05, + "loss": 0.0, + "step": 291 + }, + { + "epoch": 0.56, + "learning_rate": 1.689258338483947e-05, + "loss": 0.0, + "step": 292 + }, + { + "epoch": 0.56, + "learning_rate": 1.686996926034902e-05, + "loss": 0.0, + "step": 293 + }, + { + "epoch": 0.57, + "learning_rate": 1.6847288404014937e-05, + "loss": 0.0, + "step": 294 + }, + { + "epoch": 0.57, + "learning_rate": 1.682454103614904e-05, + "loss": 0.0, + "step": 295 + }, + { + "epoch": 0.57, + "learning_rate": 1.6801727377709195e-05, + "loss": 0.0, + "step": 296 + }, + { + "epoch": 0.57, + "learning_rate": 1.67788476502972e-05, + "loss": 0.0, + "step": 297 + }, + { + "epoch": 0.57, + "learning_rate": 1.6755902076156606e-05, + "loss": 0.0, + "step": 298 + }, + { + "epoch": 0.57, + "learning_rate": 1.6732890878170573e-05, + "loss": 0.0, + "step": 299 + }, + { + "epoch": 0.58, + "learning_rate": 1.67098142798597e-05, + "loss": 0.0, + "step": 300 + }, + { + "epoch": 0.58, + "learning_rate": 1.668667250537987e-05, + "loss": 0.0, + "step": 301 + }, + { + "epoch": 0.58, + "learning_rate": 1.6663465779520042e-05, + "loss": 0.0, + "step": 302 + }, + { + "epoch": 0.58, + "learning_rate": 1.6640194327700087e-05, + "loss": 0.0, + "step": 303 + }, + { + "epoch": 0.58, + "learning_rate": 1.6616858375968596e-05, + "loss": 0.0, + "step": 304 + }, + { + "epoch": 0.59, + "learning_rate": 1.659345815100069e-05, + "loss": 0.0, + "step": 305 + }, + { + "epoch": 0.59, + "learning_rate": 1.6569993880095807e-05, + "loss": 0.0, + "step": 306 + }, + { + "epoch": 0.59, + "learning_rate": 1.6546465791175498e-05, + "loss": 0.0, + "step": 307 + }, + { + "epoch": 0.59, + "learning_rate": 1.6522874112781213e-05, + "loss": 0.0, + "step": 308 + }, + { + "epoch": 0.59, + "learning_rate": 1.6499219074072087e-05, + "loss": 0.0, + "step": 309 + }, + { + "epoch": 0.6, + "learning_rate": 1.6475500904822707e-05, + "loss": 0.0, + "step": 310 + }, + { + "epoch": 0.6, + "learning_rate": 1.645171983542088e-05, + "loss": 0.0, + "step": 311 + }, + { + "epoch": 0.6, + "learning_rate": 1.6427876096865394e-05, + "loss": 0.0, + "step": 312 + }, + { + "epoch": 0.6, + "learning_rate": 1.640396992076379e-05, + "loss": 0.0, + "step": 313 + }, + { + "epoch": 0.6, + "learning_rate": 1.6380001539330088e-05, + "loss": 0.0, + "step": 314 + }, + { + "epoch": 0.61, + "learning_rate": 1.6355971185382547e-05, + "loss": 0.0, + "step": 315 + }, + { + "epoch": 0.61, + "learning_rate": 1.6331879092341402e-05, + "loss": 0.0, + "step": 316 + }, + { + "epoch": 0.61, + "learning_rate": 1.6307725494226586e-05, + "loss": 0.0, + "step": 317 + }, + { + "epoch": 0.61, + "learning_rate": 1.6283510625655474e-05, + "loss": 0.0, + "step": 318 + }, + { + "epoch": 0.61, + "learning_rate": 1.6259234721840595e-05, + "loss": 0.0, + "step": 319 + }, + { + "epoch": 0.62, + "learning_rate": 1.6234898018587336e-05, + "loss": 0.0, + "step": 320 + }, + { + "epoch": 0.62, + "learning_rate": 1.6210500752291682e-05, + "loss": 0.0, + "step": 321 + }, + { + "epoch": 0.62, + "learning_rate": 1.6186043159937884e-05, + "loss": 0.0, + "step": 322 + }, + { + "epoch": 0.62, + "learning_rate": 1.616152547909618e-05, + "loss": 0.0, + "step": 323 + }, + { + "epoch": 0.62, + "learning_rate": 1.6136947947920477e-05, + "loss": 0.0, + "step": 324 + }, + { + "epoch": 0.62, + "learning_rate": 1.611231080514605e-05, + "loss": 0.0, + "step": 325 + }, + { + "epoch": 0.63, + "learning_rate": 1.608761429008721e-05, + "loss": 0.0, + "step": 326 + }, + { + "epoch": 0.63, + "learning_rate": 1.606285864263498e-05, + "loss": 0.0, + "step": 327 + }, + { + "epoch": 0.63, + "learning_rate": 1.6038044103254775e-05, + "loss": 0.0, + "step": 328 + }, + { + "epoch": 0.63, + "learning_rate": 1.601317091298406e-05, + "loss": 0.0, + "step": 329 + }, + { + "epoch": 0.63, + "learning_rate": 1.5988239313430004e-05, + "loss": 0.0, + "step": 330 + }, + { + "epoch": 0.64, + "learning_rate": 1.5963249546767144e-05, + "loss": 0.0, + "step": 331 + }, + { + "epoch": 0.64, + "learning_rate": 1.5938201855735017e-05, + "loss": 0.0, + "step": 332 + }, + { + "epoch": 0.64, + "learning_rate": 1.5913096483635827e-05, + "loss": 0.0, + "step": 333 + }, + { + "epoch": 0.64, + "learning_rate": 1.5887933674332048e-05, + "loss": 0.0, + "step": 334 + }, + { + "epoch": 0.64, + "learning_rate": 1.5862713672244092e-05, + "loss": 0.0, + "step": 335 + }, + { + "epoch": 0.65, + "learning_rate": 1.5837436722347902e-05, + "loss": 0.0, + "step": 336 + }, + { + "epoch": 0.65, + "learning_rate": 1.5812103070172592e-05, + "loss": 0.0, + "step": 337 + }, + { + "epoch": 0.65, + "learning_rate": 1.578671296179806e-05, + "loss": 0.0, + "step": 338 + }, + { + "epoch": 0.65, + "learning_rate": 1.5761266643852587e-05, + "loss": 0.0, + "step": 339 + }, + { + "epoch": 0.65, + "learning_rate": 1.573576436351046e-05, + "loss": 0.0, + "step": 340 + }, + { + "epoch": 0.66, + "learning_rate": 1.5710206368489555e-05, + "loss": 0.0, + "step": 341 + }, + { + "epoch": 0.66, + "learning_rate": 1.5684592907048925e-05, + "loss": 0.0, + "step": 342 + }, + { + "epoch": 0.66, + "learning_rate": 1.5658924227986415e-05, + "loss": 0.0, + "step": 343 + }, + { + "epoch": 0.66, + "learning_rate": 1.563320058063622e-05, + "loss": 0.0, + "step": 344 + }, + { + "epoch": 0.66, + "learning_rate": 1.560742221486648e-05, + "loss": 0.0, + "step": 345 + }, + { + "epoch": 0.67, + "learning_rate": 1.5581589381076843e-05, + "loss": 0.0, + "step": 346 + }, + { + "epoch": 0.67, + "learning_rate": 1.5555702330196024e-05, + "loss": 0.0, + "step": 347 + }, + { + "epoch": 0.67, + "learning_rate": 1.5529761313679396e-05, + "loss": 0.0, + "step": 348 + }, + { + "epoch": 0.67, + "learning_rate": 1.5503766583506522e-05, + "loss": 0.0, + "step": 349 + }, + { + "epoch": 0.67, + "learning_rate": 1.5477718392178716e-05, + "loss": 0.0, + "step": 350 + }, + { + "epoch": 0.68, + "learning_rate": 1.545161699271659e-05, + "loss": 0.0, + "step": 351 + }, + { + "epoch": 0.68, + "learning_rate": 1.5425462638657597e-05, + "loss": 0.0, + "step": 352 + }, + { + "epoch": 0.68, + "learning_rate": 1.5399255584053568e-05, + "loss": 0.0, + "step": 353 + }, + { + "epoch": 0.68, + "learning_rate": 1.5372996083468242e-05, + "loss": 0.0, + "step": 354 + }, + { + "epoch": 0.68, + "learning_rate": 1.5346684391974792e-05, + "loss": 0.0, + "step": 355 + }, + { + "epoch": 0.68, + "learning_rate": 1.5320320765153367e-05, + "loss": 0.0, + "step": 356 + }, + { + "epoch": 0.69, + "learning_rate": 1.529390545908857e-05, + "loss": 0.0, + "step": 357 + }, + { + "epoch": 0.69, + "learning_rate": 1.526743873036701e-05, + "loss": 0.0, + "step": 358 + }, + { + "epoch": 0.69, + "learning_rate": 1.5240920836074777e-05, + "loss": 0.0, + "step": 359 + }, + { + "epoch": 0.69, + "learning_rate": 1.5214352033794981e-05, + "loss": 0.0, + "step": 360 + }, + { + "epoch": 0.69, + "learning_rate": 1.5187732581605217e-05, + "loss": 0.0, + "step": 361 + }, + { + "epoch": 0.7, + "learning_rate": 1.5161062738075068e-05, + "loss": 0.0, + "step": 362 + }, + { + "epoch": 0.7, + "learning_rate": 1.5134342762263606e-05, + "loss": 0.0, + "step": 363 + }, + { + "epoch": 0.7, + "learning_rate": 1.5107572913716859e-05, + "loss": 0.0, + "step": 364 + }, + { + "epoch": 0.7, + "learning_rate": 1.5080753452465296e-05, + "loss": 0.0, + "step": 365 + }, + { + "epoch": 0.7, + "learning_rate": 1.505388463902131e-05, + "loss": 0.0, + "step": 366 + }, + { + "epoch": 0.71, + "learning_rate": 1.502696673437667e-05, + "loss": 0.0, + "step": 367 + }, + { + "epoch": 0.71, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0, + "step": 368 + }, + { + "epoch": 0.71, + "learning_rate": 1.4972984697834238e-05, + "loss": 0.0, + "step": 369 + }, + { + "epoch": 0.71, + "learning_rate": 1.4945921090294076e-05, + "loss": 0.0, + "step": 370 + }, + { + "epoch": 0.71, + "learning_rate": 1.4918809440263435e-05, + "loss": 0.0, + "step": 371 + }, + { + "epoch": 0.72, + "learning_rate": 1.4891650011092896e-05, + "loss": 0.0, + "step": 372 + }, + { + "epoch": 0.72, + "learning_rate": 1.486444306659714e-05, + "loss": 0.0, + "step": 373 + }, + { + "epoch": 0.72, + "learning_rate": 1.4837188871052399e-05, + "loss": 0.0, + "step": 374 + }, + { + "epoch": 0.72, + "learning_rate": 1.4809887689193878e-05, + "loss": 0.0, + "step": 375 + }, + { + "epoch": 0.72, + "learning_rate": 1.4782539786213184e-05, + "loss": 0.0, + "step": 376 + }, + { + "epoch": 0.72, + "learning_rate": 1.4755145427755755e-05, + "loss": 0.0, + "step": 377 + }, + { + "epoch": 0.73, + "learning_rate": 1.4727704879918272e-05, + "loss": 0.0, + "step": 378 + }, + { + "epoch": 0.73, + "learning_rate": 1.4700218409246087e-05, + "loss": 0.0, + "step": 379 + }, + { + "epoch": 0.73, + "learning_rate": 1.4672686282730622e-05, + "loss": 0.0, + "step": 380 + }, + { + "epoch": 0.73, + "learning_rate": 1.4645108767806778e-05, + "loss": 0.0, + "step": 381 + }, + { + "epoch": 0.73, + "learning_rate": 1.4617486132350343e-05, + "loss": 0.0, + "step": 382 + }, + { + "epoch": 0.74, + "learning_rate": 1.4589818644675378e-05, + "loss": 0.0, + "step": 383 + }, + { + "epoch": 0.74, + "learning_rate": 1.4562106573531632e-05, + "loss": 0.0, + "step": 384 + }, + { + "epoch": 0.74, + "learning_rate": 1.4534350188101905e-05, + "loss": 0.0, + "step": 385 + }, + { + "epoch": 0.74, + "learning_rate": 1.4506549757999456e-05, + "loss": 0.0, + "step": 386 + }, + { + "epoch": 0.74, + "learning_rate": 1.4478705553265363e-05, + "loss": 0.0, + "step": 387 + }, + { + "epoch": 0.75, + "learning_rate": 1.4450817844365924e-05, + "loss": 0.0, + "step": 388 + }, + { + "epoch": 0.75, + "learning_rate": 1.4422886902190014e-05, + "loss": 0.0, + "step": 389 + }, + { + "epoch": 0.75, + "learning_rate": 1.4394912998046451e-05, + "loss": 0.0, + "step": 390 + }, + { + "epoch": 0.75, + "learning_rate": 1.436689640366137e-05, + "loss": 0.0, + "step": 391 + }, + { + "epoch": 0.75, + "learning_rate": 1.4338837391175582e-05, + "loss": 0.0, + "step": 392 + }, + { + "epoch": 0.76, + "learning_rate": 1.4310736233141926e-05, + "loss": 0.0, + "step": 393 + }, + { + "epoch": 0.76, + "learning_rate": 1.4282593202522627e-05, + "loss": 0.0, + "step": 394 + }, + { + "epoch": 0.76, + "learning_rate": 1.4254408572686642e-05, + "loss": 0.0, + "step": 395 + }, + { + "epoch": 0.76, + "learning_rate": 1.4226182617406996e-05, + "loss": 0.0, + "step": 396 + }, + { + "epoch": 0.76, + "learning_rate": 1.4197915610858143e-05, + "loss": 0.0, + "step": 397 + }, + { + "epoch": 0.77, + "learning_rate": 1.4169607827613284e-05, + "loss": 0.0, + "step": 398 + }, + { + "epoch": 0.77, + "learning_rate": 1.4141259542641706e-05, + "loss": 0.0, + "step": 399 + }, + { + "epoch": 0.77, + "learning_rate": 1.4112871031306118e-05, + "loss": 0.0, + "step": 400 + } + ], + "logging_steps": 1.0, + "max_steps": 1040, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 100, + "total_flos": 1.995362282724393e+17, + "train_batch_size": 16, + "trial_name": null, + "trial_params": null +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/zero_to_fp32.py b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..c98caae31534368be22b67fc4ae906836c992a8d --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-400/zero_to_fp32.py @@ -0,0 +1,587 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: python zero_to_fp32.py . pytorch_model.bin + +import argparse +import torch +import glob +import math +import os +import re +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + + total_files = len(files) + state_dicts = [] + for f in files: + state_dict = torch.load(f, map_location=device) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + if zero_stage <= 2: + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + elif zero_stage == 3: + # if there is more than one param group, there will be multiple flattened tensors - one + # flattened tensor per group - for simplicity merge them into a single tensor + # + # XXX: could make the script more memory efficient for when there are multiple groups - it + # will require matching the sub-lists of param_shapes for each param group flattened tensor + + fp32_flat_groups = [ + torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) + ] + + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = fp32_flat_groups[0].numel() * world_size + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + for name, shape in param_shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # XXX: memory usage doubles here + state_dict[name] = torch.cat( + tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), + 0).narrow(0, 0, unpartitioned_numel).view(shape) + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + + Returns: + - pytorch ``state_dict`` + + Note: this approach may not work if your application doesn't have sufficient free CPU memory and + you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + """ + + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + print(f"Saving fp32 state dict to {output_file}") + torch.save(state_dict, output_file) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument( + "output_file", + type=str, + help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag) diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/config.json new file mode 100644 index 0000000000000000000000000000000000000000..44e6d4e17930a42d0aa68dcd3790bd5f32ba4ec4 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/config.json @@ -0,0 +1,73 @@ +{ + "_name_or_path": "../pretrained-models/llava-v1.6-mistral-7b", + "architectures": [ + "LlavaLlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 1, + "eos_token_id": 2, + "freeze_mm_mlp_adapter": false, + "freeze_mm_vision_resampler": false, + "hidden_act": "silu", + "hidden_size": 4096, + "image_aspect_ratio": "pad", + "image_crop_resolution": 224, + "image_grid_pinpoints": [ + [ + 336, + 672 + ], + [ + 672, + 336 + ], + [ + 672, + 672 + ], + [ + 1008, + 336 + ], + [ + 336, + 1008 + ] + ], + "image_split_resolution": 224, + "initializer_range": 0.02, + "intermediate_size": 14336, + "max_position_embeddings": 32768, + "mm_hidden_size": 1024, + "mm_patch_merge_type": "flat", + "mm_projector_lr": null, + "mm_projector_type": "mlp2x_gelu", + "mm_resampler_type": null, + "mm_use_im_patch_token": false, + "mm_use_im_start_end": false, + "mm_vision_select_feature": "patch", + "mm_vision_select_layer": -2, + "mm_vision_tower": "openai/clip-vit-large-patch14-336", + "mm_vision_tower_lr": 2e-06, + "model_type": "llava_llama", + "num_attention_heads": 32, + "num_hidden_layers": 32, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": null, + "rope_theta": 1000000.0, + "sliding_window": null, + "tie_word_embeddings": false, + "tokenizer_model_max_length": 2048, + "tokenizer_padding_side": "right", + "torch_dtype": "bfloat16", + "transformers_version": "4.37.2", + "tune_mm_mlp_adapter": false, + "tune_mm_vision_resampler": false, + "unfreeze_mm_vision_tower": true, + "use_cache": false, + "use_mm_proj": true, + "vocab_size": 32000 +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/generation_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..69b7806611a4865cd48c3e991dbd7d8312e0c5d3 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/generation_config.json @@ -0,0 +1,6 @@ +{ + "_from_model_config": true, + "bos_token_id": 1, + "eos_token_id": 2, + "transformers_version": "4.37.2" +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/latest b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/latest new file mode 100644 index 0000000000000000000000000000000000000000..f0b47ce15fff9a01b2a416a473b2148085048a50 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/latest @@ -0,0 +1 @@ +global_step500 \ No newline at end of file diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/model.safetensors.index.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..927da5be7e6e3ec29d3a967a09ba6a421d7a2191 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/model.safetensors.index.json @@ -0,0 +1,694 @@ +{ + "metadata": { + "total_size": 15132446720 + }, + "weight_map": { + "lm_head.weight": "model-00004-of-00004.safetensors", + "model.embed_tokens.weight": "model-00001-of-00004.safetensors", + "model.image_newline": "model-00001-of-00004.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.mm_projector.0.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.0.weight": "model-00003-of-00004.safetensors", + "model.mm_projector.2.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.2.weight": "model-00003-of-00004.safetensors", + "model.norm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.class_embedding": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.weight": "model-00003-of-00004.safetensors" + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/special_tokens_map.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..14761dcf1466dc232bd41de9c21d4c617b15755e --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/special_tokens_map.json @@ -0,0 +1,24 @@ +{ + "bos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": "", + "unk_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/tokenizer_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..23dcf70e8cfc9b16310b6ff3dc98fdbc5adc11f8 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/tokenizer_config.json @@ -0,0 +1,44 @@ +{ + "add_bos_token": true, + "add_eos_token": false, + "added_tokens_decoder": { + "0": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "1": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "2": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + } + }, + "additional_special_tokens": [], + "bos_token": "", + "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", + "clean_up_tokenization_spaces": false, + "eos_token": "", + "legacy": true, + "model_max_length": 2048, + "pad_token": "", + "padding_side": "right", + "sp_model_kwargs": {}, + "spaces_between_special_tokens": false, + "tokenizer_class": "LlamaTokenizer", + "unk_token": "", + "use_default_system_prompt": false +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/unk_vqa_test_pred_3_0.jsonl b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/unk_vqa_test_pred_3_0.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..6c8d6c2539d8a57b7d14db75b5c5af282f193a2b --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/unk_vqa_test_pred_3_0.jsonl @@ -0,0 +1,206 @@ +{"question_id": 68236, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What material is the laminate?", "text": "", "answer_id": "Unxsh7TKS3ynFb3uwFYRB7", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68237, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Why are there wires in the black plastic?", "text": "", "answer_id": "KRVAGcpjSsiyReAyV5FL7P", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68238, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of cheese is that?", "text": "", "answer_id": "ZmPLmVJG9ntFu6A9fPu4ap", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68239, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What two different birds are there?", "text": "", "answer_id": "KJxCgFDHny6Gbt6fC7BiaW", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68240, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What sport is this girl playing?", "text": "", "answer_id": "YcnmXxjqTwUbuWPzdMXDRJ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68241, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color shirt is she wearing?", "text": "", "answer_id": "hrsnuyPCGRFYFTCBHYK2sd", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68242, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Which hand holds the backhand?", "text": "", "answer_id": "87bGnwPU22ThP2un22Anfo", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68243, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color are the boy's shorts?", "text": "", "answer_id": "EFJ2QuDCiDThtMTN6dHV7i", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68244, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the woman's attention focused?", "text": "", "answer_id": "GgKSB37NgfRxrRLr5NuovK", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68245, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What branch of the military are the soldiers from?", "text": "", "answer_id": "oVsXhuPRjS4xeQE237zSno", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68246, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What does the girls kite resemble?", "text": "", "answer_id": "iBvJRDgxM5SyASevRsNSXo", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68247, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the spoon?", "text": "", "answer_id": "JM7VyU9XvtZgVDmNSHgLKe", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68249, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the man riding?", "text": "", "answer_id": "FVdyLTF6BFBbZqxgFLQVNg", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68250, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is on the man's back?", "text": "", "answer_id": "dXFz7pdqk8nxQsMpXqVEZh", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68251, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Which pineapples are ripe?", "text": "", "answer_id": "QccjLUCTd9iy9HeQXQu4c2", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68252, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What type of car is in the picture?", "text": "", "answer_id": "EjZdvhXgqfAvB4etZK9aWF", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68253, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is his jacket?", "text": "", "answer_id": "BfYBVyhjmNKfGmqowSwjbx", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68254, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the boy riding?", "text": "", "answer_id": "dNVt2yXBYqjyqHFU8sZHRF", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68255, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of food is this?", "text": "", "answer_id": "iiE6rNzo4AMmPsMnkuMxH4", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68256, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the door frame?", "text": "", "answer_id": "dXaJPC5aFueVCG7EcSFd5K", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68257, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of room is this?", "text": "", "answer_id": "3nrvqvKndsQU5YqihpWcv6", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68258, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the wall in the bathroom?", "text": "", "answer_id": "5VF4CkjmgMMTXuu9wez78K", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68260, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What are the sofas made of?", "text": "", "answer_id": "b6bL3d2urPMNBWEaSs9LqK", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68261, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color are the sofas's cushions?", "text": "", "answer_id": "FgqNEWDYG4Mrh5aq7wLDKR", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68262, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Which pet is more likely to blend in to the surroundings?", "text": "", "answer_id": "NyNwDbCepxVX4544b5eUsF", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68263, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Are the others adults or children?", "text": "", "answer_id": "FZgs2dUE2Ai2QuGDqeTUC5", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68265, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What easter are they celebrating?", "text": "", "answer_id": "6fzx8hZKfC6vsmMqdJLWsz", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68266, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Why are the doughnuts in the gold pan?", "text": "", "answer_id": "cpgWTxjzHsiVuXky86g3sQ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68267, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is in the containers on the table?", "text": "", "answer_id": "JcGUriDFf9i9V5EW6UQxoQ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68269, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What type of aircraft is this?", "text": "", "answer_id": "UypzGxHntnecyWPWq6Lf9E", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68270, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the bicycle carrying?", "text": "", "answer_id": "MqGvdB4idwhvY9CnRHLa5K", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68271, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What are the bike?", "text": "", "answer_id": "UKRWYwPDs3UoQaubSAmLtG", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68272, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What's on the daughter's back?", "text": "", "answer_id": "Nh7sr8tStYLf7WnA988BY7", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68273, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the person on left's shirt?", "text": "", "answer_id": "A7R72fntc4K6mNTGRF2sXs", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68274, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Why would someone want to keep these empty containers?", "text": "", "answer_id": "4U2xeTqdBbg9ZdjkyXNzPe", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68276, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What style of art is shown?", "text": "", "answer_id": "gykzmrb2xNL4KJpMDhsEGy", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68279, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is being kicked up by the ostriches?", "text": "", "answer_id": "RUcohZHkaG9Q79mVWDcrBW", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68280, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What year is it?", "text": "", "answer_id": "BXeYSGeyeakNzwWM4gXiDL", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68281, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the person doing?", "text": "", "answer_id": "5W55EviM4dvHVwmDsMBJFc", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68283, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What type of car is this?", "text": "", "answer_id": "dbtGL3sYLY6PLUNTikebTg", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68284, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the woman holding the frisbee wearing?", "text": "", "answer_id": "kVgyryhhKHJKgAB45F52VQ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68285, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is on his jaw?", "text": "", "answer_id": "ErpzxvXXNsn8ASfoam4Dhz", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68286, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is pulling the locomotive?", "text": "", "answer_id": "nZ4BfLDDsKBhRSEuCzgAvE", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68288, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Which is the smallest quagga?", "text": "", "answer_id": "i9a2VXgEvEbCedZZH8Qkwn", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68291, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the dog wearing on its head?", "text": "", "answer_id": "oFfjafp96aofeXrk6Fp8wT", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68294, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color are the camels?", "text": "", "answer_id": "7tZ7uTXLfUfTsMnpHFoJSV", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68295, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What position did the wrecked vehicle end up in?", "text": "", "answer_id": "iPdGT3L3sRULHAbjd7tZFL", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68297, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Is the aircraft taking off or landing?", "text": "", "answer_id": "M44Pa2oLvVVg2LNHpeDszH", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68298, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the brown thing on the bed?", "text": "", "answer_id": "Jqc8uXNFYxuXphzg93PBVU", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68299, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of car is this?", "text": "", "answer_id": "KeYactoWDX5XG8UnZgL66X", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68300, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is written on the side of the truck?", "text": "", "answer_id": "7wcRPFk92ZsdqQDFxwkcYV", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68302, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of food is this?", "text": "", "answer_id": "2gW4KeepjEbvJpbn5dx6XZ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68303, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What material is the room made out of?", "text": "", "answer_id": "7PTTfMDNYtiT3aMgXkGzFH", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68304, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What device is on the left?", "text": "", "answer_id": "hNie5qpQdFk7sCvUedX29m", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68306, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the barrier?", "text": "", "answer_id": "TfNAkRCo9i79jahs5pkuyh", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68308, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the yellow element called?", "text": "", "answer_id": "Z9ro4SfwgGN77afybs62br", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68309, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What colors is the f-16 jet painted?", "text": "", "answer_id": "QUo9nbggQf3sc8v4io8AFa", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68310, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the screen?", "text": "", "answer_id": "4nknfpZMH5gYDvN5kwha3s", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68312, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Who is the grizzly dressed as?", "text": "", "answer_id": "TGJAtaWsMb5hfSUYeRBLzR", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68313, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What appears on the vultures wings?", "text": "", "answer_id": "oBmoNC2CmmoXZNDU23NQNs", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68314, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the man holding?", "text": "", "answer_id": "bnrY4YxsF7a9goPA2hyrqw", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68317, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What wall is this?", "text": "", "answer_id": "VkU9x5Je6Uo2ELTygRsChq", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68319, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Are the animals on the photograph facing each other or away?", "text": "", "answer_id": "3BpsBwiV948sg9WWAEj2es", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68321, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the cat?", "text": "", "answer_id": "SqFGnX396oEeNTUrhuokmL", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68322, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the girl doing?", "text": "", "answer_id": "naxXC68zmBfYAyPKmenU92", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68325, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the girl holding?", "text": "", "answer_id": "3XA6HfwgndYoLYGAvGr47d", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68327, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Which of the birds is the largest?", "text": "", "answer_id": "bZM223YftKmNhb2LYB2Dib", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68329, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is this man doing?", "text": "", "answer_id": "46bgdoaVzpesCWqYEBtaXR", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68330, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the girl holding?", "text": "", "answer_id": "TuANLuRL7bFQ43S7y5pbci", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68335, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Who owns this vehicle?", "text": "", "answer_id": "XgzeRuFyzBYZ6ChDesMTyJ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68337, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of car is this?", "text": "", "answer_id": "DoUSN3VhcujGKHxp93RRat", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68339, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the woman on the back of the boat doing?", "text": "", "answer_id": "YtPCfbXugNCaM7PFazroTH", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68340, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of car is this?", "text": "", "answer_id": "Ff7ui6hnCuNyPXPXwxRTc7", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68344, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where are the printing plates?", "text": "", "answer_id": "MLGSCQNh7TQhqRQm48JdbG", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68346, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the facility?", "text": "", "answer_id": "KTPccHR39pSLJM2kzqZJrk", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68347, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the bus primarily?", "text": "", "answer_id": "8EntC34ZBK3c6LBWtr2rQW", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68348, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the bus?", "text": "", "answer_id": "dx2ppnnLWtvQz6NXQBxZZu", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68349, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the girl holding?", "text": "", "answer_id": "GCAyAu8xrT3RELhRx73LSN", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68351, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of vehicle is behind the child?", "text": "", "answer_id": "fXFxDHb3zJXNxsLLDpBZRp", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68352, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What sort of lot are these women standing in?", "text": "", "answer_id": "CJVxdWX5riPTM8CSDLJheC", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68353, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color(s) are the four ovoid next to the truck?", "text": "", "answer_id": "gT7jLPKCPUCeZHga9J52Gw", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68354, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of protective gear are four soldiers wearing?", "text": "", "answer_id": "CnBQLEsb8FLXcjsxWHghZn", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68355, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is on the fuselage?", "text": "", "answer_id": "mxu5GN95zH8ehYVquLVQpB", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68356, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What brand is this wallet?", "text": "", "answer_id": "BwzpQPsCB2ompVh5oDAavJ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68357, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is on it's front?", "text": "", "answer_id": "m62U4o29qQFnC8e3MbaLJW", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68359, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the girl holding in her right hand?", "text": "", "answer_id": "kz3cS3uQ64g4nkgN6uLD86", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68360, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is this woman dressed up as?", "text": "", "answer_id": "RD3gnMskHdgH2BVLxumdfU", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68361, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the tributary?", "text": "", "answer_id": "4JwaZg3XGiWHLZSGGFoxJB", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68363, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What does the white sensor do?", "text": "", "answer_id": "b58jZuMGUG7qVHaXSS7fZZ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68365, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color are the animals in the cylinder shaped cage?", "text": "", "answer_id": "SdoMefbka8tcEyt64jhnr4", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68367, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What does the girl have on her neck?", "text": "", "answer_id": "LbkEPY56oqF8AsVLC64yBE", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68368, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What type is the cat in the picture?", "text": "", "answer_id": "kTBbhgvTLPnJPKTWSETTWX", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68369, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is this ship used for?", "text": "", "answer_id": "KDwjRssUz3rWrLY85Fe9cn", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68370, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the second word in the name of the ship?", "text": "", "answer_id": "2wQ24Ev8h8AqJ9CA9vTZ22", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68372, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: The judo is green and what color all the way around?", "text": "", "answer_id": "m5pJKmHq876WAybmnC3i62", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68374, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What game are the girls playing?", "text": "", "answer_id": "S8JiVcz8PgdQhHYSnoZjtW", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68376, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the dog?", "text": "", "answer_id": "5cZQ6LhncYZyMdgzCfHKRR", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68377, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What type of shirt is she wearing?", "text": "", "answer_id": "L5aLUCazPXmjLkpB22epWu", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68378, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the kid holding?", "text": "", "answer_id": "kCveiZGukrrCycTnHaMJNP", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68380, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color are the petals?", "text": "", "answer_id": "FAcDAYUqC4hh3yNre5HvJK", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68381, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the kid trying to do?", "text": "", "answer_id": "gJ3uojaugfQ3QocK7tHcLY", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68382, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What are the snowboarders holding in their hands?", "text": "", "answer_id": "5iqb6bhMTnTsHbrF26sQ4e", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68383, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: The dog is covered by what object?", "text": "", "answer_id": "6b9Vbszo9WZrh5Dt2mvLHe", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68384, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What topping is on this pepperoni?", "text": "", "answer_id": "Vb2txg7qLTBNiVWwqs6Zia", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68385, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the boy riding?", "text": "", "answer_id": "A7X65iVvEd5XCxDwJHc3MB", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68386, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is this dog wearing?", "text": "", "answer_id": "P7q3uqAey6FXUrGYykRQkQ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68387, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: How long has the girl been standing there?", "text": "", "answer_id": "9AjdXwn6K9MwmTV955uYGJ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68388, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What does the agreement say?", "text": "", "answer_id": "X9QnQnp6E7MHe9d2Tbju7U", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68389, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is in the photo?", "text": "", "answer_id": "7YgKTRLgRwvXjTuqVPUqbM", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68390, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is written on the screen?", "text": "", "answer_id": "2yXb2RezF6M7QLwRgYU2mu", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68391, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the car parked?", "text": "", "answer_id": "iAAt6sdisqVdCCjSba5HqW", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68392, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What type of entree is shown here?", "text": "", "answer_id": "SHrMruxf7qNPdbKscftD95", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68394, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What colors are the supplies?", "text": "", "answer_id": "KVEVFqHaJJPUEBnZ8dXKj8", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68396, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the person doing?", "text": "", "answer_id": "ZGWy9SDRxUqE9zhbGvPnfJ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68397, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the hippopotamus doing?", "text": "", "answer_id": "mYMLDZKJWr4DKEtKwNJURe", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68398, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What would the water smell like?", "text": "", "answer_id": "hLxVr4tZiqV2FQ9zcsP5ae", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68399, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the kid skating?", "text": "", "answer_id": "XK6KB9NFFfrTM2aAu92ykb", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68400, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color of t shirt is the kid wearing?", "text": "", "answer_id": "ZbfX8V7gjeKBZrdYHFxzLd", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68401, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the tub?", "text": "", "answer_id": "QiSXauhimyQAEif8m7akxi", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68403, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What are they about the ball?", "text": "", "answer_id": "PX5cNPtwYsG4qb4masn8M5", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68404, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Who is wearing red trousers?", "text": "", "answer_id": "HXHGxcdnV8Tzmoht4y7KiU", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68406, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What colors is the bus?", "text": "", "answer_id": "mnhTsM2A6kjUkPdRa8CSjj", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68409, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color are the slabs?", "text": "", "answer_id": "WdpN2WUtrzUeQTaFWv2GKB", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68410, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of beverages are in the glasses?", "text": "", "answer_id": "kxdGEEaQ6kER4YtgcRQ9ij", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68412, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the large briefcase?", "text": "", "answer_id": "G2y3cvrDm9CmaPjcS55eAq", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68413, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color are the birds?", "text": "", "answer_id": "UmKf7yc6nUv6r37f4fBDJf", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68415, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the green tomato?", "text": "", "answer_id": "JBXnwbpX5qZHg5mBBFC6mi", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68416, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Does this look to be a highway or unincorporated road?", "text": "", "answer_id": "BkANDHtrbJHpvrEaxBMhdn", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68417, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What all of the rearview in this picture called?", "text": "", "answer_id": "CW4sJnPdu8FxFHQ42Hg4s6", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68418, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What are the matches made of?", "text": "", "answer_id": "WkUq8oLrxiWHxjAdyxajav", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68419, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the person doing standing on the sidewalk?", "text": "", "answer_id": "gz24PqXpmYMKkiKbWpJBFt", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68420, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What shaped mascot is on the plane?", "text": "", "answer_id": "Zj22GpW3UxPKx3AK3JYkDA", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68421, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the porcelain?", "text": "", "answer_id": "4X4ar5cjEmmMrwih99qnHP", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68422, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is on the earthenware?", "text": "", "answer_id": "PXd8Yk63pVqMbaTk8bhQPq", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68423, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the name of the type of painting on the wall behind them?", "text": "", "answer_id": "SoDLWE3gjRRem2rkp5n7ZU", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68424, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the butthole board?", "text": "", "answer_id": "WgKuhYSA9F9NQiizZtCu3e", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68426, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the girl holding?", "text": "", "answer_id": "4GYncc8xtSAWeFpatNkepk", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68427, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Why are the others wearing wetsuits?", "text": "", "answer_id": "gbzSgMqZeJerFqakwKy9do", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68428, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is this topic?", "text": "", "answer_id": "6HxjvJDUx8hvU74wY7HfgM", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68429, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the cup placed on top of the oven?", "text": "", "answer_id": "DMrhhMMPQbL8bcXbN8KW3K", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68431, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What does the refrigerator say?", "text": "", "answer_id": "GhTs6QYnTLazi4vDQia52i", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68436, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the girl holding in her hands?", "text": "", "answer_id": "6qYPW9ysZELwCz2iqUH7m9", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68440, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Which font does the boy have?", "text": "", "answer_id": "kR69WpxoEiPdkUCpeAAm5c", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68441, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What are the people loading on the train?", "text": "", "answer_id": "3Cbzme5iwGg3ozduCD9fpr", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68444, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where are the eyeglasses?", "text": "", "answer_id": "Bbhrw2qMM2KsG8j7LjgGuV", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68446, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What did the girl just throw?", "text": "", "answer_id": "hpyQqWv2YojmjtApWHUQac", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68447, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the platter?", "text": "", "answer_id": "MxVnp4AWmyPiQf5Ry8W8WG", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68449, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the oven?", "text": "", "answer_id": "FoL7EaHpomPrNG6ZQctp6A", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68455, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the girl holding?", "text": "", "answer_id": "byohE8bbPEczoYWVDXftQt", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68457, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the man trying to do?", "text": "", "answer_id": "7ULoqEydiFD8NUsvfbtJuW", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68458, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What position is the skateboarder in?", "text": "", "answer_id": "aZWkTvKLSKpwpq9QM4rUXF", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68459, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the skateboarder?", "text": "", "answer_id": "5PzBEj8j3eEiidLsEJZj6V", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68460, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Who is holding the skateboarder?", "text": "", "answer_id": "fMnUWXgSTSk4mGb8Fa2C9H", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68463, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: How are the eyes?", "text": "", "answer_id": "dTBtctjmPLjBuN2qMmVDfX", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68464, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Who has spectacles?", "text": "", "answer_id": "FkWUKv36xwrGfqyqyPQGoo", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68465, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the badminton court?", "text": "", "answer_id": "MHe2E9kWXG5uFARPKvAeYW", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68466, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: How high are the boulders?", "text": "", "answer_id": "FpBShbT35gFtYhsW7FtuuH", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68467, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Is it day or afternoon in the image?", "text": "", "answer_id": "4NjJovCowpQhUbVjDosGRD", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68470, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What colors are on the kite feathers?", "text": "", "answer_id": "EmcuqszajgPpwV78szFiP7", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68471, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What things would be inside the briefcase?", "text": "", "answer_id": "BvmeKyA7DMDLhdhukjR6P9", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68473, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the dog moving around?", "text": "", "answer_id": "m4U5KKeHpLxP9fZVzTkPuq", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68474, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the style of the dog's mane?", "text": "", "answer_id": "gxMAYoyke37HGHeCw8Xqea", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68475, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the man riding?", "text": "", "answer_id": "meKB97ptU9MRaP8j6j78Xb", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68476, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Which hand is the boy using to hold the umbrella?", "text": "", "answer_id": "khu5qsjZNAemmMnBHyZ5nt", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68477, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of flower is in the background?", "text": "", "answer_id": "dWXHgXTWgLpeQFF8B6rYPH", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68481, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is at the top of the cupola?", "text": "", "answer_id": "92x4PANxhpfQ5HMyXTGP9e", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68483, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the grounder made of?", "text": "", "answer_id": "L4DtWkrKLU6NoZufwMwzA7", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68485, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the pooch sitting on?", "text": "", "answer_id": "LfwcoU2VZPBcrDENDby2bg", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68486, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What design has the room cover?", "text": "", "answer_id": "asHRfTzDhqdoNgynNBwth5", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68487, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the food menu?", "text": "", "answer_id": "h2Ft4Xv2E7hVeTLQq293BX", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68488, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What birds are in the photo?", "text": "", "answer_id": "DqNj8JdzEosgNXL23ai5gY", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68492, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What car is that?", "text": "", "answer_id": "YZ6V5EsxM2o3uZCZehnSnt", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68493, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is in the reflection in the mirror on the right side of the photograph?", "text": "", "answer_id": "AxPHTW6Ak6mQQtfKu2Fdx7", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68494, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What brand of toothpaste is the child using?", "text": "", "answer_id": "5RzbdHChpd9VKKd8YS7zUw", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68495, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the girl holding?", "text": "", "answer_id": "FdjEjWJ224zigC8KEWaR2q", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68496, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the girl's shirt?", "text": "", "answer_id": "dk7BZALhz3cEKpCh8hs5Uo", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68497, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the baby holding on the right?", "text": "", "answer_id": "kTy9z7rkLLXouAgCnXwkWm", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68498, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the girl's hand?", "text": "", "answer_id": "miVfw3e5Q6cJuYGr4FWhiw", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68500, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is this room?", "text": "", "answer_id": "6Z2qwhABtmYz5QmxMYS9jj", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68501, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color are the front kids cleats?", "text": "", "answer_id": "Lmn3gd88rFhbWhfHCaMGzH", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68502, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What room are the others in?", "text": "", "answer_id": "FVsD6EicCvtDBFJWMDTRgd", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68504, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is hanging above the girl's head?", "text": "", "answer_id": "jVsbSn2CcfSihUiPtA6ZrG", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68505, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the dog laying on?", "text": "", "answer_id": "cHp2yByWrK8Z2gFuFWJ4Ho", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68507, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Is the slalom slanted to the left or right?", "text": "", "answer_id": "8LAk4qMU72PJ2fznay3oxE", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68509, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is on the vegetables?", "text": "", "answer_id": "eZBstzHjuCfASXG4hd8jj4", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68510, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What article of clothing identifies the male?", "text": "", "answer_id": "Eaz4ppkxwXoCVZfuU2Hpkd", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68511, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the crowd holding?", "text": "", "answer_id": "H76BGfUNB6Jb2mXVaYb2uX", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68514, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is on the little girls head?", "text": "", "answer_id": "bioRJUf9hPBnhfsHfQf2cH", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68515, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of emotion does the girl have?", "text": "", "answer_id": "hTiZdt6dHkfVxTk8mfgnk2", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68517, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the hallway made out of?", "text": "", "answer_id": "P2fhZqewweEbWErrofkUkh", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68518, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of services is shown?", "text": "", "answer_id": "ZPaU5BjS2PMBnQn6zDoTVr", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68519, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the script called?", "text": "", "answer_id": "8NPwXym7CEHDE8zhuifUHs", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68520, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What's on his chest?", "text": "", "answer_id": "gErbTCqPzqsKqdXX4o3h7Q", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68521, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What brand is the badminton racket?", "text": "", "answer_id": "Lyv527Qp6esEcPnqi9hDiR", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68522, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Which knee does the man have a sweatband on?", "text": "", "answer_id": "7K685RwXDjyDKSuxNSnqPg", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68525, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of cars are shown?", "text": "", "answer_id": "gqqiFvF6sHHXA6aABN9QqU", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68526, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color are the trains?", "text": "", "answer_id": "FQQbvXmk8eztcBJnmQ8RJB", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68527, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What colors are the bus?", "text": "", "answer_id": "7BMQr6wWzSDreJoq5fYRdT", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68528, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the bus?", "text": "", "answer_id": "DjEBzuNAn85rENJsxgVDoC", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68529, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the oven?", "text": "", "answer_id": "RHUhgRMkJyb3KRVDY8Gc4m", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68531, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the drawers made out of?", "text": "", "answer_id": "PnBVP7tDK9nX5KSRZUGz2x", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68533, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the shears?", "text": "", "answer_id": "gEND5HCcyy2t2oxWJGpewD", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68536, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the bladder?", "text": "", "answer_id": "f67xrPsBm2Wsjf6roYaSs7", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68537, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: These pastries are wrapped in what?", "text": "", "answer_id": "gD87xZsHuXFU2jL8g4asVV", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68538, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What dinner is this?", "text": "", "answer_id": "3AiMJgm7Zsa3chgFHuxouT", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 68539, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is on the French hamburgers?", "text": "", "answer_id": "BnvdDryjodJSjKhXsoAN2N", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/unk_vqa_test_pred_3_1.jsonl b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/unk_vqa_test_pred_3_1.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..523c3dd6c7d03e1f9cafff4d170988c2b6ca559d --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/unk_vqa_test_pred_3_1.jsonl @@ -0,0 +1,204 @@ +{"question_id": 79657, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the dog hiding in?", "text": "", "answer_id": "k4Tj6rnAmjS8nt3gL8ER5h", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79660, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Is the sun to the photojournalist's left or right?", "text": "", "answer_id": "4GT6dk9LQDLEvL8yKsFAU4", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79661, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the incandescent?", "text": "", "answer_id": "i5RGLdtYawRoysoCH8JeCk", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79662, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the incandescent?", "text": "", "answer_id": "h5X9Mi3FGvMmmc9DjmAthC", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79663, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What print is on the 3-3?", "text": "", "answer_id": "8jDBDJTvg7wqdkvhVhksCh", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79664, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the kid wearing?", "text": "", "answer_id": "TVnsmGzuucNKCq4PRqMui2", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79667, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What direction are the soldiers looking?", "text": "", "answer_id": "7Ukgp4PWbsmi7qt8UVEzzV", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79668, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the barrier?", "text": "", "answer_id": "L9fKwamGq9tUcrhuQmxyKQ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79670, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What birds are seen here?", "text": "", "answer_id": "74ucYMiXp6iYHZPZbaZhbw", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79671, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What birds are in the picture?", "text": "", "answer_id": "X5nDjecNUVtNAKKyxtZjph", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79672, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the girl holding?", "text": "", "answer_id": "b9rq3tFGAxFghUJo8wzUkK", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79673, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the woman sitting on?", "text": "", "answer_id": "d6fAQBaveuWdHtQ6z4Jds8", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79675, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What beer is in the cup?", "text": "", "answer_id": "fMWywwVf9CpoNuNG37wLLt", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79676, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the casserole?", "text": "", "answer_id": "gocYPem6KMBtPmQ3h9oj2T", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79677, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Why is the woman wearing gloves?", "text": "", "answer_id": "XBRyjqvBiE4vtnpWJyQ6fQ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79678, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of food is this?", "text": "", "answer_id": "XjKxqgwj2HUWaifsxAXd8f", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79679, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of breads are in the blue bin?", "text": "", "answer_id": "LL7ZrdshMizMWFVDkeFbLe", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79680, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is on top of the train?", "text": "", "answer_id": "JRkRQxoe5jTYrTfq6YBUM6", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79681, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is on the train?", "text": "", "answer_id": "G7bDQ4nQJwncvspfbKKqbW", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79682, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the make of car?", "text": "", "answer_id": "QS6Xi3JB32bCRpCH8CXWyH", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79683, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What are the doors made of?", "text": "", "answer_id": "U2yBbzy255mJAboDXGfqgq", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79685, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the girl doing?", "text": "", "answer_id": "HEBy26y2dsP9xjLaq8Cpd6", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79687, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What screen is used in this traffic light?", "text": "", "answer_id": "9zXz9doN2fmhmp3phXPc7K", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79688, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the leadoff's jersey?", "text": "", "answer_id": "BARDVjBvdN362Tw7wwtXzq", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79689, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the pitcher's uniform?", "text": "", "answer_id": "KijRsz5cnLM2TeFD643AGm", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79690, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What many of the bananas are green?", "text": "", "answer_id": "h7g7t5mfksmz94iqTZMPNm", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79692, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where are the ships?", "text": "", "answer_id": "3wHQ2ANhiuQa57BAJ9o3rK", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79693, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the woman doing?", "text": "", "answer_id": "H6cX2Gkh6cFFR34EzUv6Mm", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79695, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is in front of the vehicle?", "text": "", "answer_id": "K2KyLzNxMKd8MkWcuKpV2r", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79698, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the dog?", "text": "", "answer_id": "Euo2j6voKwizjCXQxK484k", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79700, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is on the luggage?", "text": "", "answer_id": "oYnGCdh4ugAJRQ8f3SYsGF", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79701, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What type of basement is in the picture?", "text": "", "answer_id": "CsuWqZCY842KfrRbUBq5xA", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79702, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What does the dude have on?", "text": "", "answer_id": "38Rd8hupYBk7iRb6JubRu5", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79703, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the 3-3?", "text": "", "answer_id": "6DQTDdvdBP7gHrfErV85vo", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79704, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the room made of?", "text": "", "answer_id": "R5uivRzbHAcnAQfcBYxcfC", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79705, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of pots hang on the wall?", "text": "", "answer_id": "Z9ocMYKm4ijsiha6fEbErg", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79706, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What year is this?", "text": "", "answer_id": "Ki8HZPxtpbtuyR6npkWSMw", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79708, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is this cat?", "text": "", "answer_id": "b2xqA4zsqkRuKpuBCErGbt", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79709, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the room made of?", "text": "", "answer_id": "AYJKvfpnV99Kts7dYDwHfW", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79710, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is on the humans head?", "text": "", "answer_id": "dfo57Us66kzvt99YEpXsKi", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79711, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the man wearing?", "text": "", "answer_id": "j7eQidJVUz4xEYdguW6wei", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79712, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Why is the girl smiling?", "text": "", "answer_id": "Ud9suz7Sdain33JPzkkCuB", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79713, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the woman riding on?", "text": "", "answer_id": "87Zksc7pUB4c4SDoxykuRR", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79714, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the profession of the woman?", "text": "", "answer_id": "jVp4T9RTvtsfEk8Kt7sQJL", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79716, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the bus?", "text": "", "answer_id": "GWdjmgWwgXmkeBqzudrBs5", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79717, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color are the zebras?", "text": "", "answer_id": "oN74gL42RYf3Uui4qhnBc3", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79720, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the dogs in the photo?", "text": "", "answer_id": "EBFwgvBGig2nisNFoceoyu", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79721, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: As far as pet tails go, does this cat have a short or a long tail?", "text": "", "answer_id": "AS3gMatzpQcRzNf3VPoauJ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79722, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What are group does this female exist in?", "text": "", "answer_id": "UVPLJfGiAR46aUGohb4XG4", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79724, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the man playing?", "text": "", "answer_id": "5boVDtKaWeWd4fFkJH83BP", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79727, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What are the giraffes doing with their trunks?", "text": "", "answer_id": "ic4hddR2b96m8eHq7hnsXH", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79728, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the orange fruit?", "text": "", "answer_id": "Jh2nZocyXALbDKoeVwPMHJ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79729, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of carrots are in the tinfoil?", "text": "", "answer_id": "6uPjhFFXp8BngCGdHTYGzE", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79731, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the color of the cloth?", "text": "", "answer_id": "duCTJZCXrNdnWakpptM5CJ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79732, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is painted under the skateboarder?", "text": "", "answer_id": "QQCffR9HSeWDMi5w2WzCeD", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79733, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: If you were inside this screen, what country do you think you are in?", "text": "", "answer_id": "4YbLXDiZjdx7XvyqXDf7Kb", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79734, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What sport is this woman playing?", "text": "", "answer_id": "S5pjJ6isbiSvRvnWfqptfV", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79737, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color are the paper slabs?", "text": "", "answer_id": "dbapnPpgBThzipE3p4qRRy", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79738, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the dog?", "text": "", "answer_id": "7w4yRNWpQfpbDM9gTbKeeP", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79739, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Is the tree verdant or bare?", "text": "", "answer_id": "e5yQHGuTJVTJY8aYZZrXVY", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79740, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: How long is the girl's hair?", "text": "", "answer_id": "X6Q4videAf7x2Yhro2PoQd", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79742, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the porcelain?", "text": "", "answer_id": "bXhhQoYkUGNkFA8w2QZQ2e", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79743, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color are the bouquets?", "text": "", "answer_id": "35KqEbjYKgFA55t8FQPLhV", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79745, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is on the dunes?", "text": "", "answer_id": "dBNJpQ2jJAzUfq4qwzgUFg", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79747, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the human here?", "text": "", "answer_id": "NfE6sgRqbg8JRtp6LDRkt2", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79748, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What meaning is in blue?", "text": "", "answer_id": "kaHUT9ha4YHVCm6UkK5zQn", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79749, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What type of building is visible in the background?", "text": "", "answer_id": "4sHi6kBfhH9cHJNyJPWFuq", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79753, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the dog?", "text": "", "answer_id": "SRQyZeE3g5yVgGowwE9udP", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79755, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What does the man have on his eyes?", "text": "", "answer_id": "5xHLcXAYYxwWoeVp3iPttg", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79757, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color are the bouquets?", "text": "", "answer_id": "nWXYsEgXZBqh6jNj2wAoAr", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79758, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of rooms do they have?", "text": "", "answer_id": "o5K3VUFo2DEgbSeQmM3ZrC", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79759, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What bus line is shown?", "text": "", "answer_id": "XogYs5Eb7TNQaTGiLiY8CX", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79760, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What are the knobs on the electronics for?", "text": "", "answer_id": "TTsSjVR88Vw3Lf9v6VhFt9", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79761, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What charitable cause is represented on #35's dress?", "text": "", "answer_id": "9RgEFTGsi7sPd6d8g4VakD", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79764, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: How long is this man's hair?", "text": "", "answer_id": "8HwD9okYUShunbwVN3x2wt", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79766, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Why does the cat have to stay inside?", "text": "", "answer_id": "bNSXVBFSYujSE9tEat6Xo6", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79767, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of clouds are visible in the sky?", "text": "", "answer_id": "TV9kqetiCSdeWc96VgZmYD", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79768, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the girl doing?", "text": "", "answer_id": "4SAxvLm55qFQUnMaZwejRc", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79769, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Is the girl happy or hungry?", "text": "", "answer_id": "C7HADt28qCxJFSwyPgovKy", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79770, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the girl doing?", "text": "", "answer_id": "VhEHfwB3AYQVwvnK7bzJE7", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79772, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color shoes are on the skateboarder?", "text": "", "answer_id": "oMaRai4Qa33T6yhG9EwscG", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79773, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the skateboarder?", "text": "", "answer_id": "HkZdTLCJfryQJzHRny5gwF", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79776, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is on top of the pantry?", "text": "", "answer_id": "XYrqSVXNyS5evzb3oWC8Ld", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79777, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the year?", "text": "", "answer_id": "nZDkmiovqG34hW4VezzFaa", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79779, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the teal colored construction material?", "text": "", "answer_id": "PTyR2uD3xHNJ8se2Gcvtvf", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79780, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What town is this?", "text": "", "answer_id": "4GZgbme3FfDAAFtVbqy2hH", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79781, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of vehicle is this?", "text": "", "answer_id": "SjMzsQwbGMFacyRDH3w6hr", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79785, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the frock?", "text": "", "answer_id": "AV2uFsTREe2WJTZJcc88t5", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79786, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Is that a very big or a small restaurant?", "text": "", "answer_id": "ey62Z2fAeWaY8vo5QS8NPc", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79787, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the structure of the clock?", "text": "", "answer_id": "WmqffZRTeQyb989Dx8Lbnf", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79788, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is above the bus and railroad tracks?", "text": "", "answer_id": "5bqmKBa225m42dvUsA8DuB", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79789, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the dog?", "text": "", "answer_id": "dXh2SbLHYAUjzd9fy5VcFQ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79791, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the market made of?", "text": "", "answer_id": "DcnxRcW6v2QGRU2VJ5tCPf", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79794, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of herb is on the left?", "text": "", "answer_id": "kFkoPARMhLfrjEZRDsmTHX", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79795, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What brand of vehicle is parked on the right?", "text": "", "answer_id": "hvif9TpPhUw9Geoz4dtXzb", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79797, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of car is this?", "text": "", "answer_id": "9WDxzsFZtA3YyyAGM3PHcX", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79798, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of event are these people dressed for?", "text": "", "answer_id": "NtNXUfEEjiCaCJKU2ZTjUP", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79800, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of socks is she wearing?", "text": "", "answer_id": "icxQFVM4prQRNS3FvRy9vY", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79801, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What colors are the investors?", "text": "", "answer_id": "TqZTMDoa29Gf8MgnA4WYU2", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79806, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What company sponsors this game?", "text": "", "answer_id": "jz9dkWUGn7ga7i2AxhrPpp", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79807, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the man about to do?", "text": "", "answer_id": "NGjPepWk5dncrQuxZEJnrC", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79809, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What easter would you guess is coming based on this photo?", "text": "", "answer_id": "FCYr4ETN3ERpLeNVYTqeWK", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79810, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color shirt does the kid with the bigger pumpkin have?", "text": "", "answer_id": "RgioESmBhTj65txakN7mD5", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79811, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where are the anchovies?", "text": "", "answer_id": "chU62Ku4wb3o2EbGGQWmWX", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79813, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the guy wearing?", "text": "", "answer_id": "YeRDJ4iDo4vvc3KdnxReyu", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79817, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the cloud on the sidewalk of?", "text": "", "answer_id": "RWjJKaqNQ6eGhNkEMfSBTu", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79818, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Is the oven electric of gas?", "text": "", "answer_id": "8Dovg72W2CakWi5m2DBPyg", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79819, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the silver sensor used for?", "text": "", "answer_id": "KYMPYzPebjRY2nfxZwPS88", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79821, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What direction must the motorcycle take?", "text": "", "answer_id": "fehHi5QEbM4dp96HTBTxTF", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79822, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Who is on the ride?", "text": "", "answer_id": "WBupBsizRj6m3q93aUrQLZ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79823, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is on her wrist?", "text": "", "answer_id": "VUqmv9CNC5YivuL4CafmKN", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79824, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is decorating the room?", "text": "", "answer_id": "Hz3XjnCCxzLPfjvfqXYrHb", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79825, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the window made of?", "text": "", "answer_id": "VWECrdQETGVvSoVRfurBDK", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79826, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What are the doors made of?", "text": "", "answer_id": "LMuYRxaeTkN949zR85TtrM", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79831, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where are the birds looking?", "text": "", "answer_id": "QrTrv6ZXxYP62RqkDAtmSQ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79833, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the kid eating?", "text": "", "answer_id": "RMXdoddZUKg9Pga2foANx9", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79834, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: How are the two signs attached to the vaulter?", "text": "", "answer_id": "LgrRyycr3afvcDMrvnAeCd", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79837, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the train?", "text": "", "answer_id": "7yiPKPQ3ZsJrr9RmgsfZbt", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79840, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What colors are the barbed?", "text": "", "answer_id": "RNHFM6xRMwbU5ZuGxmrnoa", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79843, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the scarf?", "text": "", "answer_id": "TASLubmvgWzRu5shbMDnkq", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79844, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of bird are those?", "text": "", "answer_id": "iiZvKbUQ4KVsHMucpJT4vv", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79846, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is on the woman's back?", "text": "", "answer_id": "hMsqY7EU94iAn27LhW2nki", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79848, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What type of clothing is the woman wearing?", "text": "", "answer_id": "mvrTekSCUNS5gJoGMCyuRE", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79849, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of bench is in the picture?", "text": "", "answer_id": "neRGrP3HoaJSnj7PcGEVwF", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79850, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the bus?", "text": "", "answer_id": "2SHLVNsborRrvtwzdfiWvd", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79851, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the woman standing on?", "text": "", "answer_id": "6dLdBriXuD9XmCNcFtjjmj", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79854, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the person's board?", "text": "", "answer_id": "89sfjYerzT5LNrAt4xa7Cy", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79856, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the name on the flag?", "text": "", "answer_id": "6QnLerZQdomXSRXrcLHPMe", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79857, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What snowfall has fallen from the sky?", "text": "", "answer_id": "HKXFyqbewYXZMqsux3w5hV", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79858, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the synthesizer?", "text": "", "answer_id": "8R97CGPDjFckVq3sPSoiQS", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79861, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Why is one hippopotamus's face darker than the other's?", "text": "", "answer_id": "NBYppsQjW5FmCqXVAPcTrT", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79862, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What are the zebras doing?", "text": "", "answer_id": "MLu4sz4aNKvp6BCtpUDBwx", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79864, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What do the girl in the background hold in her hands?", "text": "", "answer_id": "e3jzdCUBE8tCJGMWzZ7TLd", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79865, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is printed on the boy's shirt?", "text": "", "answer_id": "eHaoc49RvNegp3czF4fuBN", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79867, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the woman on the left holding?", "text": "", "answer_id": "BvpH4tEcM9v2kb54oaqREF", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79868, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the woman holding in her hand?", "text": "", "answer_id": "5TZHkSmfWyPNwmfrNgjaQH", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79869, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of animal is this?", "text": "", "answer_id": "cHPNKoZqJ4tzV7bPXweetv", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79870, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the grizzly?", "text": "", "answer_id": "7QME7w9hbQsM4DUVi4B64H", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79871, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Is the ground made of rock or mud?", "text": "", "answer_id": "NkjG3N6k9jFdkJJMa9eKJM", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79873, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color are the hand cloths?", "text": "", "answer_id": "9ujVwbp5MoydfiVd6W3cBg", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79874, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the air made of?", "text": "", "answer_id": "eb64eXrsav93xsEievaMFR", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79875, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Which company's building is in the foreground?", "text": "", "answer_id": "5a3R4oGmEWDDGeip3DDgwp", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79878, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Was this a spring gathering or winter gathering?", "text": "", "answer_id": "msxUkSx3STST63CSvrqh3B", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79879, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the napkins under the donuts?", "text": "", "answer_id": "KgmrrEHCSpDJN3UkzRq4kf", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79880, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Is the briefcase open or closed?", "text": "", "answer_id": "g5f9n4whNSHgPzoxZfhbDi", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79882, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Why is the room white?", "text": "", "answer_id": "6KDA8fniKmUJqku6Mnfcxa", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79884, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the person's wetsuit?", "text": "", "answer_id": "9cuRaw9fFDDHCLXvYRnMym", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79885, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What other fruit is shown with the green one?", "text": "", "answer_id": "JwJV4okwtXHFJ4XFFp76tR", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79887, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the badminton court?", "text": "", "answer_id": "kmhNS7DYYVGiqsQT3jh4ka", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79888, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is in the man's right hand?", "text": "", "answer_id": "GhCwQxsyYjikhas2o8p8DM", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79889, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the girl holding?", "text": "", "answer_id": "GGoJBicN5HRniB6MedazwQ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79893, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What was the center green dough designed to look like?", "text": "", "answer_id": "RoFMTKZePCq9WWBeTaWxzS", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79896, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is in front of the zebra?", "text": "", "answer_id": "WQBLDnVS7QyHTMnhhzFKVu", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79899, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the person's hat on the right?", "text": "", "answer_id": "9Snw67pT8y49LeB5KaRwxA", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79900, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the main color of the bus?", "text": "", "answer_id": "NySeeTtHbHZCGxUdrKehsa", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79901, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What type of carpeting is behind them?", "text": "", "answer_id": "9zKZJw3Q6u9DFfr24xZrF3", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79902, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color gloves is the woman wearing?", "text": "", "answer_id": "HfzQcWKWNBjLeQSzLEXZZK", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79906, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What electronics are on the drawers?", "text": "", "answer_id": "XXcFcGpCmcu7A2vkNoewer", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79908, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the bus?", "text": "", "answer_id": "kJHiQvWhAhGc2edUhoZ9m4", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79909, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of sofas are these?", "text": "", "answer_id": "fEaho9vvRLEejTQmYUeBuH", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79911, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Why are there so many headphones?", "text": "", "answer_id": "Wje9nKr9pv7nYRJ3h8YtA6", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79912, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the woman standing?", "text": "", "answer_id": "6p62yQowEVvmS2woJDCnpW", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79914, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the dog?", "text": "", "answer_id": "8iDYSqcD8PsnqPoGqo2avQ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79915, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is in the background?", "text": "", "answer_id": "fLXj7QbscZUTNJ2fqLMkgi", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79916, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Will someone throw this toilet in the trash or keep it here?", "text": "", "answer_id": "5M7BKGpiLgtt6iyhu33faX", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79917, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the machine on the right?", "text": "", "answer_id": "JUSNL7aHJ8KjDvrhbZdUPa", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79918, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the girl about to touch?", "text": "", "answer_id": "Fxama39wE6aD7gV6VZRTg9", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79921, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What does the woman wear on her right so she will know when it's about to get dark?", "text": "", "answer_id": "JVtKUJBgkT6fygkZ8kePH7", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79922, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the fruit platter made of?", "text": "", "answer_id": "AFUtjKAeWBuNqZhHgihicw", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79923, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the berries placed in?", "text": "", "answer_id": "ZeAMKr5QsbohanxZxVU3ko", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79924, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the women's backhand touching?", "text": "", "answer_id": "TJfPUB8rGs4WwL2p4LJx9d", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79925, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the judge?", "text": "", "answer_id": "AQ9QmzssRfb7rgPnh6k3Uh", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79926, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the room?", "text": "", "answer_id": "5hyKHjg3XHPjBU2wucxj7e", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79927, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the room?", "text": "", "answer_id": "TmP7fWXyHy8JRNu2638xC4", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79928, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of noodle is that?", "text": "", "answer_id": "W7BKsCLfxTfqQVY28FwKgJ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79931, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is a blue lamp?", "text": "", "answer_id": "cA2S3vnYKK2LQVRepRySYk", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79932, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is in the bowl in the background?", "text": "", "answer_id": "gXi4vvYEz8SxfydQupHjzK", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79935, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color are the shears?", "text": "", "answer_id": "Sdo9NSzBfJMzpQsc4mAfXU", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79939, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the bus?", "text": "", "answer_id": "29ZfRwRPTTZmnpJjtvnGxZ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79940, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the commuter front?", "text": "", "answer_id": "NtkbeVzb8sfhryUm5hhbT7", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79943, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What type of art is this?", "text": "", "answer_id": "WJaCojRSnLrhGsDZTnDQjw", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79945, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What meat is visible?", "text": "", "answer_id": "TZYKUYBfVmLwNKq33nHRth", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79946, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What type of vehicle is in the picture?", "text": "", "answer_id": "SH8ryfwG7t2h8GSiLsqmnq", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79947, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of bag is shown in this photo?", "text": "", "answer_id": "2rXiSgpyxN4etji4RukCzu", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79949, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the white element?", "text": "", "answer_id": "P8NUrCF3rno3Mb6i5kQ2rb", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79950, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is behind the throws?", "text": "", "answer_id": "mSgrjaTHHFT7L436QresSc", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79951, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is large object is visible in the foreground?", "text": "", "answer_id": "eyVGafYtFpNTPB3sKMk9De", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79952, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What screen effect was used to create this image?", "text": "", "answer_id": "YR3JczZKxzPgvrZJuyDcnd", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79953, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the woman looking at?", "text": "", "answer_id": "hJjKLnK3YXdz7kmQPwSinn", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79954, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is picking up boulders?", "text": "", "answer_id": "nBTQspPwtbteg8wQGBxg6N", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79955, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is on the back of the car?", "text": "", "answer_id": "XG9dNcejbn9JBKqAkfCtpf", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79957, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the cat?", "text": "", "answer_id": "eKXgJHA4ioDgboZP7hpUtv", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79958, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What is the dog looking at?", "text": "", "answer_id": "RpYtsdpN5YWcLPZuYh3kYC", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79959, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color are the rectangles?", "text": "", "answer_id": "7m9hJ2oYpMUfgN7oG7AKqW", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79960, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What holiday is this person most likely cooking for?", "text": "", "answer_id": "a6dQ85GojxoPyWbjNaS7LU", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79961, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of hotel is shown?", "text": "", "answer_id": "PjW2UzRzVXNt6XgASJC8KR", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79963, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What type of car is there?", "text": "", "answer_id": "eYT39YEb6HQd3VuNSqKzUZ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79964, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the dog?", "text": "", "answer_id": "DX8yY4hCqAscKk5zySeEqZ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79965, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color are the bater's jeans?", "text": "", "answer_id": "CUx3qchTwjuUL9GbydD8CE", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79966, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What's on the platter?", "text": "", "answer_id": "7Kmtkb9VLZMByCS9fw2B6w", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79969, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What color is the round deal?", "text": "", "answer_id": "46iEkwvneym3j7fVmJzoUQ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79970, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What kind of sink is this?", "text": "", "answer_id": "kwvHcYU5VyfkFjLT8ZNGqZ", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79971, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: Where is the facility located at?", "text": "", "answer_id": "9Xa3vtwtC6nvSgfPnXEsqy", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} +{"question_id": 79973, "prompt": "I will show you an image and one question. Please try to answer it by directly generate the answer.\n\nQuestion: What side is the bandanna on?", "text": "", "answer_id": "ByTZNQRXjr2RzbKPNDR4rr", "model_id": "llava-v1.6-mistral-7b-unk-vqa-v1.0_checkpoint-500", "metadata": {}} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/zero_to_fp32.py b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..c98caae31534368be22b67fc4ae906836c992a8d --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-500/zero_to_fp32.py @@ -0,0 +1,587 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: python zero_to_fp32.py . pytorch_model.bin + +import argparse +import torch +import glob +import math +import os +import re +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + + total_files = len(files) + state_dicts = [] + for f in files: + state_dict = torch.load(f, map_location=device) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + if zero_stage <= 2: + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + elif zero_stage == 3: + # if there is more than one param group, there will be multiple flattened tensors - one + # flattened tensor per group - for simplicity merge them into a single tensor + # + # XXX: could make the script more memory efficient for when there are multiple groups - it + # will require matching the sub-lists of param_shapes for each param group flattened tensor + + fp32_flat_groups = [ + torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) + ] + + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = fp32_flat_groups[0].numel() * world_size + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + for name, shape in param_shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # XXX: memory usage doubles here + state_dict[name] = torch.cat( + tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), + 0).narrow(0, 0, unpartitioned_numel).view(shape) + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + + Returns: + - pytorch ``state_dict`` + + Note: this approach may not work if your application doesn't have sufficient free CPU memory and + you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + """ + + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + print(f"Saving fp32 state dict to {output_file}") + torch.save(state_dict, output_file) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument( + "output_file", + type=str, + help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag) diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/config.json new file mode 100644 index 0000000000000000000000000000000000000000..44e6d4e17930a42d0aa68dcd3790bd5f32ba4ec4 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/config.json @@ -0,0 +1,73 @@ +{ + "_name_or_path": "../pretrained-models/llava-v1.6-mistral-7b", + "architectures": [ + "LlavaLlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 1, + "eos_token_id": 2, + "freeze_mm_mlp_adapter": false, + "freeze_mm_vision_resampler": false, + "hidden_act": "silu", + "hidden_size": 4096, + "image_aspect_ratio": "pad", + "image_crop_resolution": 224, + "image_grid_pinpoints": [ + [ + 336, + 672 + ], + [ + 672, + 336 + ], + [ + 672, + 672 + ], + [ + 1008, + 336 + ], + [ + 336, + 1008 + ] + ], + "image_split_resolution": 224, + "initializer_range": 0.02, + "intermediate_size": 14336, + "max_position_embeddings": 32768, + "mm_hidden_size": 1024, + "mm_patch_merge_type": "flat", + "mm_projector_lr": null, + "mm_projector_type": "mlp2x_gelu", + "mm_resampler_type": null, + "mm_use_im_patch_token": false, + "mm_use_im_start_end": false, + "mm_vision_select_feature": "patch", + "mm_vision_select_layer": -2, + "mm_vision_tower": "openai/clip-vit-large-patch14-336", + "mm_vision_tower_lr": 2e-06, + "model_type": "llava_llama", + "num_attention_heads": 32, + "num_hidden_layers": 32, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": null, + "rope_theta": 1000000.0, + "sliding_window": null, + "tie_word_embeddings": false, + "tokenizer_model_max_length": 2048, + "tokenizer_padding_side": "right", + "torch_dtype": "bfloat16", + "transformers_version": "4.37.2", + "tune_mm_mlp_adapter": false, + "tune_mm_vision_resampler": false, + "unfreeze_mm_vision_tower": true, + "use_cache": false, + "use_mm_proj": true, + "vocab_size": 32000 +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/generation_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..69b7806611a4865cd48c3e991dbd7d8312e0c5d3 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/generation_config.json @@ -0,0 +1,6 @@ +{ + "_from_model_config": true, + "bos_token_id": 1, + "eos_token_id": 2, + "transformers_version": "4.37.2" +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/latest b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/latest new file mode 100644 index 0000000000000000000000000000000000000000..12cae1adf3af8546b4141c6f62261c8e99839a54 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/latest @@ -0,0 +1 @@ +global_step600 \ No newline at end of file diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/model.safetensors.index.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..927da5be7e6e3ec29d3a967a09ba6a421d7a2191 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/model.safetensors.index.json @@ -0,0 +1,694 @@ +{ + "metadata": { + "total_size": 15132446720 + }, + "weight_map": { + "lm_head.weight": "model-00004-of-00004.safetensors", + "model.embed_tokens.weight": "model-00001-of-00004.safetensors", + "model.image_newline": "model-00001-of-00004.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.mm_projector.0.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.0.weight": "model-00003-of-00004.safetensors", + "model.mm_projector.2.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.2.weight": "model-00003-of-00004.safetensors", + "model.norm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.class_embedding": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.weight": "model-00003-of-00004.safetensors" + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_0.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..b346349ce12dd5a17d4b91ed2a5722bb52550950 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ad8a35afd8967cbb748405387e44426e43ad127028e826eddc9b67d2ca873c85 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_1.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..68f3c6994456cb8d0592a5375d99503c8924b1c4 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f338ce80d7c441076bfc8c53b84067a0181f5a14e80c13d5acb8150b659f4d73 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_2.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_2.pth new file mode 100644 index 0000000000000000000000000000000000000000..be044f6ceeed587d30e80c2f72d5aa19fdc9947b --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_2.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c9fbc9fa428939be10b46779f0eb5cd833e0da426b1cbdee77b3a55b6952235b +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_3.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_3.pth new file mode 100644 index 0000000000000000000000000000000000000000..fc825249656a9b858782542bd3f4386250f1dfe0 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_3.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ac55dba0b79d5fa4699d239da2f966d52040d576d31234ac8d4632e6956481bc +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_4.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_4.pth new file mode 100644 index 0000000000000000000000000000000000000000..d30f52a44be563c152ae09db6ae934da6da0d3ed --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_4.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:af2d0c015100768ffa23faf3b6c2d54ea89eb045603e30e55cd211e06ff34972 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_5.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_5.pth new file mode 100644 index 0000000000000000000000000000000000000000..c8715d27ab23ae545d58039cf949cc44ecc1da5e --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_5.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c60a1b40608e34bc801c8231f97b81c53b5290dfaed1b9cd0ccbeca29574a991 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_6.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_6.pth new file mode 100644 index 0000000000000000000000000000000000000000..1ed791b6ef76eadf0b0c55a5733411771e2ae027 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_6.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3ad6a142a403eb9aafc4a3a9a856bca648fe31fd22d796867baca31fb13656aa +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_7.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_7.pth new file mode 100644 index 0000000000000000000000000000000000000000..800c3bbbc5edf7db01a8316069d439c5fb8d8c30 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/rng_state_7.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:38bc23a138cc800b22881742c0f3f9a71731a9a7111c6058a0077e6274d21773 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/scheduler.pt b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..bc8e09dd6529621e2bdc33ce74d3188db2d8ddae --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:74b6cace88e962cf0b702e06db892454cfafe5f879159db76fc15fe0d18d83b0 +size 1064 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/special_tokens_map.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..14761dcf1466dc232bd41de9c21d4c617b15755e --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/special_tokens_map.json @@ -0,0 +1,24 @@ +{ + "bos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": "", + "unk_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/tokenizer.model b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/tokenizer.model new file mode 100644 index 0000000000000000000000000000000000000000..8b443ef19c2a19acc3ac64fb9c3db4a72921dff6 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/tokenizer.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055 +size 493443 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/tokenizer_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..23dcf70e8cfc9b16310b6ff3dc98fdbc5adc11f8 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/tokenizer_config.json @@ -0,0 +1,44 @@ +{ + "add_bos_token": true, + "add_eos_token": false, + "added_tokens_decoder": { + "0": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "1": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "2": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + } + }, + "additional_special_tokens": [], + "bos_token": "", + "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", + "clean_up_tokenization_spaces": false, + "eos_token": "", + "legacy": true, + "model_max_length": 2048, + "pad_token": "", + "padding_side": "right", + "sp_model_kwargs": {}, + "spaces_between_special_tokens": false, + "tokenizer_class": "LlamaTokenizer", + "unk_token": "", + "use_default_system_prompt": false +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/trainer_state.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..9896d385cff31e34c7d631b81f233f92d830b965 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/trainer_state.json @@ -0,0 +1,3621 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.1538461538461537, + "eval_steps": 500, + "global_step": 600, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 6.25e-07, + "loss": 3.7473, + "step": 1 + }, + { + "epoch": 0.0, + "learning_rate": 1.25e-06, + "loss": 0.0, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 1.8750000000000003e-06, + "loss": 0.0, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 2.5e-06, + "loss": 0.0, + "step": 4 + }, + { + "epoch": 0.01, + "learning_rate": 3.125e-06, + "loss": 0.0, + "step": 5 + }, + { + "epoch": 0.01, + "learning_rate": 3.7500000000000005e-06, + "loss": 0.0, + "step": 6 + }, + { + "epoch": 0.01, + "learning_rate": 4.3750000000000005e-06, + "loss": 0.0, + "step": 7 + }, + { + "epoch": 0.02, + "learning_rate": 5e-06, + "loss": 0.0, + "step": 8 + }, + { + "epoch": 0.02, + "learning_rate": 5.625e-06, + "loss": 0.0, + "step": 9 + }, + { + "epoch": 0.02, + "learning_rate": 6.25e-06, + "loss": 0.0, + "step": 10 + }, + { + "epoch": 0.02, + "learning_rate": 6.875e-06, + "loss": 0.0, + "step": 11 + }, + { + "epoch": 0.02, + "learning_rate": 7.500000000000001e-06, + "loss": 0.0, + "step": 12 + }, + { + "epoch": 0.03, + "learning_rate": 8.125000000000001e-06, + "loss": 0.0, + "step": 13 + }, + { + "epoch": 0.03, + "learning_rate": 8.750000000000001e-06, + "loss": 0.0, + "step": 14 + }, + { + "epoch": 0.03, + "learning_rate": 9.375000000000001e-06, + "loss": 0.0, + "step": 15 + }, + { + "epoch": 0.03, + "learning_rate": 1e-05, + "loss": 0.0, + "step": 16 + }, + { + "epoch": 0.03, + "learning_rate": 1.0625e-05, + "loss": 0.0, + "step": 17 + }, + { + "epoch": 0.03, + "learning_rate": 1.125e-05, + "loss": 0.0, + "step": 18 + }, + { + "epoch": 0.04, + "learning_rate": 1.1875e-05, + "loss": 0.0, + "step": 19 + }, + { + "epoch": 0.04, + "learning_rate": 1.25e-05, + "loss": 0.0, + "step": 20 + }, + { + "epoch": 0.04, + "learning_rate": 1.3125e-05, + "loss": 0.0, + "step": 21 + }, + { + "epoch": 0.04, + "learning_rate": 1.375e-05, + "loss": 0.0, + "step": 22 + }, + { + "epoch": 0.04, + "learning_rate": 1.4375e-05, + "loss": 0.0, + "step": 23 + }, + { + "epoch": 0.05, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0, + "step": 24 + }, + { + "epoch": 0.05, + "learning_rate": 1.5625e-05, + "loss": 0.0, + "step": 25 + }, + { + "epoch": 0.05, + "learning_rate": 1.6250000000000002e-05, + "loss": 0.0, + "step": 26 + }, + { + "epoch": 0.05, + "learning_rate": 1.6875e-05, + "loss": 0.0, + "step": 27 + }, + { + "epoch": 0.05, + "learning_rate": 1.7500000000000002e-05, + "loss": 0.0, + "step": 28 + }, + { + "epoch": 0.06, + "learning_rate": 1.8125e-05, + "loss": 0.0, + "step": 29 + }, + { + "epoch": 0.06, + "learning_rate": 1.8750000000000002e-05, + "loss": 0.0, + "step": 30 + }, + { + "epoch": 0.06, + "learning_rate": 1.9375e-05, + "loss": 0.0, + "step": 31 + }, + { + "epoch": 0.06, + "learning_rate": 2e-05, + "loss": 0.0, + "step": 32 + }, + { + "epoch": 0.06, + "learning_rate": 1.9999951432210905e-05, + "loss": 0.0, + "step": 33 + }, + { + "epoch": 0.07, + "learning_rate": 1.9999805729315383e-05, + "loss": 0.0, + "step": 34 + }, + { + "epoch": 0.07, + "learning_rate": 1.999956289272873e-05, + "loss": 0.0, + "step": 35 + }, + { + "epoch": 0.07, + "learning_rate": 1.999922292480975e-05, + "loss": 0.0, + "step": 36 + }, + { + "epoch": 0.07, + "learning_rate": 1.9998785828860744e-05, + "loss": 0.0, + "step": 37 + }, + { + "epoch": 0.07, + "learning_rate": 1.9998251609127465e-05, + "loss": 0.0, + "step": 38 + }, + { + "epoch": 0.07, + "learning_rate": 1.999762027079909e-05, + "loss": 0.0, + "step": 39 + }, + { + "epoch": 0.08, + "learning_rate": 1.9996891820008165e-05, + "loss": 0.0, + "step": 40 + }, + { + "epoch": 0.08, + "learning_rate": 1.9996066263830533e-05, + "loss": 0.0, + "step": 41 + }, + { + "epoch": 0.08, + "learning_rate": 1.9995143610285275e-05, + "loss": 0.0, + "step": 42 + }, + { + "epoch": 0.08, + "learning_rate": 1.9994123868334655e-05, + "loss": 0.0, + "step": 43 + }, + { + "epoch": 0.08, + "learning_rate": 1.9993007047883988e-05, + "loss": 0.0, + "step": 44 + }, + { + "epoch": 0.09, + "learning_rate": 1.999179315978157e-05, + "loss": 0.0, + "step": 45 + }, + { + "epoch": 0.09, + "learning_rate": 1.999048221581858e-05, + "loss": 0.0, + "step": 46 + }, + { + "epoch": 0.09, + "learning_rate": 1.9989074228728942e-05, + "loss": 0.0, + "step": 47 + }, + { + "epoch": 0.09, + "learning_rate": 1.9987569212189224e-05, + "loss": 0.0, + "step": 48 + }, + { + "epoch": 0.09, + "learning_rate": 1.9985967180818493e-05, + "loss": 0.0, + "step": 49 + }, + { + "epoch": 0.1, + "learning_rate": 1.998426815017817e-05, + "loss": 0.0, + "step": 50 + }, + { + "epoch": 0.1, + "learning_rate": 1.998247213677188e-05, + "loss": 0.0, + "step": 51 + }, + { + "epoch": 0.1, + "learning_rate": 1.9980579158045322e-05, + "loss": 0.0, + "step": 52 + }, + { + "epoch": 0.1, + "learning_rate": 1.9978589232386036e-05, + "loss": 0.0, + "step": 53 + }, + { + "epoch": 0.1, + "learning_rate": 1.997650237912329e-05, + "loss": 0.0, + "step": 54 + }, + { + "epoch": 0.11, + "learning_rate": 1.997431861852785e-05, + "loss": 0.0, + "step": 55 + }, + { + "epoch": 0.11, + "learning_rate": 1.9972037971811802e-05, + "loss": 0.0, + "step": 56 + }, + { + "epoch": 0.11, + "learning_rate": 1.996966046112834e-05, + "loss": 0.0, + "step": 57 + }, + { + "epoch": 0.11, + "learning_rate": 1.996718610957155e-05, + "loss": 0.0, + "step": 58 + }, + { + "epoch": 0.11, + "learning_rate": 1.9964614941176194e-05, + "loss": 0.0, + "step": 59 + }, + { + "epoch": 0.12, + "learning_rate": 1.9961946980917457e-05, + "loss": 0.0, + "step": 60 + }, + { + "epoch": 0.12, + "learning_rate": 1.995918225471073e-05, + "loss": 0.0, + "step": 61 + }, + { + "epoch": 0.12, + "learning_rate": 1.9956320789411338e-05, + "loss": 0.0, + "step": 62 + }, + { + "epoch": 0.12, + "learning_rate": 1.9953362612814294e-05, + "loss": 0.0, + "step": 63 + }, + { + "epoch": 0.12, + "learning_rate": 1.9950307753654016e-05, + "loss": 0.0, + "step": 64 + }, + { + "epoch": 0.12, + "learning_rate": 1.994715624160405e-05, + "loss": 0.0, + "step": 65 + }, + { + "epoch": 0.13, + "learning_rate": 1.99439081072768e-05, + "loss": 0.0, + "step": 66 + }, + { + "epoch": 0.13, + "learning_rate": 1.9940563382223196e-05, + "loss": 0.0, + "step": 67 + }, + { + "epoch": 0.13, + "learning_rate": 1.9937122098932428e-05, + "loss": 0.0, + "step": 68 + }, + { + "epoch": 0.13, + "learning_rate": 1.9933584290831593e-05, + "loss": 0.0, + "step": 69 + }, + { + "epoch": 0.13, + "learning_rate": 1.9929949992285397e-05, + "loss": 0.0, + "step": 70 + }, + { + "epoch": 0.14, + "learning_rate": 1.992621923859581e-05, + "loss": 0.0, + "step": 71 + }, + { + "epoch": 0.14, + "learning_rate": 1.9922392066001724e-05, + "loss": 0.0, + "step": 72 + }, + { + "epoch": 0.14, + "learning_rate": 1.99184685116786e-05, + "loss": 0.0, + "step": 73 + }, + { + "epoch": 0.14, + "learning_rate": 1.9914448613738107e-05, + "loss": 0.0, + "step": 74 + }, + { + "epoch": 0.14, + "learning_rate": 1.991033241122776e-05, + "loss": 0.0, + "step": 75 + }, + { + "epoch": 0.15, + "learning_rate": 1.9906119944130527e-05, + "loss": 0.0, + "step": 76 + }, + { + "epoch": 0.15, + "learning_rate": 1.9901811253364458e-05, + "loss": 0.0, + "step": 77 + }, + { + "epoch": 0.15, + "learning_rate": 1.9897406380782262e-05, + "loss": 0.0, + "step": 78 + }, + { + "epoch": 0.15, + "learning_rate": 1.989290536917093e-05, + "loss": 0.0, + "step": 79 + }, + { + "epoch": 0.15, + "learning_rate": 1.9888308262251286e-05, + "loss": 0.0, + "step": 80 + }, + { + "epoch": 0.16, + "learning_rate": 1.988361510467761e-05, + "loss": 0.0, + "step": 81 + }, + { + "epoch": 0.16, + "learning_rate": 1.9878825942037147e-05, + "loss": 0.0, + "step": 82 + }, + { + "epoch": 0.16, + "learning_rate": 1.9873940820849714e-05, + "loss": 0.0, + "step": 83 + }, + { + "epoch": 0.16, + "learning_rate": 1.9868959788567213e-05, + "loss": 0.0, + "step": 84 + }, + { + "epoch": 0.16, + "learning_rate": 1.9863882893573188e-05, + "loss": 0.0, + "step": 85 + }, + { + "epoch": 0.17, + "learning_rate": 1.985871018518236e-05, + "loss": 0.0, + "step": 86 + }, + { + "epoch": 0.17, + "learning_rate": 1.9853441713640123e-05, + "loss": 0.0, + "step": 87 + }, + { + "epoch": 0.17, + "learning_rate": 1.9848077530122083e-05, + "loss": 0.0, + "step": 88 + }, + { + "epoch": 0.17, + "learning_rate": 1.9842617686733546e-05, + "loss": 0.0, + "step": 89 + }, + { + "epoch": 0.17, + "learning_rate": 1.9837062236509013e-05, + "loss": 0.0, + "step": 90 + }, + { + "epoch": 0.17, + "learning_rate": 1.983141123341168e-05, + "loss": 0.0, + "step": 91 + }, + { + "epoch": 0.18, + "learning_rate": 1.9825664732332886e-05, + "loss": 0.0, + "step": 92 + }, + { + "epoch": 0.18, + "learning_rate": 1.9819822789091597e-05, + "loss": 0.0, + "step": 93 + }, + { + "epoch": 0.18, + "learning_rate": 1.981388546043388e-05, + "loss": 0.0, + "step": 94 + }, + { + "epoch": 0.18, + "learning_rate": 1.9807852804032306e-05, + "loss": 0.0, + "step": 95 + }, + { + "epoch": 0.18, + "learning_rate": 1.9801724878485438e-05, + "loss": 0.0, + "step": 96 + }, + { + "epoch": 0.19, + "learning_rate": 1.979550174331724e-05, + "loss": 0.0, + "step": 97 + }, + { + "epoch": 0.19, + "learning_rate": 1.9789183458976485e-05, + "loss": 0.0, + "step": 98 + }, + { + "epoch": 0.19, + "learning_rate": 1.97827700868362e-05, + "loss": 0.0, + "step": 99 + }, + { + "epoch": 0.19, + "learning_rate": 1.977626168919305e-05, + "loss": 0.0, + "step": 100 + }, + { + "epoch": 0.19, + "learning_rate": 1.9769658329266718e-05, + "loss": 0.0, + "step": 101 + }, + { + "epoch": 0.2, + "learning_rate": 1.9762960071199334e-05, + "loss": 0.0, + "step": 102 + }, + { + "epoch": 0.2, + "learning_rate": 1.9756166980054812e-05, + "loss": 0.0, + "step": 103 + }, + { + "epoch": 0.2, + "learning_rate": 1.9749279121818235e-05, + "loss": 0.0, + "step": 104 + }, + { + "epoch": 0.2, + "learning_rate": 1.9742296563395218e-05, + "loss": 0.0, + "step": 105 + }, + { + "epoch": 0.2, + "learning_rate": 1.9735219372611232e-05, + "loss": 0.0, + "step": 106 + }, + { + "epoch": 0.21, + "learning_rate": 1.9728047618210995e-05, + "loss": 0.0, + "step": 107 + }, + { + "epoch": 0.21, + "learning_rate": 1.9720781369857747e-05, + "loss": 0.0, + "step": 108 + }, + { + "epoch": 0.21, + "learning_rate": 1.9713420698132614e-05, + "loss": 0.0, + "step": 109 + }, + { + "epoch": 0.21, + "learning_rate": 1.970596567453391e-05, + "loss": 0.0, + "step": 110 + }, + { + "epoch": 0.21, + "learning_rate": 1.9698416371476434e-05, + "loss": 0.0, + "step": 111 + }, + { + "epoch": 0.22, + "learning_rate": 1.969077286229078e-05, + "loss": 0.0, + "step": 112 + }, + { + "epoch": 0.22, + "learning_rate": 1.9683035221222617e-05, + "loss": 0.0, + "step": 113 + }, + { + "epoch": 0.22, + "learning_rate": 1.9675203523431964e-05, + "loss": 0.0, + "step": 114 + }, + { + "epoch": 0.22, + "learning_rate": 1.9667277844992476e-05, + "loss": 0.0, + "step": 115 + }, + { + "epoch": 0.22, + "learning_rate": 1.9659258262890683e-05, + "loss": 0.0, + "step": 116 + }, + { + "epoch": 0.23, + "learning_rate": 1.9651144855025265e-05, + "loss": 0.0, + "step": 117 + }, + { + "epoch": 0.23, + "learning_rate": 1.964293770020628e-05, + "loss": 0.0, + "step": 118 + }, + { + "epoch": 0.23, + "learning_rate": 1.9634636878154393e-05, + "loss": 0.0, + "step": 119 + }, + { + "epoch": 0.23, + "learning_rate": 1.962624246950012e-05, + "loss": 0.0, + "step": 120 + }, + { + "epoch": 0.23, + "learning_rate": 1.9617754555783045e-05, + "loss": 0.0, + "step": 121 + }, + { + "epoch": 0.23, + "learning_rate": 1.9609173219450998e-05, + "loss": 0.0, + "step": 122 + }, + { + "epoch": 0.24, + "learning_rate": 1.960049854385929e-05, + "loss": 0.0, + "step": 123 + }, + { + "epoch": 0.24, + "learning_rate": 1.9591730613269878e-05, + "loss": 0.0, + "step": 124 + }, + { + "epoch": 0.24, + "learning_rate": 1.9582869512850576e-05, + "loss": 0.0, + "step": 125 + }, + { + "epoch": 0.24, + "learning_rate": 1.957391532867418e-05, + "loss": 0.0, + "step": 126 + }, + { + "epoch": 0.24, + "learning_rate": 1.956486814771769e-05, + "loss": 0.0, + "step": 127 + }, + { + "epoch": 0.25, + "learning_rate": 1.955572805786141e-05, + "loss": 0.0, + "step": 128 + }, + { + "epoch": 0.25, + "learning_rate": 1.9546495147888134e-05, + "loss": 0.0, + "step": 129 + }, + { + "epoch": 0.25, + "learning_rate": 1.953716950748227e-05, + "loss": 0.0, + "step": 130 + }, + { + "epoch": 0.25, + "learning_rate": 1.9527751227228964e-05, + "loss": 0.0, + "step": 131 + }, + { + "epoch": 0.25, + "learning_rate": 1.9518240398613226e-05, + "loss": 0.0, + "step": 132 + }, + { + "epoch": 0.26, + "learning_rate": 1.9508637114019037e-05, + "loss": 0.0, + "step": 133 + }, + { + "epoch": 0.26, + "learning_rate": 1.9498941466728462e-05, + "loss": 0.0, + "step": 134 + }, + { + "epoch": 0.26, + "learning_rate": 1.9489153550920726e-05, + "loss": 0.0, + "step": 135 + }, + { + "epoch": 0.26, + "learning_rate": 1.947927346167132e-05, + "loss": 0.0, + "step": 136 + }, + { + "epoch": 0.26, + "learning_rate": 1.946930129495106e-05, + "loss": 0.0, + "step": 137 + }, + { + "epoch": 0.27, + "learning_rate": 1.945923714762516e-05, + "loss": 0.0, + "step": 138 + }, + { + "epoch": 0.27, + "learning_rate": 1.9449081117452304e-05, + "loss": 0.0, + "step": 139 + }, + { + "epoch": 0.27, + "learning_rate": 1.9438833303083677e-05, + "loss": 0.0, + "step": 140 + }, + { + "epoch": 0.27, + "learning_rate": 1.9428493804062013e-05, + "loss": 0.0, + "step": 141 + }, + { + "epoch": 0.27, + "learning_rate": 1.9418062720820636e-05, + "loss": 0.0, + "step": 142 + }, + { + "epoch": 0.28, + "learning_rate": 1.9407540154682473e-05, + "loss": 0.0, + "step": 143 + }, + { + "epoch": 0.28, + "learning_rate": 1.9396926207859085e-05, + "loss": 0.0, + "step": 144 + }, + { + "epoch": 0.28, + "learning_rate": 1.9386220983449652e-05, + "loss": 0.0, + "step": 145 + }, + { + "epoch": 0.28, + "learning_rate": 1.9375424585439994e-05, + "loss": 0.0, + "step": 146 + }, + { + "epoch": 0.28, + "learning_rate": 1.9364537118701542e-05, + "loss": 0.0, + "step": 147 + }, + { + "epoch": 0.28, + "learning_rate": 1.935355868899034e-05, + "loss": 0.0, + "step": 148 + }, + { + "epoch": 0.29, + "learning_rate": 1.9342489402945997e-05, + "loss": 0.0, + "step": 149 + }, + { + "epoch": 0.29, + "learning_rate": 1.9331329368090664e-05, + "loss": 0.0, + "step": 150 + }, + { + "epoch": 0.29, + "learning_rate": 1.932007869282799e-05, + "loss": 0.0, + "step": 151 + }, + { + "epoch": 0.29, + "learning_rate": 1.9308737486442045e-05, + "loss": 0.0, + "step": 152 + }, + { + "epoch": 0.29, + "learning_rate": 1.9297305859096305e-05, + "loss": 0.0, + "step": 153 + }, + { + "epoch": 0.3, + "learning_rate": 1.9285783921832537e-05, + "loss": 0.0, + "step": 154 + }, + { + "epoch": 0.3, + "learning_rate": 1.927417178656975e-05, + "loss": 0.0, + "step": 155 + }, + { + "epoch": 0.3, + "learning_rate": 1.926246956610309e-05, + "loss": 0.0, + "step": 156 + }, + { + "epoch": 0.3, + "learning_rate": 1.9250677374102752e-05, + "loss": 0.0, + "step": 157 + }, + { + "epoch": 0.3, + "learning_rate": 1.9238795325112867e-05, + "loss": 0.0, + "step": 158 + }, + { + "epoch": 0.31, + "learning_rate": 1.9226823534550418e-05, + "loss": 0.0, + "step": 159 + }, + { + "epoch": 0.31, + "learning_rate": 1.921476211870408e-05, + "loss": 0.0, + "step": 160 + }, + { + "epoch": 0.31, + "learning_rate": 1.9202611194733107e-05, + "loss": 0.0, + "step": 161 + }, + { + "epoch": 0.31, + "learning_rate": 1.9190370880666206e-05, + "loss": 0.0, + "step": 162 + }, + { + "epoch": 0.31, + "learning_rate": 1.9178041295400383e-05, + "loss": 0.0, + "step": 163 + }, + { + "epoch": 0.32, + "learning_rate": 1.9165622558699763e-05, + "loss": 0.0, + "step": 164 + }, + { + "epoch": 0.32, + "learning_rate": 1.9153114791194475e-05, + "loss": 0.0, + "step": 165 + }, + { + "epoch": 0.32, + "learning_rate": 1.9140518114379433e-05, + "loss": 0.0, + "step": 166 + }, + { + "epoch": 0.32, + "learning_rate": 1.912783265061319e-05, + "loss": 0.0, + "step": 167 + }, + { + "epoch": 0.32, + "learning_rate": 1.9115058523116734e-05, + "loss": 0.0, + "step": 168 + }, + { + "epoch": 0.33, + "learning_rate": 1.9102195855972287e-05, + "loss": 0.0, + "step": 169 + }, + { + "epoch": 0.33, + "learning_rate": 1.908924477412211e-05, + "loss": 0.0, + "step": 170 + }, + { + "epoch": 0.33, + "learning_rate": 1.9076205403367287e-05, + "loss": 0.0, + "step": 171 + }, + { + "epoch": 0.33, + "learning_rate": 1.9063077870366504e-05, + "loss": 0.0, + "step": 172 + }, + { + "epoch": 0.33, + "learning_rate": 1.90498623026348e-05, + "loss": 0.0, + "step": 173 + }, + { + "epoch": 0.33, + "learning_rate": 1.903655882854237e-05, + "loss": 0.0, + "step": 174 + }, + { + "epoch": 0.34, + "learning_rate": 1.9023167577313267e-05, + "loss": 0.0, + "step": 175 + }, + { + "epoch": 0.34, + "learning_rate": 1.900968867902419e-05, + "loss": 0.0, + "step": 176 + }, + { + "epoch": 0.34, + "learning_rate": 1.8996122264603202e-05, + "loss": 0.0, + "step": 177 + }, + { + "epoch": 0.34, + "learning_rate": 1.898246846582844e-05, + "loss": 0.0, + "step": 178 + }, + { + "epoch": 0.34, + "learning_rate": 1.8968727415326885e-05, + "loss": 0.0, + "step": 179 + }, + { + "epoch": 0.35, + "learning_rate": 1.895489924657301e-05, + "loss": 0.0, + "step": 180 + }, + { + "epoch": 0.35, + "learning_rate": 1.894098409388754e-05, + "loss": 0.0, + "step": 181 + }, + { + "epoch": 0.35, + "learning_rate": 1.8926982092436117e-05, + "loss": 0.0, + "step": 182 + }, + { + "epoch": 0.35, + "learning_rate": 1.8912893378227984e-05, + "loss": 0.0, + "step": 183 + }, + { + "epoch": 0.35, + "learning_rate": 1.8898718088114688e-05, + "loss": 0.0, + "step": 184 + }, + { + "epoch": 0.36, + "learning_rate": 1.8884456359788725e-05, + "loss": 0.0, + "step": 185 + }, + { + "epoch": 0.36, + "learning_rate": 1.887010833178222e-05, + "loss": 0.0, + "step": 186 + }, + { + "epoch": 0.36, + "learning_rate": 1.8855674143465567e-05, + "loss": 0.0, + "step": 187 + }, + { + "epoch": 0.36, + "learning_rate": 1.8841153935046098e-05, + "loss": 0.0, + "step": 188 + }, + { + "epoch": 0.36, + "learning_rate": 1.8826547847566692e-05, + "loss": 0.0, + "step": 189 + }, + { + "epoch": 0.37, + "learning_rate": 1.8811856022904423e-05, + "loss": 0.0, + "step": 190 + }, + { + "epoch": 0.37, + "learning_rate": 1.8797078603769184e-05, + "loss": 0.0, + "step": 191 + }, + { + "epoch": 0.37, + "learning_rate": 1.8782215733702286e-05, + "loss": 0.0, + "step": 192 + }, + { + "epoch": 0.37, + "learning_rate": 1.876726755707508e-05, + "loss": 0.0, + "step": 193 + }, + { + "epoch": 0.37, + "learning_rate": 1.8752234219087538e-05, + "loss": 0.0, + "step": 194 + }, + { + "epoch": 0.38, + "learning_rate": 1.8737115865766865e-05, + "loss": 0.0, + "step": 195 + }, + { + "epoch": 0.38, + "learning_rate": 1.8721912643966055e-05, + "loss": 0.0, + "step": 196 + }, + { + "epoch": 0.38, + "learning_rate": 1.8706624701362485e-05, + "loss": 0.0, + "step": 197 + }, + { + "epoch": 0.38, + "learning_rate": 1.8691252186456465e-05, + "loss": 0.0, + "step": 198 + }, + { + "epoch": 0.38, + "learning_rate": 1.8675795248569816e-05, + "loss": 0.0, + "step": 199 + }, + { + "epoch": 0.38, + "learning_rate": 1.866025403784439e-05, + "loss": 0.0, + "step": 200 + }, + { + "epoch": 0.39, + "learning_rate": 1.8644628705240636e-05, + "loss": 0.0, + "step": 201 + }, + { + "epoch": 0.39, + "learning_rate": 1.862891940253613e-05, + "loss": 0.0, + "step": 202 + }, + { + "epoch": 0.39, + "learning_rate": 1.8613126282324092e-05, + "loss": 0.0, + "step": 203 + }, + { + "epoch": 0.39, + "learning_rate": 1.8597249498011906e-05, + "loss": 0.0, + "step": 204 + }, + { + "epoch": 0.39, + "learning_rate": 1.858128920381963e-05, + "loss": 0.0, + "step": 205 + }, + { + "epoch": 0.4, + "learning_rate": 1.8565245554778516e-05, + "loss": 0.0, + "step": 206 + }, + { + "epoch": 0.4, + "learning_rate": 1.854911870672947e-05, + "loss": 0.0, + "step": 207 + }, + { + "epoch": 0.4, + "learning_rate": 1.8532908816321557e-05, + "loss": 0.0, + "step": 208 + }, + { + "epoch": 0.4, + "learning_rate": 1.8516616041010495e-05, + "loss": 0.0, + "step": 209 + }, + { + "epoch": 0.4, + "learning_rate": 1.8500240539057093e-05, + "loss": 0.0, + "step": 210 + }, + { + "epoch": 0.41, + "learning_rate": 1.848378246952574e-05, + "loss": 0.0, + "step": 211 + }, + { + "epoch": 0.41, + "learning_rate": 1.8467241992282842e-05, + "loss": 0.0, + "step": 212 + }, + { + "epoch": 0.41, + "learning_rate": 1.8450619267995283e-05, + "loss": 0.0, + "step": 213 + }, + { + "epoch": 0.41, + "learning_rate": 1.843391445812886e-05, + "loss": 0.0, + "step": 214 + }, + { + "epoch": 0.41, + "learning_rate": 1.84171277249467e-05, + "loss": 0.0, + "step": 215 + }, + { + "epoch": 0.42, + "learning_rate": 1.8400259231507716e-05, + "loss": 0.0, + "step": 216 + }, + { + "epoch": 0.42, + "learning_rate": 1.8383309141664992e-05, + "loss": 0.0, + "step": 217 + }, + { + "epoch": 0.42, + "learning_rate": 1.83662776200642e-05, + "loss": 0.0, + "step": 218 + }, + { + "epoch": 0.42, + "learning_rate": 1.8349164832142015e-05, + "loss": 0.0, + "step": 219 + }, + { + "epoch": 0.42, + "learning_rate": 1.833197094412449e-05, + "loss": 0.0, + "step": 220 + }, + { + "epoch": 0.42, + "learning_rate": 1.8314696123025456e-05, + "loss": 0.0, + "step": 221 + }, + { + "epoch": 0.43, + "learning_rate": 1.8297340536644877e-05, + "loss": 0.0, + "step": 222 + }, + { + "epoch": 0.43, + "learning_rate": 1.827990435356725e-05, + "loss": 0.0, + "step": 223 + }, + { + "epoch": 0.43, + "learning_rate": 1.826238774315995e-05, + "loss": 0.0, + "step": 224 + }, + { + "epoch": 0.43, + "learning_rate": 1.8244790875571582e-05, + "loss": 0.0, + "step": 225 + }, + { + "epoch": 0.43, + "learning_rate": 1.8227113921730336e-05, + "loss": 0.0, + "step": 226 + }, + { + "epoch": 0.44, + "learning_rate": 1.8209357053342325e-05, + "loss": 0.0, + "step": 227 + }, + { + "epoch": 0.44, + "learning_rate": 1.819152044288992e-05, + "loss": 0.0, + "step": 228 + }, + { + "epoch": 0.44, + "learning_rate": 1.8173604263630066e-05, + "loss": 0.0, + "step": 229 + }, + { + "epoch": 0.44, + "learning_rate": 1.8155608689592604e-05, + "loss": 0.0, + "step": 230 + }, + { + "epoch": 0.44, + "learning_rate": 1.8137533895578585e-05, + "loss": 0.0, + "step": 231 + }, + { + "epoch": 0.45, + "learning_rate": 1.811938005715857e-05, + "loss": 0.0, + "step": 232 + }, + { + "epoch": 0.45, + "learning_rate": 1.8101147350670905e-05, + "loss": 0.0, + "step": 233 + }, + { + "epoch": 0.45, + "learning_rate": 1.8082835953220055e-05, + "loss": 0.0, + "step": 234 + }, + { + "epoch": 0.45, + "learning_rate": 1.806444604267483e-05, + "loss": 0.0, + "step": 235 + }, + { + "epoch": 0.45, + "learning_rate": 1.8045977797666685e-05, + "loss": 0.0, + "step": 236 + }, + { + "epoch": 0.46, + "learning_rate": 1.8027431397587993e-05, + "loss": 0.0, + "step": 237 + }, + { + "epoch": 0.46, + "learning_rate": 1.8008807022590283e-05, + "loss": 0.0, + "step": 238 + }, + { + "epoch": 0.46, + "learning_rate": 1.7990104853582494e-05, + "loss": 0.0, + "step": 239 + }, + { + "epoch": 0.46, + "learning_rate": 1.7971325072229227e-05, + "loss": 0.0, + "step": 240 + }, + { + "epoch": 0.46, + "learning_rate": 1.7952467860948975e-05, + "loss": 0.0, + "step": 241 + }, + { + "epoch": 0.47, + "learning_rate": 1.7933533402912354e-05, + "loss": 0.0, + "step": 242 + }, + { + "epoch": 0.47, + "learning_rate": 1.791452188204031e-05, + "loss": 0.0, + "step": 243 + }, + { + "epoch": 0.47, + "learning_rate": 1.7895433483002356e-05, + "loss": 0.0, + "step": 244 + }, + { + "epoch": 0.47, + "learning_rate": 1.7876268391214756e-05, + "loss": 0.0, + "step": 245 + }, + { + "epoch": 0.47, + "learning_rate": 1.785702679283874e-05, + "loss": 0.0, + "step": 246 + }, + { + "epoch": 0.47, + "learning_rate": 1.7837708874778683e-05, + "loss": 0.0, + "step": 247 + }, + { + "epoch": 0.48, + "learning_rate": 1.78183148246803e-05, + "loss": 0.0, + "step": 248 + }, + { + "epoch": 0.48, + "learning_rate": 1.7798844830928818e-05, + "loss": 0.0, + "step": 249 + }, + { + "epoch": 0.48, + "learning_rate": 1.777929908264715e-05, + "loss": 0.0, + "step": 250 + }, + { + "epoch": 0.48, + "learning_rate": 1.775967776969405e-05, + "loss": 0.0, + "step": 251 + }, + { + "epoch": 0.48, + "learning_rate": 1.7739981082662275e-05, + "loss": 0.0, + "step": 252 + }, + { + "epoch": 0.49, + "learning_rate": 1.772020921287674e-05, + "loss": 0.0, + "step": 253 + }, + { + "epoch": 0.49, + "learning_rate": 1.7700362352392632e-05, + "loss": 0.0, + "step": 254 + }, + { + "epoch": 0.49, + "learning_rate": 1.7680440693993586e-05, + "loss": 0.0, + "step": 255 + }, + { + "epoch": 0.49, + "learning_rate": 1.766044443118978e-05, + "loss": 0.0, + "step": 256 + }, + { + "epoch": 0.49, + "learning_rate": 1.7640373758216075e-05, + "loss": 0.0, + "step": 257 + }, + { + "epoch": 0.5, + "learning_rate": 1.762022887003011e-05, + "loss": 0.0, + "step": 258 + }, + { + "epoch": 0.5, + "learning_rate": 1.7600009962310417e-05, + "loss": 0.0, + "step": 259 + }, + { + "epoch": 0.5, + "learning_rate": 1.757971723145453e-05, + "loss": 0.0, + "step": 260 + }, + { + "epoch": 0.5, + "learning_rate": 1.7559350874577066e-05, + "loss": 0.0, + "step": 261 + }, + { + "epoch": 0.5, + "learning_rate": 1.75389110895078e-05, + "loss": 0.0, + "step": 262 + }, + { + "epoch": 0.51, + "learning_rate": 1.7518398074789776e-05, + "loss": 0.0, + "step": 263 + }, + { + "epoch": 0.51, + "learning_rate": 1.7497812029677344e-05, + "loss": 0.0, + "step": 264 + }, + { + "epoch": 0.51, + "learning_rate": 1.7477153154134244e-05, + "loss": 0.0, + "step": 265 + }, + { + "epoch": 0.51, + "learning_rate": 1.7456421648831658e-05, + "loss": 0.0, + "step": 266 + }, + { + "epoch": 0.51, + "learning_rate": 1.743561771514626e-05, + "loss": 0.0, + "step": 267 + }, + { + "epoch": 0.52, + "learning_rate": 1.741474155515827e-05, + "loss": 0.0, + "step": 268 + }, + { + "epoch": 0.52, + "learning_rate": 1.739379337164946e-05, + "loss": 0.0, + "step": 269 + }, + { + "epoch": 0.52, + "learning_rate": 1.737277336810124e-05, + "loss": 0.0, + "step": 270 + }, + { + "epoch": 0.52, + "learning_rate": 1.7351681748692622e-05, + "loss": 0.0, + "step": 271 + }, + { + "epoch": 0.52, + "learning_rate": 1.7330518718298263e-05, + "loss": 0.0, + "step": 272 + }, + { + "epoch": 0.53, + "learning_rate": 1.7309284482486494e-05, + "loss": 0.0, + "step": 273 + }, + { + "epoch": 0.53, + "learning_rate": 1.7287979247517285e-05, + "loss": 0.0, + "step": 274 + }, + { + "epoch": 0.53, + "learning_rate": 1.7266603220340273e-05, + "loss": 0.0, + "step": 275 + }, + { + "epoch": 0.53, + "learning_rate": 1.7245156608592727e-05, + "loss": 0.0, + "step": 276 + }, + { + "epoch": 0.53, + "learning_rate": 1.7223639620597556e-05, + "loss": 0.0, + "step": 277 + }, + { + "epoch": 0.53, + "learning_rate": 1.7202052465361268e-05, + "loss": 0.0, + "step": 278 + }, + { + "epoch": 0.54, + "learning_rate": 1.718039535257194e-05, + "loss": 0.0, + "step": 279 + }, + { + "epoch": 0.54, + "learning_rate": 1.7158668492597186e-05, + "loss": 0.0, + "step": 280 + }, + { + "epoch": 0.54, + "learning_rate": 1.7136872096482123e-05, + "loss": 0.0, + "step": 281 + }, + { + "epoch": 0.54, + "learning_rate": 1.7115006375947304e-05, + "loss": 0.0, + "step": 282 + }, + { + "epoch": 0.54, + "learning_rate": 1.7093071543386667e-05, + "loss": 0.0, + "step": 283 + }, + { + "epoch": 0.55, + "learning_rate": 1.7071067811865477e-05, + "loss": 0.0, + "step": 284 + }, + { + "epoch": 0.55, + "learning_rate": 1.7048995395118253e-05, + "loss": 0.0, + "step": 285 + }, + { + "epoch": 0.55, + "learning_rate": 1.7026854507546694e-05, + "loss": 0.0, + "step": 286 + }, + { + "epoch": 0.55, + "learning_rate": 1.7004645364217584e-05, + "loss": 0.0, + "step": 287 + }, + { + "epoch": 0.55, + "learning_rate": 1.698236818086073e-05, + "loss": 0.0, + "step": 288 + }, + { + "epoch": 0.56, + "learning_rate": 1.6960023173866834e-05, + "loss": 0.0, + "step": 289 + }, + { + "epoch": 0.56, + "learning_rate": 1.693761056028542e-05, + "loss": 0.0, + "step": 290 + }, + { + "epoch": 0.56, + "learning_rate": 1.6915130557822698e-05, + "loss": 0.0, + "step": 291 + }, + { + "epoch": 0.56, + "learning_rate": 1.689258338483947e-05, + "loss": 0.0, + "step": 292 + }, + { + "epoch": 0.56, + "learning_rate": 1.686996926034902e-05, + "loss": 0.0, + "step": 293 + }, + { + "epoch": 0.57, + "learning_rate": 1.6847288404014937e-05, + "loss": 0.0, + "step": 294 + }, + { + "epoch": 0.57, + "learning_rate": 1.682454103614904e-05, + "loss": 0.0, + "step": 295 + }, + { + "epoch": 0.57, + "learning_rate": 1.6801727377709195e-05, + "loss": 0.0, + "step": 296 + }, + { + "epoch": 0.57, + "learning_rate": 1.67788476502972e-05, + "loss": 0.0, + "step": 297 + }, + { + "epoch": 0.57, + "learning_rate": 1.6755902076156606e-05, + "loss": 0.0, + "step": 298 + }, + { + "epoch": 0.57, + "learning_rate": 1.6732890878170573e-05, + "loss": 0.0, + "step": 299 + }, + { + "epoch": 0.58, + "learning_rate": 1.67098142798597e-05, + "loss": 0.0, + "step": 300 + }, + { + "epoch": 0.58, + "learning_rate": 1.668667250537987e-05, + "loss": 0.0, + "step": 301 + }, + { + "epoch": 0.58, + "learning_rate": 1.6663465779520042e-05, + "loss": 0.0, + "step": 302 + }, + { + "epoch": 0.58, + "learning_rate": 1.6640194327700087e-05, + "loss": 0.0, + "step": 303 + }, + { + "epoch": 0.58, + "learning_rate": 1.6616858375968596e-05, + "loss": 0.0, + "step": 304 + }, + { + "epoch": 0.59, + "learning_rate": 1.659345815100069e-05, + "loss": 0.0, + "step": 305 + }, + { + "epoch": 0.59, + "learning_rate": 1.6569993880095807e-05, + "loss": 0.0, + "step": 306 + }, + { + "epoch": 0.59, + "learning_rate": 1.6546465791175498e-05, + "loss": 0.0, + "step": 307 + }, + { + "epoch": 0.59, + "learning_rate": 1.6522874112781213e-05, + "loss": 0.0, + "step": 308 + }, + { + "epoch": 0.59, + "learning_rate": 1.6499219074072087e-05, + "loss": 0.0, + "step": 309 + }, + { + "epoch": 0.6, + "learning_rate": 1.6475500904822707e-05, + "loss": 0.0, + "step": 310 + }, + { + "epoch": 0.6, + "learning_rate": 1.645171983542088e-05, + "loss": 0.0, + "step": 311 + }, + { + "epoch": 0.6, + "learning_rate": 1.6427876096865394e-05, + "loss": 0.0, + "step": 312 + }, + { + "epoch": 0.6, + "learning_rate": 1.640396992076379e-05, + "loss": 0.0, + "step": 313 + }, + { + "epoch": 0.6, + "learning_rate": 1.6380001539330088e-05, + "loss": 0.0, + "step": 314 + }, + { + "epoch": 0.61, + "learning_rate": 1.6355971185382547e-05, + "loss": 0.0, + "step": 315 + }, + { + "epoch": 0.61, + "learning_rate": 1.6331879092341402e-05, + "loss": 0.0, + "step": 316 + }, + { + "epoch": 0.61, + "learning_rate": 1.6307725494226586e-05, + "loss": 0.0, + "step": 317 + }, + { + "epoch": 0.61, + "learning_rate": 1.6283510625655474e-05, + "loss": 0.0, + "step": 318 + }, + { + "epoch": 0.61, + "learning_rate": 1.6259234721840595e-05, + "loss": 0.0, + "step": 319 + }, + { + "epoch": 0.62, + "learning_rate": 1.6234898018587336e-05, + "loss": 0.0, + "step": 320 + }, + { + "epoch": 0.62, + "learning_rate": 1.6210500752291682e-05, + "loss": 0.0, + "step": 321 + }, + { + "epoch": 0.62, + "learning_rate": 1.6186043159937884e-05, + "loss": 0.0, + "step": 322 + }, + { + "epoch": 0.62, + "learning_rate": 1.616152547909618e-05, + "loss": 0.0, + "step": 323 + }, + { + "epoch": 0.62, + "learning_rate": 1.6136947947920477e-05, + "loss": 0.0, + "step": 324 + }, + { + "epoch": 0.62, + "learning_rate": 1.611231080514605e-05, + "loss": 0.0, + "step": 325 + }, + { + "epoch": 0.63, + "learning_rate": 1.608761429008721e-05, + "loss": 0.0, + "step": 326 + }, + { + "epoch": 0.63, + "learning_rate": 1.606285864263498e-05, + "loss": 0.0, + "step": 327 + }, + { + "epoch": 0.63, + "learning_rate": 1.6038044103254775e-05, + "loss": 0.0, + "step": 328 + }, + { + "epoch": 0.63, + "learning_rate": 1.601317091298406e-05, + "loss": 0.0, + "step": 329 + }, + { + "epoch": 0.63, + "learning_rate": 1.5988239313430004e-05, + "loss": 0.0, + "step": 330 + }, + { + "epoch": 0.64, + "learning_rate": 1.5963249546767144e-05, + "loss": 0.0, + "step": 331 + }, + { + "epoch": 0.64, + "learning_rate": 1.5938201855735017e-05, + "loss": 0.0, + "step": 332 + }, + { + "epoch": 0.64, + "learning_rate": 1.5913096483635827e-05, + "loss": 0.0, + "step": 333 + }, + { + "epoch": 0.64, + "learning_rate": 1.5887933674332048e-05, + "loss": 0.0, + "step": 334 + }, + { + "epoch": 0.64, + "learning_rate": 1.5862713672244092e-05, + "loss": 0.0, + "step": 335 + }, + { + "epoch": 0.65, + "learning_rate": 1.5837436722347902e-05, + "loss": 0.0, + "step": 336 + }, + { + "epoch": 0.65, + "learning_rate": 1.5812103070172592e-05, + "loss": 0.0, + "step": 337 + }, + { + "epoch": 0.65, + "learning_rate": 1.578671296179806e-05, + "loss": 0.0, + "step": 338 + }, + { + "epoch": 0.65, + "learning_rate": 1.5761266643852587e-05, + "loss": 0.0, + "step": 339 + }, + { + "epoch": 0.65, + "learning_rate": 1.573576436351046e-05, + "loss": 0.0, + "step": 340 + }, + { + "epoch": 0.66, + "learning_rate": 1.5710206368489555e-05, + "loss": 0.0, + "step": 341 + }, + { + "epoch": 0.66, + "learning_rate": 1.5684592907048925e-05, + "loss": 0.0, + "step": 342 + }, + { + "epoch": 0.66, + "learning_rate": 1.5658924227986415e-05, + "loss": 0.0, + "step": 343 + }, + { + "epoch": 0.66, + "learning_rate": 1.563320058063622e-05, + "loss": 0.0, + "step": 344 + }, + { + "epoch": 0.66, + "learning_rate": 1.560742221486648e-05, + "loss": 0.0, + "step": 345 + }, + { + "epoch": 0.67, + "learning_rate": 1.5581589381076843e-05, + "loss": 0.0, + "step": 346 + }, + { + "epoch": 0.67, + "learning_rate": 1.5555702330196024e-05, + "loss": 0.0, + "step": 347 + }, + { + "epoch": 0.67, + "learning_rate": 1.5529761313679396e-05, + "loss": 0.0, + "step": 348 + }, + { + "epoch": 0.67, + "learning_rate": 1.5503766583506522e-05, + "loss": 0.0, + "step": 349 + }, + { + "epoch": 0.67, + "learning_rate": 1.5477718392178716e-05, + "loss": 0.0, + "step": 350 + }, + { + "epoch": 0.68, + "learning_rate": 1.545161699271659e-05, + "loss": 0.0, + "step": 351 + }, + { + "epoch": 0.68, + "learning_rate": 1.5425462638657597e-05, + "loss": 0.0, + "step": 352 + }, + { + "epoch": 0.68, + "learning_rate": 1.5399255584053568e-05, + "loss": 0.0, + "step": 353 + }, + { + "epoch": 0.68, + "learning_rate": 1.5372996083468242e-05, + "loss": 0.0, + "step": 354 + }, + { + "epoch": 0.68, + "learning_rate": 1.5346684391974792e-05, + "loss": 0.0, + "step": 355 + }, + { + "epoch": 0.68, + "learning_rate": 1.5320320765153367e-05, + "loss": 0.0, + "step": 356 + }, + { + "epoch": 0.69, + "learning_rate": 1.529390545908857e-05, + "loss": 0.0, + "step": 357 + }, + { + "epoch": 0.69, + "learning_rate": 1.526743873036701e-05, + "loss": 0.0, + "step": 358 + }, + { + "epoch": 0.69, + "learning_rate": 1.5240920836074777e-05, + "loss": 0.0, + "step": 359 + }, + { + "epoch": 0.69, + "learning_rate": 1.5214352033794981e-05, + "loss": 0.0, + "step": 360 + }, + { + "epoch": 0.69, + "learning_rate": 1.5187732581605217e-05, + "loss": 0.0, + "step": 361 + }, + { + "epoch": 0.7, + "learning_rate": 1.5161062738075068e-05, + "loss": 0.0, + "step": 362 + }, + { + "epoch": 0.7, + "learning_rate": 1.5134342762263606e-05, + "loss": 0.0, + "step": 363 + }, + { + "epoch": 0.7, + "learning_rate": 1.5107572913716859e-05, + "loss": 0.0, + "step": 364 + }, + { + "epoch": 0.7, + "learning_rate": 1.5080753452465296e-05, + "loss": 0.0, + "step": 365 + }, + { + "epoch": 0.7, + "learning_rate": 1.505388463902131e-05, + "loss": 0.0, + "step": 366 + }, + { + "epoch": 0.71, + "learning_rate": 1.502696673437667e-05, + "loss": 0.0, + "step": 367 + }, + { + "epoch": 0.71, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0, + "step": 368 + }, + { + "epoch": 0.71, + "learning_rate": 1.4972984697834238e-05, + "loss": 0.0, + "step": 369 + }, + { + "epoch": 0.71, + "learning_rate": 1.4945921090294076e-05, + "loss": 0.0, + "step": 370 + }, + { + "epoch": 0.71, + "learning_rate": 1.4918809440263435e-05, + "loss": 0.0, + "step": 371 + }, + { + "epoch": 0.72, + "learning_rate": 1.4891650011092896e-05, + "loss": 0.0, + "step": 372 + }, + { + "epoch": 0.72, + "learning_rate": 1.486444306659714e-05, + "loss": 0.0, + "step": 373 + }, + { + "epoch": 0.72, + "learning_rate": 1.4837188871052399e-05, + "loss": 0.0, + "step": 374 + }, + { + "epoch": 0.72, + "learning_rate": 1.4809887689193878e-05, + "loss": 0.0, + "step": 375 + }, + { + "epoch": 0.72, + "learning_rate": 1.4782539786213184e-05, + "loss": 0.0, + "step": 376 + }, + { + "epoch": 0.72, + "learning_rate": 1.4755145427755755e-05, + "loss": 0.0, + "step": 377 + }, + { + "epoch": 0.73, + "learning_rate": 1.4727704879918272e-05, + "loss": 0.0, + "step": 378 + }, + { + "epoch": 0.73, + "learning_rate": 1.4700218409246087e-05, + "loss": 0.0, + "step": 379 + }, + { + "epoch": 0.73, + "learning_rate": 1.4672686282730622e-05, + "loss": 0.0, + "step": 380 + }, + { + "epoch": 0.73, + "learning_rate": 1.4645108767806778e-05, + "loss": 0.0, + "step": 381 + }, + { + "epoch": 0.73, + "learning_rate": 1.4617486132350343e-05, + "loss": 0.0, + "step": 382 + }, + { + "epoch": 0.74, + "learning_rate": 1.4589818644675378e-05, + "loss": 0.0, + "step": 383 + }, + { + "epoch": 0.74, + "learning_rate": 1.4562106573531632e-05, + "loss": 0.0, + "step": 384 + }, + { + "epoch": 0.74, + "learning_rate": 1.4534350188101905e-05, + "loss": 0.0, + "step": 385 + }, + { + "epoch": 0.74, + "learning_rate": 1.4506549757999456e-05, + "loss": 0.0, + "step": 386 + }, + { + "epoch": 0.74, + "learning_rate": 1.4478705553265363e-05, + "loss": 0.0, + "step": 387 + }, + { + "epoch": 0.75, + "learning_rate": 1.4450817844365924e-05, + "loss": 0.0, + "step": 388 + }, + { + "epoch": 0.75, + "learning_rate": 1.4422886902190014e-05, + "loss": 0.0, + "step": 389 + }, + { + "epoch": 0.75, + "learning_rate": 1.4394912998046451e-05, + "loss": 0.0, + "step": 390 + }, + { + "epoch": 0.75, + "learning_rate": 1.436689640366137e-05, + "loss": 0.0, + "step": 391 + }, + { + "epoch": 0.75, + "learning_rate": 1.4338837391175582e-05, + "loss": 0.0, + "step": 392 + }, + { + "epoch": 0.76, + "learning_rate": 1.4310736233141926e-05, + "loss": 0.0, + "step": 393 + }, + { + "epoch": 0.76, + "learning_rate": 1.4282593202522627e-05, + "loss": 0.0, + "step": 394 + }, + { + "epoch": 0.76, + "learning_rate": 1.4254408572686642e-05, + "loss": 0.0, + "step": 395 + }, + { + "epoch": 0.76, + "learning_rate": 1.4226182617406996e-05, + "loss": 0.0, + "step": 396 + }, + { + "epoch": 0.76, + "learning_rate": 1.4197915610858143e-05, + "loss": 0.0, + "step": 397 + }, + { + "epoch": 0.77, + "learning_rate": 1.4169607827613284e-05, + "loss": 0.0, + "step": 398 + }, + { + "epoch": 0.77, + "learning_rate": 1.4141259542641706e-05, + "loss": 0.0, + "step": 399 + }, + { + "epoch": 0.77, + "learning_rate": 1.4112871031306118e-05, + "loss": 0.0, + "step": 400 + }, + { + "epoch": 0.77, + "learning_rate": 1.4084442569359964e-05, + "loss": 0.0, + "step": 401 + }, + { + "epoch": 0.77, + "learning_rate": 1.4055974432944753e-05, + "loss": 0.0, + "step": 402 + }, + { + "epoch": 0.78, + "learning_rate": 1.4027466898587375e-05, + "loss": 0.0, + "step": 403 + }, + { + "epoch": 0.78, + "learning_rate": 1.3998920243197408e-05, + "loss": 0.0, + "step": 404 + }, + { + "epoch": 0.78, + "learning_rate": 1.3970334744064451e-05, + "loss": 0.0, + "step": 405 + }, + { + "epoch": 0.78, + "learning_rate": 1.3941710678855396e-05, + "loss": 0.0, + "step": 406 + }, + { + "epoch": 0.78, + "learning_rate": 1.391304832561175e-05, + "loss": 0.0, + "step": 407 + }, + { + "epoch": 0.78, + "learning_rate": 1.3884347962746949e-05, + "loss": 0.0, + "step": 408 + }, + { + "epoch": 0.79, + "learning_rate": 1.3855609869043618e-05, + "loss": 0.0, + "step": 409 + }, + { + "epoch": 0.79, + "learning_rate": 1.3826834323650899e-05, + "loss": 0.0, + "step": 410 + }, + { + "epoch": 0.79, + "learning_rate": 1.3798021606081713e-05, + "loss": 0.0, + "step": 411 + }, + { + "epoch": 0.79, + "learning_rate": 1.3769171996210053e-05, + "loss": 0.0, + "step": 412 + }, + { + "epoch": 0.79, + "learning_rate": 1.3740285774268282e-05, + "loss": 0.0, + "step": 413 + }, + { + "epoch": 0.8, + "learning_rate": 1.371136322084438e-05, + "loss": 0.0, + "step": 414 + }, + { + "epoch": 0.8, + "learning_rate": 1.3682404616879246e-05, + "loss": 0.0, + "step": 415 + }, + { + "epoch": 0.8, + "learning_rate": 1.3653410243663953e-05, + "loss": 0.0, + "step": 416 + }, + { + "epoch": 0.8, + "learning_rate": 1.3624380382837017e-05, + "loss": 0.0, + "step": 417 + }, + { + "epoch": 0.8, + "learning_rate": 1.3595315316381676e-05, + "loss": 0.0, + "step": 418 + }, + { + "epoch": 0.81, + "learning_rate": 1.3566215326623131e-05, + "loss": 0.0, + "step": 419 + }, + { + "epoch": 0.81, + "learning_rate": 1.3537080696225815e-05, + "loss": 0.0, + "step": 420 + }, + { + "epoch": 0.81, + "learning_rate": 1.3507911708190646e-05, + "loss": 0.0, + "step": 421 + }, + { + "epoch": 0.81, + "learning_rate": 1.3478708645852272e-05, + "loss": 0.0, + "step": 422 + }, + { + "epoch": 0.81, + "learning_rate": 1.3449471792876333e-05, + "loss": 0.0, + "step": 423 + }, + { + "epoch": 0.82, + "learning_rate": 1.342020143325669e-05, + "loss": 0.0, + "step": 424 + }, + { + "epoch": 0.82, + "learning_rate": 1.3390897851312667e-05, + "loss": 0.0, + "step": 425 + }, + { + "epoch": 0.82, + "learning_rate": 1.336156133168631e-05, + "loss": 0.0, + "step": 426 + }, + { + "epoch": 0.82, + "learning_rate": 1.3332192159339595e-05, + "loss": 0.0, + "step": 427 + }, + { + "epoch": 0.82, + "learning_rate": 1.3302790619551673e-05, + "loss": 0.0, + "step": 428 + }, + { + "epoch": 0.82, + "learning_rate": 1.3273356997916106e-05, + "loss": 0.0, + "step": 429 + }, + { + "epoch": 0.83, + "learning_rate": 1.3243891580338074e-05, + "loss": 0.0, + "step": 430 + }, + { + "epoch": 0.83, + "learning_rate": 1.3214394653031616e-05, + "loss": 0.0, + "step": 431 + }, + { + "epoch": 0.83, + "learning_rate": 1.3184866502516846e-05, + "loss": 0.0, + "step": 432 + }, + { + "epoch": 0.83, + "learning_rate": 1.3155307415617156e-05, + "loss": 0.0, + "step": 433 + }, + { + "epoch": 0.83, + "learning_rate": 1.3125717679456447e-05, + "loss": 0.0, + "step": 434 + }, + { + "epoch": 0.84, + "learning_rate": 1.309609758145633e-05, + "loss": 0.0, + "step": 435 + }, + { + "epoch": 0.84, + "learning_rate": 1.3066447409333345e-05, + "loss": 0.0, + "step": 436 + }, + { + "epoch": 0.84, + "learning_rate": 1.3036767451096148e-05, + "loss": 0.0, + "step": 437 + }, + { + "epoch": 0.84, + "learning_rate": 1.300705799504273e-05, + "loss": 0.0, + "step": 438 + }, + { + "epoch": 0.84, + "learning_rate": 1.2977319329757616e-05, + "loss": 0.0, + "step": 439 + }, + { + "epoch": 0.85, + "learning_rate": 1.2947551744109044e-05, + "loss": 0.0, + "step": 440 + }, + { + "epoch": 0.85, + "learning_rate": 1.2917755527246179e-05, + "loss": 0.0, + "step": 441 + }, + { + "epoch": 0.85, + "learning_rate": 1.28879309685963e-05, + "loss": 0.0, + "step": 442 + }, + { + "epoch": 0.85, + "learning_rate": 1.2858078357861979e-05, + "loss": 0.0, + "step": 443 + }, + { + "epoch": 0.85, + "learning_rate": 1.2828197985018276e-05, + "loss": 0.0, + "step": 444 + }, + { + "epoch": 0.86, + "learning_rate": 1.2798290140309924e-05, + "loss": 0.0, + "step": 445 + }, + { + "epoch": 0.86, + "learning_rate": 1.2768355114248493e-05, + "loss": 0.0, + "step": 446 + }, + { + "epoch": 0.86, + "learning_rate": 1.2738393197609602e-05, + "loss": 0.0, + "step": 447 + }, + { + "epoch": 0.86, + "learning_rate": 1.2708404681430054e-05, + "loss": 0.0, + "step": 448 + }, + { + "epoch": 0.86, + "learning_rate": 1.2678389857005033e-05, + "loss": 0.0, + "step": 449 + }, + { + "epoch": 0.87, + "learning_rate": 1.2648349015885272e-05, + "loss": 0.0, + "step": 450 + }, + { + "epoch": 0.87, + "learning_rate": 1.2618282449874221e-05, + "loss": 0.0, + "step": 451 + }, + { + "epoch": 0.87, + "learning_rate": 1.2588190451025209e-05, + "loss": 0.0, + "step": 452 + }, + { + "epoch": 0.87, + "learning_rate": 1.2558073311638604e-05, + "loss": 0.0, + "step": 453 + }, + { + "epoch": 0.87, + "learning_rate": 1.2527931324258975e-05, + "loss": 0.0, + "step": 454 + }, + { + "epoch": 0.88, + "learning_rate": 1.249776478167227e-05, + "loss": 0.0, + "step": 455 + }, + { + "epoch": 0.88, + "learning_rate": 1.2467573976902936e-05, + "loss": 0.0, + "step": 456 + }, + { + "epoch": 0.88, + "learning_rate": 1.2437359203211109e-05, + "loss": 0.0, + "step": 457 + }, + { + "epoch": 0.88, + "learning_rate": 1.2407120754089733e-05, + "loss": 0.0, + "step": 458 + }, + { + "epoch": 0.88, + "learning_rate": 1.2376858923261732e-05, + "loss": 0.0, + "step": 459 + }, + { + "epoch": 0.88, + "learning_rate": 1.2346574004677154e-05, + "loss": 0.0, + "step": 460 + }, + { + "epoch": 0.89, + "learning_rate": 1.2316266292510305e-05, + "loss": 0.0, + "step": 461 + }, + { + "epoch": 0.89, + "learning_rate": 1.2285936081156897e-05, + "loss": 0.0, + "step": 462 + }, + { + "epoch": 0.89, + "learning_rate": 1.2255583665231196e-05, + "loss": 0.0, + "step": 463 + }, + { + "epoch": 0.89, + "learning_rate": 1.2225209339563144e-05, + "loss": 0.0, + "step": 464 + }, + { + "epoch": 0.89, + "learning_rate": 1.2194813399195518e-05, + "loss": 0.0, + "step": 465 + }, + { + "epoch": 0.9, + "learning_rate": 1.2164396139381029e-05, + "loss": 0.0, + "step": 466 + }, + { + "epoch": 0.9, + "learning_rate": 1.2133957855579501e-05, + "loss": 0.0, + "step": 467 + }, + { + "epoch": 0.9, + "learning_rate": 1.210349884345496e-05, + "loss": 0.0, + "step": 468 + }, + { + "epoch": 0.9, + "learning_rate": 1.2073019398872778e-05, + "loss": 0.0, + "step": 469 + }, + { + "epoch": 0.9, + "learning_rate": 1.2042519817896805e-05, + "loss": 0.0, + "step": 470 + }, + { + "epoch": 0.91, + "learning_rate": 1.2012000396786485e-05, + "loss": 0.0, + "step": 471 + }, + { + "epoch": 0.91, + "learning_rate": 1.1981461431993978e-05, + "loss": 0.0, + "step": 472 + }, + { + "epoch": 0.91, + "learning_rate": 1.1950903220161286e-05, + "loss": 0.0, + "step": 473 + }, + { + "epoch": 0.91, + "learning_rate": 1.1920326058117364e-05, + "loss": 0.0, + "step": 474 + }, + { + "epoch": 0.91, + "learning_rate": 1.1889730242875243e-05, + "loss": 0.0, + "step": 475 + }, + { + "epoch": 0.92, + "learning_rate": 1.1859116071629148e-05, + "loss": 0.0, + "step": 476 + }, + { + "epoch": 0.92, + "learning_rate": 1.1828483841751597e-05, + "loss": 0.0, + "step": 477 + }, + { + "epoch": 0.92, + "learning_rate": 1.1797833850790527e-05, + "loss": 0.0, + "step": 478 + }, + { + "epoch": 0.92, + "learning_rate": 1.1767166396466404e-05, + "loss": 0.0, + "step": 479 + }, + { + "epoch": 0.92, + "learning_rate": 1.1736481776669307e-05, + "loss": 0.0, + "step": 480 + }, + { + "epoch": 0.93, + "learning_rate": 1.1705780289456069e-05, + "loss": 0.0, + "step": 481 + }, + { + "epoch": 0.93, + "learning_rate": 1.1675062233047365e-05, + "loss": 0.0, + "step": 482 + }, + { + "epoch": 0.93, + "learning_rate": 1.1644327905824808e-05, + "loss": 0.0, + "step": 483 + }, + { + "epoch": 0.93, + "learning_rate": 1.1613577606328068e-05, + "loss": 0.0, + "step": 484 + }, + { + "epoch": 0.93, + "learning_rate": 1.1582811633251949e-05, + "loss": 0.0, + "step": 485 + }, + { + "epoch": 0.93, + "learning_rate": 1.1552030285443516e-05, + "loss": 0.0, + "step": 486 + }, + { + "epoch": 0.94, + "learning_rate": 1.1521233861899168e-05, + "loss": 0.0, + "step": 487 + }, + { + "epoch": 0.94, + "learning_rate": 1.1490422661761744e-05, + "loss": 0.0, + "step": 488 + }, + { + "epoch": 0.94, + "learning_rate": 1.1459596984317622e-05, + "loss": 0.0, + "step": 489 + }, + { + "epoch": 0.94, + "learning_rate": 1.1428757128993801e-05, + "loss": 0.0, + "step": 490 + }, + { + "epoch": 0.94, + "learning_rate": 1.1397903395354996e-05, + "loss": 0.0, + "step": 491 + }, + { + "epoch": 0.95, + "learning_rate": 1.1367036083100735e-05, + "loss": 0.0, + "step": 492 + }, + { + "epoch": 0.95, + "learning_rate": 1.1336155492062439e-05, + "loss": 0.0, + "step": 493 + }, + { + "epoch": 0.95, + "learning_rate": 1.130526192220052e-05, + "loss": 0.0, + "step": 494 + }, + { + "epoch": 0.95, + "learning_rate": 1.1274355673601446e-05, + "loss": 0.0, + "step": 495 + }, + { + "epoch": 0.95, + "learning_rate": 1.1243437046474854e-05, + "loss": 0.0, + "step": 496 + }, + { + "epoch": 0.96, + "learning_rate": 1.1212506341150615e-05, + "loss": 0.0, + "step": 497 + }, + { + "epoch": 0.96, + "learning_rate": 1.118156385807593e-05, + "loss": 0.0, + "step": 498 + }, + { + "epoch": 0.96, + "learning_rate": 1.1150609897812387e-05, + "loss": 0.0, + "step": 499 + }, + { + "epoch": 0.96, + "learning_rate": 1.1119644761033079e-05, + "loss": 0.0, + "step": 500 + }, + { + "epoch": 0.96, + "learning_rate": 1.1088668748519646e-05, + "loss": 0.0, + "step": 501 + }, + { + "epoch": 0.97, + "learning_rate": 1.105768216115938e-05, + "loss": 0.0, + "step": 502 + }, + { + "epoch": 0.97, + "learning_rate": 1.1026685299942286e-05, + "loss": 0.0, + "step": 503 + }, + { + "epoch": 0.97, + "learning_rate": 1.0995678465958168e-05, + "loss": 0.0, + "step": 504 + }, + { + "epoch": 0.97, + "learning_rate": 1.0964661960393703e-05, + "loss": 0.0, + "step": 505 + }, + { + "epoch": 0.97, + "learning_rate": 1.0933636084529507e-05, + "loss": 0.0, + "step": 506 + }, + { + "epoch": 0.97, + "learning_rate": 1.0902601139737225e-05, + "loss": 0.0, + "step": 507 + }, + { + "epoch": 0.98, + "learning_rate": 1.0871557427476585e-05, + "loss": 0.0, + "step": 508 + }, + { + "epoch": 0.98, + "learning_rate": 1.0840505249292477e-05, + "loss": 0.0, + "step": 509 + }, + { + "epoch": 0.98, + "learning_rate": 1.0809444906812034e-05, + "loss": 0.0, + "step": 510 + }, + { + "epoch": 0.98, + "learning_rate": 1.0778376701741688e-05, + "loss": 0.0, + "step": 511 + }, + { + "epoch": 0.98, + "learning_rate": 1.0747300935864245e-05, + "loss": 0.0, + "step": 512 + }, + { + "epoch": 0.99, + "learning_rate": 1.0716217911035952e-05, + "loss": 0.0, + "step": 513 + }, + { + "epoch": 0.99, + "learning_rate": 1.0685127929183567e-05, + "loss": 0.0, + "step": 514 + }, + { + "epoch": 0.99, + "learning_rate": 1.0654031292301432e-05, + "loss": 0.0, + "step": 515 + }, + { + "epoch": 0.99, + "learning_rate": 1.0622928302448523e-05, + "loss": 0.0, + "step": 516 + }, + { + "epoch": 0.99, + "learning_rate": 1.0591819261745528e-05, + "loss": 0.0, + "step": 517 + }, + { + "epoch": 1.0, + "learning_rate": 1.0560704472371919e-05, + "loss": 0.0, + "step": 518 + }, + { + "epoch": 1.0, + "learning_rate": 1.0529584236562995e-05, + "loss": 0.0, + "step": 519 + }, + { + "epoch": 1.0, + "learning_rate": 1.0498458856606972e-05, + "loss": 0.0, + "step": 520 + }, + { + "epoch": 1.0, + "learning_rate": 1.0467328634842024e-05, + "loss": 0.0, + "step": 521 + }, + { + "epoch": 1.0, + "learning_rate": 1.0436193873653362e-05, + "loss": 0.0, + "step": 522 + }, + { + "epoch": 1.01, + "learning_rate": 1.0405054875470287e-05, + "loss": 0.0, + "step": 523 + }, + { + "epoch": 1.01, + "learning_rate": 1.037391194276326e-05, + "loss": 0.0, + "step": 524 + }, + { + "epoch": 1.01, + "learning_rate": 1.0342765378040953e-05, + "loss": 0.0, + "step": 525 + }, + { + "epoch": 1.01, + "learning_rate": 1.0311615483847333e-05, + "loss": 0.0, + "step": 526 + }, + { + "epoch": 1.01, + "learning_rate": 1.028046256275869e-05, + "loss": 0.0, + "step": 527 + }, + { + "epoch": 1.02, + "learning_rate": 1.0249306917380731e-05, + "loss": 0.0, + "step": 528 + }, + { + "epoch": 1.02, + "learning_rate": 1.0218148850345613e-05, + "loss": 0.0, + "step": 529 + }, + { + "epoch": 1.02, + "learning_rate": 1.0186988664309023e-05, + "loss": 0.0, + "step": 530 + }, + { + "epoch": 1.02, + "learning_rate": 1.0155826661947232e-05, + "loss": 0.0, + "step": 531 + }, + { + "epoch": 1.02, + "learning_rate": 1.0124663145954152e-05, + "loss": 0.0, + "step": 532 + }, + { + "epoch": 1.02, + "learning_rate": 1.0093498419038394e-05, + "loss": 0.0, + "step": 533 + }, + { + "epoch": 1.03, + "learning_rate": 1.0062332783920337e-05, + "loss": 0.0, + "step": 534 + }, + { + "epoch": 1.03, + "learning_rate": 1.0031166543329179e-05, + "loss": 0.0, + "step": 535 + }, + { + "epoch": 1.03, + "learning_rate": 1e-05, + "loss": 0.0, + "step": 536 + }, + { + "epoch": 1.03, + "learning_rate": 9.968833456670824e-06, + "loss": 0.0, + "step": 537 + }, + { + "epoch": 1.03, + "learning_rate": 9.937667216079665e-06, + "loss": 0.0, + "step": 538 + }, + { + "epoch": 1.04, + "learning_rate": 9.90650158096161e-06, + "loss": 0.0, + "step": 539 + }, + { + "epoch": 1.04, + "learning_rate": 9.87533685404585e-06, + "loss": 0.0, + "step": 540 + }, + { + "epoch": 1.04, + "learning_rate": 9.844173338052771e-06, + "loss": 0.0, + "step": 541 + }, + { + "epoch": 1.04, + "learning_rate": 9.81301133569098e-06, + "loss": 0.0, + "step": 542 + }, + { + "epoch": 1.04, + "learning_rate": 9.78185114965439e-06, + "loss": 0.0, + "step": 543 + }, + { + "epoch": 1.05, + "learning_rate": 9.750693082619274e-06, + "loss": 0.0, + "step": 544 + }, + { + "epoch": 1.05, + "learning_rate": 9.719537437241311e-06, + "loss": 0.0, + "step": 545 + }, + { + "epoch": 1.05, + "learning_rate": 9.68838451615267e-06, + "loss": 0.0, + "step": 546 + }, + { + "epoch": 1.05, + "learning_rate": 9.65723462195905e-06, + "loss": 0.0, + "step": 547 + }, + { + "epoch": 1.05, + "learning_rate": 9.626088057236745e-06, + "loss": 0.0, + "step": 548 + }, + { + "epoch": 1.06, + "learning_rate": 9.594945124529718e-06, + "loss": 0.0, + "step": 549 + }, + { + "epoch": 1.06, + "learning_rate": 9.563806126346643e-06, + "loss": 0.0, + "step": 550 + }, + { + "epoch": 1.06, + "learning_rate": 9.532671365157979e-06, + "loss": 0.0, + "step": 551 + }, + { + "epoch": 1.06, + "learning_rate": 9.501541143393028e-06, + "loss": 0.0, + "step": 552 + }, + { + "epoch": 1.06, + "learning_rate": 9.470415763437003e-06, + "loss": 0.0, + "step": 553 + }, + { + "epoch": 1.07, + "learning_rate": 9.439295527628083e-06, + "loss": 0.0, + "step": 554 + }, + { + "epoch": 1.07, + "learning_rate": 9.408180738254472e-06, + "loss": 0.0, + "step": 555 + }, + { + "epoch": 1.07, + "learning_rate": 9.377071697551479e-06, + "loss": 0.0, + "step": 556 + }, + { + "epoch": 1.07, + "learning_rate": 9.34596870769857e-06, + "loss": 0.0, + "step": 557 + }, + { + "epoch": 1.07, + "learning_rate": 9.314872070816435e-06, + "loss": 0.0, + "step": 558 + }, + { + "epoch": 1.07, + "learning_rate": 9.28378208896405e-06, + "loss": 0.0, + "step": 559 + }, + { + "epoch": 1.08, + "learning_rate": 9.252699064135759e-06, + "loss": 0.0, + "step": 560 + }, + { + "epoch": 1.08, + "learning_rate": 9.221623298258315e-06, + "loss": 0.0, + "step": 561 + }, + { + "epoch": 1.08, + "learning_rate": 9.190555093187968e-06, + "loss": 0.0, + "step": 562 + }, + { + "epoch": 1.08, + "learning_rate": 9.159494750707527e-06, + "loss": 0.0, + "step": 563 + }, + { + "epoch": 1.08, + "learning_rate": 9.128442572523418e-06, + "loss": 0.0, + "step": 564 + }, + { + "epoch": 1.09, + "learning_rate": 9.097398860262777e-06, + "loss": 0.0, + "step": 565 + }, + { + "epoch": 1.09, + "learning_rate": 9.066363915470494e-06, + "loss": 0.0, + "step": 566 + }, + { + "epoch": 1.09, + "learning_rate": 9.0353380396063e-06, + "loss": 0.0, + "step": 567 + }, + { + "epoch": 1.09, + "learning_rate": 9.004321534041836e-06, + "loss": 0.0, + "step": 568 + }, + { + "epoch": 1.09, + "learning_rate": 8.973314700057717e-06, + "loss": 0.0, + "step": 569 + }, + { + "epoch": 1.1, + "learning_rate": 8.942317838840625e-06, + "loss": 0.0, + "step": 570 + }, + { + "epoch": 1.1, + "learning_rate": 8.911331251480357e-06, + "loss": 0.0, + "step": 571 + }, + { + "epoch": 1.1, + "learning_rate": 8.880355238966923e-06, + "loss": 0.0, + "step": 572 + }, + { + "epoch": 1.1, + "learning_rate": 8.849390102187615e-06, + "loss": 0.0, + "step": 573 + }, + { + "epoch": 1.1, + "learning_rate": 8.818436141924072e-06, + "loss": 0.0, + "step": 574 + }, + { + "epoch": 1.11, + "learning_rate": 8.787493658849387e-06, + "loss": 0.0, + "step": 575 + }, + { + "epoch": 1.11, + "learning_rate": 8.756562953525151e-06, + "loss": 0.0, + "step": 576 + }, + { + "epoch": 1.11, + "learning_rate": 8.72564432639856e-06, + "loss": 0.0, + "step": 577 + }, + { + "epoch": 1.11, + "learning_rate": 8.694738077799487e-06, + "loss": 0.0, + "step": 578 + }, + { + "epoch": 1.11, + "learning_rate": 8.663844507937563e-06, + "loss": 0.0, + "step": 579 + }, + { + "epoch": 1.12, + "learning_rate": 8.632963916899268e-06, + "loss": 0.0, + "step": 580 + }, + { + "epoch": 1.12, + "learning_rate": 8.602096604645009e-06, + "loss": 0.0, + "step": 581 + }, + { + "epoch": 1.12, + "learning_rate": 8.571242871006202e-06, + "loss": 0.0, + "step": 582 + }, + { + "epoch": 1.12, + "learning_rate": 8.540403015682382e-06, + "loss": 0.0, + "step": 583 + }, + { + "epoch": 1.12, + "learning_rate": 8.509577338238255e-06, + "loss": 0.0, + "step": 584 + }, + { + "epoch": 1.12, + "learning_rate": 8.478766138100834e-06, + "loss": 0.0, + "step": 585 + }, + { + "epoch": 1.13, + "learning_rate": 8.447969714556484e-06, + "loss": 0.0, + "step": 586 + }, + { + "epoch": 1.13, + "learning_rate": 8.417188366748051e-06, + "loss": 0.0, + "step": 587 + }, + { + "epoch": 1.13, + "learning_rate": 8.386422393671934e-06, + "loss": 0.0, + "step": 588 + }, + { + "epoch": 1.13, + "learning_rate": 8.355672094175192e-06, + "loss": 0.0, + "step": 589 + }, + { + "epoch": 1.13, + "learning_rate": 8.324937766952638e-06, + "loss": 0.0, + "step": 590 + }, + { + "epoch": 1.14, + "learning_rate": 8.294219710543931e-06, + "loss": 0.0, + "step": 591 + }, + { + "epoch": 1.14, + "learning_rate": 8.263518223330698e-06, + "loss": 0.0, + "step": 592 + }, + { + "epoch": 1.14, + "learning_rate": 8.232833603533601e-06, + "loss": 0.0, + "step": 593 + }, + { + "epoch": 1.14, + "learning_rate": 8.202166149209475e-06, + "loss": 0.0, + "step": 594 + }, + { + "epoch": 1.14, + "learning_rate": 8.171516158248406e-06, + "loss": 0.0, + "step": 595 + }, + { + "epoch": 1.15, + "learning_rate": 8.140883928370855e-06, + "loss": 0.0, + "step": 596 + }, + { + "epoch": 1.15, + "learning_rate": 8.11026975712476e-06, + "loss": 0.0, + "step": 597 + }, + { + "epoch": 1.15, + "learning_rate": 8.079673941882639e-06, + "loss": 0.0, + "step": 598 + }, + { + "epoch": 1.15, + "learning_rate": 8.04909677983872e-06, + "loss": 0.0, + "step": 599 + }, + { + "epoch": 1.15, + "learning_rate": 8.018538568006027e-06, + "loss": 0.0, + "step": 600 + } + ], + "logging_steps": 1.0, + "max_steps": 1040, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 100, + "total_flos": 2.9934895019065344e+17, + "train_batch_size": 16, + "trial_name": null, + "trial_params": null +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/training_args.bin b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..2ca4d892afdd453b26723a9aa94e432cb44cc953 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:63da3a2d0bf1dde543b68e123590fcd7c42f45ec7eb68e86c6eadd439321f902 +size 6264 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/zero_to_fp32.py b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..c98caae31534368be22b67fc4ae906836c992a8d --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-600/zero_to_fp32.py @@ -0,0 +1,587 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: python zero_to_fp32.py . pytorch_model.bin + +import argparse +import torch +import glob +import math +import os +import re +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + + total_files = len(files) + state_dicts = [] + for f in files: + state_dict = torch.load(f, map_location=device) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + if zero_stage <= 2: + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + elif zero_stage == 3: + # if there is more than one param group, there will be multiple flattened tensors - one + # flattened tensor per group - for simplicity merge them into a single tensor + # + # XXX: could make the script more memory efficient for when there are multiple groups - it + # will require matching the sub-lists of param_shapes for each param group flattened tensor + + fp32_flat_groups = [ + torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) + ] + + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = fp32_flat_groups[0].numel() * world_size + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + for name, shape in param_shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # XXX: memory usage doubles here + state_dict[name] = torch.cat( + tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), + 0).narrow(0, 0, unpartitioned_numel).view(shape) + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + + Returns: + - pytorch ``state_dict`` + + Note: this approach may not work if your application doesn't have sufficient free CPU memory and + you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + """ + + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + print(f"Saving fp32 state dict to {output_file}") + torch.save(state_dict, output_file) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument( + "output_file", + type=str, + help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag) diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/config.json new file mode 100644 index 0000000000000000000000000000000000000000..44e6d4e17930a42d0aa68dcd3790bd5f32ba4ec4 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/config.json @@ -0,0 +1,73 @@ +{ + "_name_or_path": "../pretrained-models/llava-v1.6-mistral-7b", + "architectures": [ + "LlavaLlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 1, + "eos_token_id": 2, + "freeze_mm_mlp_adapter": false, + "freeze_mm_vision_resampler": false, + "hidden_act": "silu", + "hidden_size": 4096, + "image_aspect_ratio": "pad", + "image_crop_resolution": 224, + "image_grid_pinpoints": [ + [ + 336, + 672 + ], + [ + 672, + 336 + ], + [ + 672, + 672 + ], + [ + 1008, + 336 + ], + [ + 336, + 1008 + ] + ], + "image_split_resolution": 224, + "initializer_range": 0.02, + "intermediate_size": 14336, + "max_position_embeddings": 32768, + "mm_hidden_size": 1024, + "mm_patch_merge_type": "flat", + "mm_projector_lr": null, + "mm_projector_type": "mlp2x_gelu", + "mm_resampler_type": null, + "mm_use_im_patch_token": false, + "mm_use_im_start_end": false, + "mm_vision_select_feature": "patch", + "mm_vision_select_layer": -2, + "mm_vision_tower": "openai/clip-vit-large-patch14-336", + "mm_vision_tower_lr": 2e-06, + "model_type": "llava_llama", + "num_attention_heads": 32, + "num_hidden_layers": 32, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": null, + "rope_theta": 1000000.0, + "sliding_window": null, + "tie_word_embeddings": false, + "tokenizer_model_max_length": 2048, + "tokenizer_padding_side": "right", + "torch_dtype": "bfloat16", + "transformers_version": "4.37.2", + "tune_mm_mlp_adapter": false, + "tune_mm_vision_resampler": false, + "unfreeze_mm_vision_tower": true, + "use_cache": false, + "use_mm_proj": true, + "vocab_size": 32000 +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/generation_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..69b7806611a4865cd48c3e991dbd7d8312e0c5d3 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/generation_config.json @@ -0,0 +1,6 @@ +{ + "_from_model_config": true, + "bos_token_id": 1, + "eos_token_id": 2, + "transformers_version": "4.37.2" +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/latest b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/latest new file mode 100644 index 0000000000000000000000000000000000000000..a0f3e526aa9af2ac647b278f006bb9616843c5d6 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/latest @@ -0,0 +1 @@ +global_step700 \ No newline at end of file diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/model.safetensors.index.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..927da5be7e6e3ec29d3a967a09ba6a421d7a2191 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/model.safetensors.index.json @@ -0,0 +1,694 @@ +{ + "metadata": { + "total_size": 15132446720 + }, + "weight_map": { + "lm_head.weight": "model-00004-of-00004.safetensors", + "model.embed_tokens.weight": "model-00001-of-00004.safetensors", + "model.image_newline": "model-00001-of-00004.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.mm_projector.0.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.0.weight": "model-00003-of-00004.safetensors", + "model.mm_projector.2.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.2.weight": "model-00003-of-00004.safetensors", + "model.norm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.class_embedding": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.weight": "model-00003-of-00004.safetensors" + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_0.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..b346349ce12dd5a17d4b91ed2a5722bb52550950 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ad8a35afd8967cbb748405387e44426e43ad127028e826eddc9b67d2ca873c85 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_1.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..68f3c6994456cb8d0592a5375d99503c8924b1c4 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f338ce80d7c441076bfc8c53b84067a0181f5a14e80c13d5acb8150b659f4d73 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_2.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_2.pth new file mode 100644 index 0000000000000000000000000000000000000000..be044f6ceeed587d30e80c2f72d5aa19fdc9947b --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_2.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c9fbc9fa428939be10b46779f0eb5cd833e0da426b1cbdee77b3a55b6952235b +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_3.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_3.pth new file mode 100644 index 0000000000000000000000000000000000000000..fc825249656a9b858782542bd3f4386250f1dfe0 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_3.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ac55dba0b79d5fa4699d239da2f966d52040d576d31234ac8d4632e6956481bc +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_4.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_4.pth new file mode 100644 index 0000000000000000000000000000000000000000..d30f52a44be563c152ae09db6ae934da6da0d3ed --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_4.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:af2d0c015100768ffa23faf3b6c2d54ea89eb045603e30e55cd211e06ff34972 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_5.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_5.pth new file mode 100644 index 0000000000000000000000000000000000000000..c8715d27ab23ae545d58039cf949cc44ecc1da5e --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_5.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c60a1b40608e34bc801c8231f97b81c53b5290dfaed1b9cd0ccbeca29574a991 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_6.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_6.pth new file mode 100644 index 0000000000000000000000000000000000000000..1ed791b6ef76eadf0b0c55a5733411771e2ae027 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_6.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3ad6a142a403eb9aafc4a3a9a856bca648fe31fd22d796867baca31fb13656aa +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_7.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_7.pth new file mode 100644 index 0000000000000000000000000000000000000000..800c3bbbc5edf7db01a8316069d439c5fb8d8c30 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/rng_state_7.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:38bc23a138cc800b22881742c0f3f9a71731a9a7111c6058a0077e6274d21773 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/scheduler.pt b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..f4f219b467c7f86dc30578d432dc929a974130dd --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f67660f58d8561b9a3c49bde4665e923c52d9ef702ce56c7a14933d136d90092 +size 1064 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/special_tokens_map.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..14761dcf1466dc232bd41de9c21d4c617b15755e --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/special_tokens_map.json @@ -0,0 +1,24 @@ +{ + "bos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": "", + "unk_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/tokenizer.model b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/tokenizer.model new file mode 100644 index 0000000000000000000000000000000000000000..8b443ef19c2a19acc3ac64fb9c3db4a72921dff6 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/tokenizer.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055 +size 493443 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/tokenizer_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..23dcf70e8cfc9b16310b6ff3dc98fdbc5adc11f8 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/tokenizer_config.json @@ -0,0 +1,44 @@ +{ + "add_bos_token": true, + "add_eos_token": false, + "added_tokens_decoder": { + "0": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "1": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "2": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + } + }, + "additional_special_tokens": [], + "bos_token": "", + "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", + "clean_up_tokenization_spaces": false, + "eos_token": "", + "legacy": true, + "model_max_length": 2048, + "pad_token": "", + "padding_side": "right", + "sp_model_kwargs": {}, + "spaces_between_special_tokens": false, + "tokenizer_class": "LlamaTokenizer", + "unk_token": "", + "use_default_system_prompt": false +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/trainer_state.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..23845b857f7cc28742a1f65ae0af8a21026642fd --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/trainer_state.json @@ -0,0 +1,4221 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.3461538461538463, + "eval_steps": 500, + "global_step": 700, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 6.25e-07, + "loss": 3.7473, + "step": 1 + }, + { + "epoch": 0.0, + "learning_rate": 1.25e-06, + "loss": 0.0, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 1.8750000000000003e-06, + "loss": 0.0, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 2.5e-06, + "loss": 0.0, + "step": 4 + }, + { + "epoch": 0.01, + "learning_rate": 3.125e-06, + "loss": 0.0, + "step": 5 + }, + { + "epoch": 0.01, + "learning_rate": 3.7500000000000005e-06, + "loss": 0.0, + "step": 6 + }, + { + "epoch": 0.01, + "learning_rate": 4.3750000000000005e-06, + "loss": 0.0, + "step": 7 + }, + { + "epoch": 0.02, + "learning_rate": 5e-06, + "loss": 0.0, + "step": 8 + }, + { + "epoch": 0.02, + "learning_rate": 5.625e-06, + "loss": 0.0, + "step": 9 + }, + { + "epoch": 0.02, + "learning_rate": 6.25e-06, + "loss": 0.0, + "step": 10 + }, + { + "epoch": 0.02, + "learning_rate": 6.875e-06, + "loss": 0.0, + "step": 11 + }, + { + "epoch": 0.02, + "learning_rate": 7.500000000000001e-06, + "loss": 0.0, + "step": 12 + }, + { + "epoch": 0.03, + "learning_rate": 8.125000000000001e-06, + "loss": 0.0, + "step": 13 + }, + { + "epoch": 0.03, + "learning_rate": 8.750000000000001e-06, + "loss": 0.0, + "step": 14 + }, + { + "epoch": 0.03, + "learning_rate": 9.375000000000001e-06, + "loss": 0.0, + "step": 15 + }, + { + "epoch": 0.03, + "learning_rate": 1e-05, + "loss": 0.0, + "step": 16 + }, + { + "epoch": 0.03, + "learning_rate": 1.0625e-05, + "loss": 0.0, + "step": 17 + }, + { + "epoch": 0.03, + "learning_rate": 1.125e-05, + "loss": 0.0, + "step": 18 + }, + { + "epoch": 0.04, + "learning_rate": 1.1875e-05, + "loss": 0.0, + "step": 19 + }, + { + "epoch": 0.04, + "learning_rate": 1.25e-05, + "loss": 0.0, + "step": 20 + }, + { + "epoch": 0.04, + "learning_rate": 1.3125e-05, + "loss": 0.0, + "step": 21 + }, + { + "epoch": 0.04, + "learning_rate": 1.375e-05, + "loss": 0.0, + "step": 22 + }, + { + "epoch": 0.04, + "learning_rate": 1.4375e-05, + "loss": 0.0, + "step": 23 + }, + { + "epoch": 0.05, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0, + "step": 24 + }, + { + "epoch": 0.05, + "learning_rate": 1.5625e-05, + "loss": 0.0, + "step": 25 + }, + { + "epoch": 0.05, + "learning_rate": 1.6250000000000002e-05, + "loss": 0.0, + "step": 26 + }, + { + "epoch": 0.05, + "learning_rate": 1.6875e-05, + "loss": 0.0, + "step": 27 + }, + { + "epoch": 0.05, + "learning_rate": 1.7500000000000002e-05, + "loss": 0.0, + "step": 28 + }, + { + "epoch": 0.06, + "learning_rate": 1.8125e-05, + "loss": 0.0, + "step": 29 + }, + { + "epoch": 0.06, + "learning_rate": 1.8750000000000002e-05, + "loss": 0.0, + "step": 30 + }, + { + "epoch": 0.06, + "learning_rate": 1.9375e-05, + "loss": 0.0, + "step": 31 + }, + { + "epoch": 0.06, + "learning_rate": 2e-05, + "loss": 0.0, + "step": 32 + }, + { + "epoch": 0.06, + "learning_rate": 1.9999951432210905e-05, + "loss": 0.0, + "step": 33 + }, + { + "epoch": 0.07, + "learning_rate": 1.9999805729315383e-05, + "loss": 0.0, + "step": 34 + }, + { + "epoch": 0.07, + "learning_rate": 1.999956289272873e-05, + "loss": 0.0, + "step": 35 + }, + { + "epoch": 0.07, + "learning_rate": 1.999922292480975e-05, + "loss": 0.0, + "step": 36 + }, + { + "epoch": 0.07, + "learning_rate": 1.9998785828860744e-05, + "loss": 0.0, + "step": 37 + }, + { + "epoch": 0.07, + "learning_rate": 1.9998251609127465e-05, + "loss": 0.0, + "step": 38 + }, + { + "epoch": 0.07, + "learning_rate": 1.999762027079909e-05, + "loss": 0.0, + "step": 39 + }, + { + "epoch": 0.08, + "learning_rate": 1.9996891820008165e-05, + "loss": 0.0, + "step": 40 + }, + { + "epoch": 0.08, + "learning_rate": 1.9996066263830533e-05, + "loss": 0.0, + "step": 41 + }, + { + "epoch": 0.08, + "learning_rate": 1.9995143610285275e-05, + "loss": 0.0, + "step": 42 + }, + { + "epoch": 0.08, + "learning_rate": 1.9994123868334655e-05, + "loss": 0.0, + "step": 43 + }, + { + "epoch": 0.08, + "learning_rate": 1.9993007047883988e-05, + "loss": 0.0, + "step": 44 + }, + { + "epoch": 0.09, + "learning_rate": 1.999179315978157e-05, + "loss": 0.0, + "step": 45 + }, + { + "epoch": 0.09, + "learning_rate": 1.999048221581858e-05, + "loss": 0.0, + "step": 46 + }, + { + "epoch": 0.09, + "learning_rate": 1.9989074228728942e-05, + "loss": 0.0, + "step": 47 + }, + { + "epoch": 0.09, + "learning_rate": 1.9987569212189224e-05, + "loss": 0.0, + "step": 48 + }, + { + "epoch": 0.09, + "learning_rate": 1.9985967180818493e-05, + "loss": 0.0, + "step": 49 + }, + { + "epoch": 0.1, + "learning_rate": 1.998426815017817e-05, + "loss": 0.0, + "step": 50 + }, + { + "epoch": 0.1, + "learning_rate": 1.998247213677188e-05, + "loss": 0.0, + "step": 51 + }, + { + "epoch": 0.1, + "learning_rate": 1.9980579158045322e-05, + "loss": 0.0, + "step": 52 + }, + { + "epoch": 0.1, + "learning_rate": 1.9978589232386036e-05, + "loss": 0.0, + "step": 53 + }, + { + "epoch": 0.1, + "learning_rate": 1.997650237912329e-05, + "loss": 0.0, + "step": 54 + }, + { + "epoch": 0.11, + "learning_rate": 1.997431861852785e-05, + "loss": 0.0, + "step": 55 + }, + { + "epoch": 0.11, + "learning_rate": 1.9972037971811802e-05, + "loss": 0.0, + "step": 56 + }, + { + "epoch": 0.11, + "learning_rate": 1.996966046112834e-05, + "loss": 0.0, + "step": 57 + }, + { + "epoch": 0.11, + "learning_rate": 1.996718610957155e-05, + "loss": 0.0, + "step": 58 + }, + { + "epoch": 0.11, + "learning_rate": 1.9964614941176194e-05, + "loss": 0.0, + "step": 59 + }, + { + "epoch": 0.12, + "learning_rate": 1.9961946980917457e-05, + "loss": 0.0, + "step": 60 + }, + { + "epoch": 0.12, + "learning_rate": 1.995918225471073e-05, + "loss": 0.0, + "step": 61 + }, + { + "epoch": 0.12, + "learning_rate": 1.9956320789411338e-05, + "loss": 0.0, + "step": 62 + }, + { + "epoch": 0.12, + "learning_rate": 1.9953362612814294e-05, + "loss": 0.0, + "step": 63 + }, + { + "epoch": 0.12, + "learning_rate": 1.9950307753654016e-05, + "loss": 0.0, + "step": 64 + }, + { + "epoch": 0.12, + "learning_rate": 1.994715624160405e-05, + "loss": 0.0, + "step": 65 + }, + { + "epoch": 0.13, + "learning_rate": 1.99439081072768e-05, + "loss": 0.0, + "step": 66 + }, + { + "epoch": 0.13, + "learning_rate": 1.9940563382223196e-05, + "loss": 0.0, + "step": 67 + }, + { + "epoch": 0.13, + "learning_rate": 1.9937122098932428e-05, + "loss": 0.0, + "step": 68 + }, + { + "epoch": 0.13, + "learning_rate": 1.9933584290831593e-05, + "loss": 0.0, + "step": 69 + }, + { + "epoch": 0.13, + "learning_rate": 1.9929949992285397e-05, + "loss": 0.0, + "step": 70 + }, + { + "epoch": 0.14, + "learning_rate": 1.992621923859581e-05, + "loss": 0.0, + "step": 71 + }, + { + "epoch": 0.14, + "learning_rate": 1.9922392066001724e-05, + "loss": 0.0, + "step": 72 + }, + { + "epoch": 0.14, + "learning_rate": 1.99184685116786e-05, + "loss": 0.0, + "step": 73 + }, + { + "epoch": 0.14, + "learning_rate": 1.9914448613738107e-05, + "loss": 0.0, + "step": 74 + }, + { + "epoch": 0.14, + "learning_rate": 1.991033241122776e-05, + "loss": 0.0, + "step": 75 + }, + { + "epoch": 0.15, + "learning_rate": 1.9906119944130527e-05, + "loss": 0.0, + "step": 76 + }, + { + "epoch": 0.15, + "learning_rate": 1.9901811253364458e-05, + "loss": 0.0, + "step": 77 + }, + { + "epoch": 0.15, + "learning_rate": 1.9897406380782262e-05, + "loss": 0.0, + "step": 78 + }, + { + "epoch": 0.15, + "learning_rate": 1.989290536917093e-05, + "loss": 0.0, + "step": 79 + }, + { + "epoch": 0.15, + "learning_rate": 1.9888308262251286e-05, + "loss": 0.0, + "step": 80 + }, + { + "epoch": 0.16, + "learning_rate": 1.988361510467761e-05, + "loss": 0.0, + "step": 81 + }, + { + "epoch": 0.16, + "learning_rate": 1.9878825942037147e-05, + "loss": 0.0, + "step": 82 + }, + { + "epoch": 0.16, + "learning_rate": 1.9873940820849714e-05, + "loss": 0.0, + "step": 83 + }, + { + "epoch": 0.16, + "learning_rate": 1.9868959788567213e-05, + "loss": 0.0, + "step": 84 + }, + { + "epoch": 0.16, + "learning_rate": 1.9863882893573188e-05, + "loss": 0.0, + "step": 85 + }, + { + "epoch": 0.17, + "learning_rate": 1.985871018518236e-05, + "loss": 0.0, + "step": 86 + }, + { + "epoch": 0.17, + "learning_rate": 1.9853441713640123e-05, + "loss": 0.0, + "step": 87 + }, + { + "epoch": 0.17, + "learning_rate": 1.9848077530122083e-05, + "loss": 0.0, + "step": 88 + }, + { + "epoch": 0.17, + "learning_rate": 1.9842617686733546e-05, + "loss": 0.0, + "step": 89 + }, + { + "epoch": 0.17, + "learning_rate": 1.9837062236509013e-05, + "loss": 0.0, + "step": 90 + }, + { + "epoch": 0.17, + "learning_rate": 1.983141123341168e-05, + "loss": 0.0, + "step": 91 + }, + { + "epoch": 0.18, + "learning_rate": 1.9825664732332886e-05, + "loss": 0.0, + "step": 92 + }, + { + "epoch": 0.18, + "learning_rate": 1.9819822789091597e-05, + "loss": 0.0, + "step": 93 + }, + { + "epoch": 0.18, + "learning_rate": 1.981388546043388e-05, + "loss": 0.0, + "step": 94 + }, + { + "epoch": 0.18, + "learning_rate": 1.9807852804032306e-05, + "loss": 0.0, + "step": 95 + }, + { + "epoch": 0.18, + "learning_rate": 1.9801724878485438e-05, + "loss": 0.0, + "step": 96 + }, + { + "epoch": 0.19, + "learning_rate": 1.979550174331724e-05, + "loss": 0.0, + "step": 97 + }, + { + "epoch": 0.19, + "learning_rate": 1.9789183458976485e-05, + "loss": 0.0, + "step": 98 + }, + { + "epoch": 0.19, + "learning_rate": 1.97827700868362e-05, + "loss": 0.0, + "step": 99 + }, + { + "epoch": 0.19, + "learning_rate": 1.977626168919305e-05, + "loss": 0.0, + "step": 100 + }, + { + "epoch": 0.19, + "learning_rate": 1.9769658329266718e-05, + "loss": 0.0, + "step": 101 + }, + { + "epoch": 0.2, + "learning_rate": 1.9762960071199334e-05, + "loss": 0.0, + "step": 102 + }, + { + "epoch": 0.2, + "learning_rate": 1.9756166980054812e-05, + "loss": 0.0, + "step": 103 + }, + { + "epoch": 0.2, + "learning_rate": 1.9749279121818235e-05, + "loss": 0.0, + "step": 104 + }, + { + "epoch": 0.2, + "learning_rate": 1.9742296563395218e-05, + "loss": 0.0, + "step": 105 + }, + { + "epoch": 0.2, + "learning_rate": 1.9735219372611232e-05, + "loss": 0.0, + "step": 106 + }, + { + "epoch": 0.21, + "learning_rate": 1.9728047618210995e-05, + "loss": 0.0, + "step": 107 + }, + { + "epoch": 0.21, + "learning_rate": 1.9720781369857747e-05, + "loss": 0.0, + "step": 108 + }, + { + "epoch": 0.21, + "learning_rate": 1.9713420698132614e-05, + "loss": 0.0, + "step": 109 + }, + { + "epoch": 0.21, + "learning_rate": 1.970596567453391e-05, + "loss": 0.0, + "step": 110 + }, + { + "epoch": 0.21, + "learning_rate": 1.9698416371476434e-05, + "loss": 0.0, + "step": 111 + }, + { + "epoch": 0.22, + "learning_rate": 1.969077286229078e-05, + "loss": 0.0, + "step": 112 + }, + { + "epoch": 0.22, + "learning_rate": 1.9683035221222617e-05, + "loss": 0.0, + "step": 113 + }, + { + "epoch": 0.22, + "learning_rate": 1.9675203523431964e-05, + "loss": 0.0, + "step": 114 + }, + { + "epoch": 0.22, + "learning_rate": 1.9667277844992476e-05, + "loss": 0.0, + "step": 115 + }, + { + "epoch": 0.22, + "learning_rate": 1.9659258262890683e-05, + "loss": 0.0, + "step": 116 + }, + { + "epoch": 0.23, + "learning_rate": 1.9651144855025265e-05, + "loss": 0.0, + "step": 117 + }, + { + "epoch": 0.23, + "learning_rate": 1.964293770020628e-05, + "loss": 0.0, + "step": 118 + }, + { + "epoch": 0.23, + "learning_rate": 1.9634636878154393e-05, + "loss": 0.0, + "step": 119 + }, + { + "epoch": 0.23, + "learning_rate": 1.962624246950012e-05, + "loss": 0.0, + "step": 120 + }, + { + "epoch": 0.23, + "learning_rate": 1.9617754555783045e-05, + "loss": 0.0, + "step": 121 + }, + { + "epoch": 0.23, + "learning_rate": 1.9609173219450998e-05, + "loss": 0.0, + "step": 122 + }, + { + "epoch": 0.24, + "learning_rate": 1.960049854385929e-05, + "loss": 0.0, + "step": 123 + }, + { + "epoch": 0.24, + "learning_rate": 1.9591730613269878e-05, + "loss": 0.0, + "step": 124 + }, + { + "epoch": 0.24, + "learning_rate": 1.9582869512850576e-05, + "loss": 0.0, + "step": 125 + }, + { + "epoch": 0.24, + "learning_rate": 1.957391532867418e-05, + "loss": 0.0, + "step": 126 + }, + { + "epoch": 0.24, + "learning_rate": 1.956486814771769e-05, + "loss": 0.0, + "step": 127 + }, + { + "epoch": 0.25, + "learning_rate": 1.955572805786141e-05, + "loss": 0.0, + "step": 128 + }, + { + "epoch": 0.25, + "learning_rate": 1.9546495147888134e-05, + "loss": 0.0, + "step": 129 + }, + { + "epoch": 0.25, + "learning_rate": 1.953716950748227e-05, + "loss": 0.0, + "step": 130 + }, + { + "epoch": 0.25, + "learning_rate": 1.9527751227228964e-05, + "loss": 0.0, + "step": 131 + }, + { + "epoch": 0.25, + "learning_rate": 1.9518240398613226e-05, + "loss": 0.0, + "step": 132 + }, + { + "epoch": 0.26, + "learning_rate": 1.9508637114019037e-05, + "loss": 0.0, + "step": 133 + }, + { + "epoch": 0.26, + "learning_rate": 1.9498941466728462e-05, + "loss": 0.0, + "step": 134 + }, + { + "epoch": 0.26, + "learning_rate": 1.9489153550920726e-05, + "loss": 0.0, + "step": 135 + }, + { + "epoch": 0.26, + "learning_rate": 1.947927346167132e-05, + "loss": 0.0, + "step": 136 + }, + { + "epoch": 0.26, + "learning_rate": 1.946930129495106e-05, + "loss": 0.0, + "step": 137 + }, + { + "epoch": 0.27, + "learning_rate": 1.945923714762516e-05, + "loss": 0.0, + "step": 138 + }, + { + "epoch": 0.27, + "learning_rate": 1.9449081117452304e-05, + "loss": 0.0, + "step": 139 + }, + { + "epoch": 0.27, + "learning_rate": 1.9438833303083677e-05, + "loss": 0.0, + "step": 140 + }, + { + "epoch": 0.27, + "learning_rate": 1.9428493804062013e-05, + "loss": 0.0, + "step": 141 + }, + { + "epoch": 0.27, + "learning_rate": 1.9418062720820636e-05, + "loss": 0.0, + "step": 142 + }, + { + "epoch": 0.28, + "learning_rate": 1.9407540154682473e-05, + "loss": 0.0, + "step": 143 + }, + { + "epoch": 0.28, + "learning_rate": 1.9396926207859085e-05, + "loss": 0.0, + "step": 144 + }, + { + "epoch": 0.28, + "learning_rate": 1.9386220983449652e-05, + "loss": 0.0, + "step": 145 + }, + { + "epoch": 0.28, + "learning_rate": 1.9375424585439994e-05, + "loss": 0.0, + "step": 146 + }, + { + "epoch": 0.28, + "learning_rate": 1.9364537118701542e-05, + "loss": 0.0, + "step": 147 + }, + { + "epoch": 0.28, + "learning_rate": 1.935355868899034e-05, + "loss": 0.0, + "step": 148 + }, + { + "epoch": 0.29, + "learning_rate": 1.9342489402945997e-05, + "loss": 0.0, + "step": 149 + }, + { + "epoch": 0.29, + "learning_rate": 1.9331329368090664e-05, + "loss": 0.0, + "step": 150 + }, + { + "epoch": 0.29, + "learning_rate": 1.932007869282799e-05, + "loss": 0.0, + "step": 151 + }, + { + "epoch": 0.29, + "learning_rate": 1.9308737486442045e-05, + "loss": 0.0, + "step": 152 + }, + { + "epoch": 0.29, + "learning_rate": 1.9297305859096305e-05, + "loss": 0.0, + "step": 153 + }, + { + "epoch": 0.3, + "learning_rate": 1.9285783921832537e-05, + "loss": 0.0, + "step": 154 + }, + { + "epoch": 0.3, + "learning_rate": 1.927417178656975e-05, + "loss": 0.0, + "step": 155 + }, + { + "epoch": 0.3, + "learning_rate": 1.926246956610309e-05, + "loss": 0.0, + "step": 156 + }, + { + "epoch": 0.3, + "learning_rate": 1.9250677374102752e-05, + "loss": 0.0, + "step": 157 + }, + { + "epoch": 0.3, + "learning_rate": 1.9238795325112867e-05, + "loss": 0.0, + "step": 158 + }, + { + "epoch": 0.31, + "learning_rate": 1.9226823534550418e-05, + "loss": 0.0, + "step": 159 + }, + { + "epoch": 0.31, + "learning_rate": 1.921476211870408e-05, + "loss": 0.0, + "step": 160 + }, + { + "epoch": 0.31, + "learning_rate": 1.9202611194733107e-05, + "loss": 0.0, + "step": 161 + }, + { + "epoch": 0.31, + "learning_rate": 1.9190370880666206e-05, + "loss": 0.0, + "step": 162 + }, + { + "epoch": 0.31, + "learning_rate": 1.9178041295400383e-05, + "loss": 0.0, + "step": 163 + }, + { + "epoch": 0.32, + "learning_rate": 1.9165622558699763e-05, + "loss": 0.0, + "step": 164 + }, + { + "epoch": 0.32, + "learning_rate": 1.9153114791194475e-05, + "loss": 0.0, + "step": 165 + }, + { + "epoch": 0.32, + "learning_rate": 1.9140518114379433e-05, + "loss": 0.0, + "step": 166 + }, + { + "epoch": 0.32, + "learning_rate": 1.912783265061319e-05, + "loss": 0.0, + "step": 167 + }, + { + "epoch": 0.32, + "learning_rate": 1.9115058523116734e-05, + "loss": 0.0, + "step": 168 + }, + { + "epoch": 0.33, + "learning_rate": 1.9102195855972287e-05, + "loss": 0.0, + "step": 169 + }, + { + "epoch": 0.33, + "learning_rate": 1.908924477412211e-05, + "loss": 0.0, + "step": 170 + }, + { + "epoch": 0.33, + "learning_rate": 1.9076205403367287e-05, + "loss": 0.0, + "step": 171 + }, + { + "epoch": 0.33, + "learning_rate": 1.9063077870366504e-05, + "loss": 0.0, + "step": 172 + }, + { + "epoch": 0.33, + "learning_rate": 1.90498623026348e-05, + "loss": 0.0, + "step": 173 + }, + { + "epoch": 0.33, + "learning_rate": 1.903655882854237e-05, + "loss": 0.0, + "step": 174 + }, + { + "epoch": 0.34, + "learning_rate": 1.9023167577313267e-05, + "loss": 0.0, + "step": 175 + }, + { + "epoch": 0.34, + "learning_rate": 1.900968867902419e-05, + "loss": 0.0, + "step": 176 + }, + { + "epoch": 0.34, + "learning_rate": 1.8996122264603202e-05, + "loss": 0.0, + "step": 177 + }, + { + "epoch": 0.34, + "learning_rate": 1.898246846582844e-05, + "loss": 0.0, + "step": 178 + }, + { + "epoch": 0.34, + "learning_rate": 1.8968727415326885e-05, + "loss": 0.0, + "step": 179 + }, + { + "epoch": 0.35, + "learning_rate": 1.895489924657301e-05, + "loss": 0.0, + "step": 180 + }, + { + "epoch": 0.35, + "learning_rate": 1.894098409388754e-05, + "loss": 0.0, + "step": 181 + }, + { + "epoch": 0.35, + "learning_rate": 1.8926982092436117e-05, + "loss": 0.0, + "step": 182 + }, + { + "epoch": 0.35, + "learning_rate": 1.8912893378227984e-05, + "loss": 0.0, + "step": 183 + }, + { + "epoch": 0.35, + "learning_rate": 1.8898718088114688e-05, + "loss": 0.0, + "step": 184 + }, + { + "epoch": 0.36, + "learning_rate": 1.8884456359788725e-05, + "loss": 0.0, + "step": 185 + }, + { + "epoch": 0.36, + "learning_rate": 1.887010833178222e-05, + "loss": 0.0, + "step": 186 + }, + { + "epoch": 0.36, + "learning_rate": 1.8855674143465567e-05, + "loss": 0.0, + "step": 187 + }, + { + "epoch": 0.36, + "learning_rate": 1.8841153935046098e-05, + "loss": 0.0, + "step": 188 + }, + { + "epoch": 0.36, + "learning_rate": 1.8826547847566692e-05, + "loss": 0.0, + "step": 189 + }, + { + "epoch": 0.37, + "learning_rate": 1.8811856022904423e-05, + "loss": 0.0, + "step": 190 + }, + { + "epoch": 0.37, + "learning_rate": 1.8797078603769184e-05, + "loss": 0.0, + "step": 191 + }, + { + "epoch": 0.37, + "learning_rate": 1.8782215733702286e-05, + "loss": 0.0, + "step": 192 + }, + { + "epoch": 0.37, + "learning_rate": 1.876726755707508e-05, + "loss": 0.0, + "step": 193 + }, + { + "epoch": 0.37, + "learning_rate": 1.8752234219087538e-05, + "loss": 0.0, + "step": 194 + }, + { + "epoch": 0.38, + "learning_rate": 1.8737115865766865e-05, + "loss": 0.0, + "step": 195 + }, + { + "epoch": 0.38, + "learning_rate": 1.8721912643966055e-05, + "loss": 0.0, + "step": 196 + }, + { + "epoch": 0.38, + "learning_rate": 1.8706624701362485e-05, + "loss": 0.0, + "step": 197 + }, + { + "epoch": 0.38, + "learning_rate": 1.8691252186456465e-05, + "loss": 0.0, + "step": 198 + }, + { + "epoch": 0.38, + "learning_rate": 1.8675795248569816e-05, + "loss": 0.0, + "step": 199 + }, + { + "epoch": 0.38, + "learning_rate": 1.866025403784439e-05, + "loss": 0.0, + "step": 200 + }, + { + "epoch": 0.39, + "learning_rate": 1.8644628705240636e-05, + "loss": 0.0, + "step": 201 + }, + { + "epoch": 0.39, + "learning_rate": 1.862891940253613e-05, + "loss": 0.0, + "step": 202 + }, + { + "epoch": 0.39, + "learning_rate": 1.8613126282324092e-05, + "loss": 0.0, + "step": 203 + }, + { + "epoch": 0.39, + "learning_rate": 1.8597249498011906e-05, + "loss": 0.0, + "step": 204 + }, + { + "epoch": 0.39, + "learning_rate": 1.858128920381963e-05, + "loss": 0.0, + "step": 205 + }, + { + "epoch": 0.4, + "learning_rate": 1.8565245554778516e-05, + "loss": 0.0, + "step": 206 + }, + { + "epoch": 0.4, + "learning_rate": 1.854911870672947e-05, + "loss": 0.0, + "step": 207 + }, + { + "epoch": 0.4, + "learning_rate": 1.8532908816321557e-05, + "loss": 0.0, + "step": 208 + }, + { + "epoch": 0.4, + "learning_rate": 1.8516616041010495e-05, + "loss": 0.0, + "step": 209 + }, + { + "epoch": 0.4, + "learning_rate": 1.8500240539057093e-05, + "loss": 0.0, + "step": 210 + }, + { + "epoch": 0.41, + "learning_rate": 1.848378246952574e-05, + "loss": 0.0, + "step": 211 + }, + { + "epoch": 0.41, + "learning_rate": 1.8467241992282842e-05, + "loss": 0.0, + "step": 212 + }, + { + "epoch": 0.41, + "learning_rate": 1.8450619267995283e-05, + "loss": 0.0, + "step": 213 + }, + { + "epoch": 0.41, + "learning_rate": 1.843391445812886e-05, + "loss": 0.0, + "step": 214 + }, + { + "epoch": 0.41, + "learning_rate": 1.84171277249467e-05, + "loss": 0.0, + "step": 215 + }, + { + "epoch": 0.42, + "learning_rate": 1.8400259231507716e-05, + "loss": 0.0, + "step": 216 + }, + { + "epoch": 0.42, + "learning_rate": 1.8383309141664992e-05, + "loss": 0.0, + "step": 217 + }, + { + "epoch": 0.42, + "learning_rate": 1.83662776200642e-05, + "loss": 0.0, + "step": 218 + }, + { + "epoch": 0.42, + "learning_rate": 1.8349164832142015e-05, + "loss": 0.0, + "step": 219 + }, + { + "epoch": 0.42, + "learning_rate": 1.833197094412449e-05, + "loss": 0.0, + "step": 220 + }, + { + "epoch": 0.42, + "learning_rate": 1.8314696123025456e-05, + "loss": 0.0, + "step": 221 + }, + { + "epoch": 0.43, + "learning_rate": 1.8297340536644877e-05, + "loss": 0.0, + "step": 222 + }, + { + "epoch": 0.43, + "learning_rate": 1.827990435356725e-05, + "loss": 0.0, + "step": 223 + }, + { + "epoch": 0.43, + "learning_rate": 1.826238774315995e-05, + "loss": 0.0, + "step": 224 + }, + { + "epoch": 0.43, + "learning_rate": 1.8244790875571582e-05, + "loss": 0.0, + "step": 225 + }, + { + "epoch": 0.43, + "learning_rate": 1.8227113921730336e-05, + "loss": 0.0, + "step": 226 + }, + { + "epoch": 0.44, + "learning_rate": 1.8209357053342325e-05, + "loss": 0.0, + "step": 227 + }, + { + "epoch": 0.44, + "learning_rate": 1.819152044288992e-05, + "loss": 0.0, + "step": 228 + }, + { + "epoch": 0.44, + "learning_rate": 1.8173604263630066e-05, + "loss": 0.0, + "step": 229 + }, + { + "epoch": 0.44, + "learning_rate": 1.8155608689592604e-05, + "loss": 0.0, + "step": 230 + }, + { + "epoch": 0.44, + "learning_rate": 1.8137533895578585e-05, + "loss": 0.0, + "step": 231 + }, + { + "epoch": 0.45, + "learning_rate": 1.811938005715857e-05, + "loss": 0.0, + "step": 232 + }, + { + "epoch": 0.45, + "learning_rate": 1.8101147350670905e-05, + "loss": 0.0, + "step": 233 + }, + { + "epoch": 0.45, + "learning_rate": 1.8082835953220055e-05, + "loss": 0.0, + "step": 234 + }, + { + "epoch": 0.45, + "learning_rate": 1.806444604267483e-05, + "loss": 0.0, + "step": 235 + }, + { + "epoch": 0.45, + "learning_rate": 1.8045977797666685e-05, + "loss": 0.0, + "step": 236 + }, + { + "epoch": 0.46, + "learning_rate": 1.8027431397587993e-05, + "loss": 0.0, + "step": 237 + }, + { + "epoch": 0.46, + "learning_rate": 1.8008807022590283e-05, + "loss": 0.0, + "step": 238 + }, + { + "epoch": 0.46, + "learning_rate": 1.7990104853582494e-05, + "loss": 0.0, + "step": 239 + }, + { + "epoch": 0.46, + "learning_rate": 1.7971325072229227e-05, + "loss": 0.0, + "step": 240 + }, + { + "epoch": 0.46, + "learning_rate": 1.7952467860948975e-05, + "loss": 0.0, + "step": 241 + }, + { + "epoch": 0.47, + "learning_rate": 1.7933533402912354e-05, + "loss": 0.0, + "step": 242 + }, + { + "epoch": 0.47, + "learning_rate": 1.791452188204031e-05, + "loss": 0.0, + "step": 243 + }, + { + "epoch": 0.47, + "learning_rate": 1.7895433483002356e-05, + "loss": 0.0, + "step": 244 + }, + { + "epoch": 0.47, + "learning_rate": 1.7876268391214756e-05, + "loss": 0.0, + "step": 245 + }, + { + "epoch": 0.47, + "learning_rate": 1.785702679283874e-05, + "loss": 0.0, + "step": 246 + }, + { + "epoch": 0.47, + "learning_rate": 1.7837708874778683e-05, + "loss": 0.0, + "step": 247 + }, + { + "epoch": 0.48, + "learning_rate": 1.78183148246803e-05, + "loss": 0.0, + "step": 248 + }, + { + "epoch": 0.48, + "learning_rate": 1.7798844830928818e-05, + "loss": 0.0, + "step": 249 + }, + { + "epoch": 0.48, + "learning_rate": 1.777929908264715e-05, + "loss": 0.0, + "step": 250 + }, + { + "epoch": 0.48, + "learning_rate": 1.775967776969405e-05, + "loss": 0.0, + "step": 251 + }, + { + "epoch": 0.48, + "learning_rate": 1.7739981082662275e-05, + "loss": 0.0, + "step": 252 + }, + { + "epoch": 0.49, + "learning_rate": 1.772020921287674e-05, + "loss": 0.0, + "step": 253 + }, + { + "epoch": 0.49, + "learning_rate": 1.7700362352392632e-05, + "loss": 0.0, + "step": 254 + }, + { + "epoch": 0.49, + "learning_rate": 1.7680440693993586e-05, + "loss": 0.0, + "step": 255 + }, + { + "epoch": 0.49, + "learning_rate": 1.766044443118978e-05, + "loss": 0.0, + "step": 256 + }, + { + "epoch": 0.49, + "learning_rate": 1.7640373758216075e-05, + "loss": 0.0, + "step": 257 + }, + { + "epoch": 0.5, + "learning_rate": 1.762022887003011e-05, + "loss": 0.0, + "step": 258 + }, + { + "epoch": 0.5, + "learning_rate": 1.7600009962310417e-05, + "loss": 0.0, + "step": 259 + }, + { + "epoch": 0.5, + "learning_rate": 1.757971723145453e-05, + "loss": 0.0, + "step": 260 + }, + { + "epoch": 0.5, + "learning_rate": 1.7559350874577066e-05, + "loss": 0.0, + "step": 261 + }, + { + "epoch": 0.5, + "learning_rate": 1.75389110895078e-05, + "loss": 0.0, + "step": 262 + }, + { + "epoch": 0.51, + "learning_rate": 1.7518398074789776e-05, + "loss": 0.0, + "step": 263 + }, + { + "epoch": 0.51, + "learning_rate": 1.7497812029677344e-05, + "loss": 0.0, + "step": 264 + }, + { + "epoch": 0.51, + "learning_rate": 1.7477153154134244e-05, + "loss": 0.0, + "step": 265 + }, + { + "epoch": 0.51, + "learning_rate": 1.7456421648831658e-05, + "loss": 0.0, + "step": 266 + }, + { + "epoch": 0.51, + "learning_rate": 1.743561771514626e-05, + "loss": 0.0, + "step": 267 + }, + { + "epoch": 0.52, + "learning_rate": 1.741474155515827e-05, + "loss": 0.0, + "step": 268 + }, + { + "epoch": 0.52, + "learning_rate": 1.739379337164946e-05, + "loss": 0.0, + "step": 269 + }, + { + "epoch": 0.52, + "learning_rate": 1.737277336810124e-05, + "loss": 0.0, + "step": 270 + }, + { + "epoch": 0.52, + "learning_rate": 1.7351681748692622e-05, + "loss": 0.0, + "step": 271 + }, + { + "epoch": 0.52, + "learning_rate": 1.7330518718298263e-05, + "loss": 0.0, + "step": 272 + }, + { + "epoch": 0.53, + "learning_rate": 1.7309284482486494e-05, + "loss": 0.0, + "step": 273 + }, + { + "epoch": 0.53, + "learning_rate": 1.7287979247517285e-05, + "loss": 0.0, + "step": 274 + }, + { + "epoch": 0.53, + "learning_rate": 1.7266603220340273e-05, + "loss": 0.0, + "step": 275 + }, + { + "epoch": 0.53, + "learning_rate": 1.7245156608592727e-05, + "loss": 0.0, + "step": 276 + }, + { + "epoch": 0.53, + "learning_rate": 1.7223639620597556e-05, + "loss": 0.0, + "step": 277 + }, + { + "epoch": 0.53, + "learning_rate": 1.7202052465361268e-05, + "loss": 0.0, + "step": 278 + }, + { + "epoch": 0.54, + "learning_rate": 1.718039535257194e-05, + "loss": 0.0, + "step": 279 + }, + { + "epoch": 0.54, + "learning_rate": 1.7158668492597186e-05, + "loss": 0.0, + "step": 280 + }, + { + "epoch": 0.54, + "learning_rate": 1.7136872096482123e-05, + "loss": 0.0, + "step": 281 + }, + { + "epoch": 0.54, + "learning_rate": 1.7115006375947304e-05, + "loss": 0.0, + "step": 282 + }, + { + "epoch": 0.54, + "learning_rate": 1.7093071543386667e-05, + "loss": 0.0, + "step": 283 + }, + { + "epoch": 0.55, + "learning_rate": 1.7071067811865477e-05, + "loss": 0.0, + "step": 284 + }, + { + "epoch": 0.55, + "learning_rate": 1.7048995395118253e-05, + "loss": 0.0, + "step": 285 + }, + { + "epoch": 0.55, + "learning_rate": 1.7026854507546694e-05, + "loss": 0.0, + "step": 286 + }, + { + "epoch": 0.55, + "learning_rate": 1.7004645364217584e-05, + "loss": 0.0, + "step": 287 + }, + { + "epoch": 0.55, + "learning_rate": 1.698236818086073e-05, + "loss": 0.0, + "step": 288 + }, + { + "epoch": 0.56, + "learning_rate": 1.6960023173866834e-05, + "loss": 0.0, + "step": 289 + }, + { + "epoch": 0.56, + "learning_rate": 1.693761056028542e-05, + "loss": 0.0, + "step": 290 + }, + { + "epoch": 0.56, + "learning_rate": 1.6915130557822698e-05, + "loss": 0.0, + "step": 291 + }, + { + "epoch": 0.56, + "learning_rate": 1.689258338483947e-05, + "loss": 0.0, + "step": 292 + }, + { + "epoch": 0.56, + "learning_rate": 1.686996926034902e-05, + "loss": 0.0, + "step": 293 + }, + { + "epoch": 0.57, + "learning_rate": 1.6847288404014937e-05, + "loss": 0.0, + "step": 294 + }, + { + "epoch": 0.57, + "learning_rate": 1.682454103614904e-05, + "loss": 0.0, + "step": 295 + }, + { + "epoch": 0.57, + "learning_rate": 1.6801727377709195e-05, + "loss": 0.0, + "step": 296 + }, + { + "epoch": 0.57, + "learning_rate": 1.67788476502972e-05, + "loss": 0.0, + "step": 297 + }, + { + "epoch": 0.57, + "learning_rate": 1.6755902076156606e-05, + "loss": 0.0, + "step": 298 + }, + { + "epoch": 0.57, + "learning_rate": 1.6732890878170573e-05, + "loss": 0.0, + "step": 299 + }, + { + "epoch": 0.58, + "learning_rate": 1.67098142798597e-05, + "loss": 0.0, + "step": 300 + }, + { + "epoch": 0.58, + "learning_rate": 1.668667250537987e-05, + "loss": 0.0, + "step": 301 + }, + { + "epoch": 0.58, + "learning_rate": 1.6663465779520042e-05, + "loss": 0.0, + "step": 302 + }, + { + "epoch": 0.58, + "learning_rate": 1.6640194327700087e-05, + "loss": 0.0, + "step": 303 + }, + { + "epoch": 0.58, + "learning_rate": 1.6616858375968596e-05, + "loss": 0.0, + "step": 304 + }, + { + "epoch": 0.59, + "learning_rate": 1.659345815100069e-05, + "loss": 0.0, + "step": 305 + }, + { + "epoch": 0.59, + "learning_rate": 1.6569993880095807e-05, + "loss": 0.0, + "step": 306 + }, + { + "epoch": 0.59, + "learning_rate": 1.6546465791175498e-05, + "loss": 0.0, + "step": 307 + }, + { + "epoch": 0.59, + "learning_rate": 1.6522874112781213e-05, + "loss": 0.0, + "step": 308 + }, + { + "epoch": 0.59, + "learning_rate": 1.6499219074072087e-05, + "loss": 0.0, + "step": 309 + }, + { + "epoch": 0.6, + "learning_rate": 1.6475500904822707e-05, + "loss": 0.0, + "step": 310 + }, + { + "epoch": 0.6, + "learning_rate": 1.645171983542088e-05, + "loss": 0.0, + "step": 311 + }, + { + "epoch": 0.6, + "learning_rate": 1.6427876096865394e-05, + "loss": 0.0, + "step": 312 + }, + { + "epoch": 0.6, + "learning_rate": 1.640396992076379e-05, + "loss": 0.0, + "step": 313 + }, + { + "epoch": 0.6, + "learning_rate": 1.6380001539330088e-05, + "loss": 0.0, + "step": 314 + }, + { + "epoch": 0.61, + "learning_rate": 1.6355971185382547e-05, + "loss": 0.0, + "step": 315 + }, + { + "epoch": 0.61, + "learning_rate": 1.6331879092341402e-05, + "loss": 0.0, + "step": 316 + }, + { + "epoch": 0.61, + "learning_rate": 1.6307725494226586e-05, + "loss": 0.0, + "step": 317 + }, + { + "epoch": 0.61, + "learning_rate": 1.6283510625655474e-05, + "loss": 0.0, + "step": 318 + }, + { + "epoch": 0.61, + "learning_rate": 1.6259234721840595e-05, + "loss": 0.0, + "step": 319 + }, + { + "epoch": 0.62, + "learning_rate": 1.6234898018587336e-05, + "loss": 0.0, + "step": 320 + }, + { + "epoch": 0.62, + "learning_rate": 1.6210500752291682e-05, + "loss": 0.0, + "step": 321 + }, + { + "epoch": 0.62, + "learning_rate": 1.6186043159937884e-05, + "loss": 0.0, + "step": 322 + }, + { + "epoch": 0.62, + "learning_rate": 1.616152547909618e-05, + "loss": 0.0, + "step": 323 + }, + { + "epoch": 0.62, + "learning_rate": 1.6136947947920477e-05, + "loss": 0.0, + "step": 324 + }, + { + "epoch": 0.62, + "learning_rate": 1.611231080514605e-05, + "loss": 0.0, + "step": 325 + }, + { + "epoch": 0.63, + "learning_rate": 1.608761429008721e-05, + "loss": 0.0, + "step": 326 + }, + { + "epoch": 0.63, + "learning_rate": 1.606285864263498e-05, + "loss": 0.0, + "step": 327 + }, + { + "epoch": 0.63, + "learning_rate": 1.6038044103254775e-05, + "loss": 0.0, + "step": 328 + }, + { + "epoch": 0.63, + "learning_rate": 1.601317091298406e-05, + "loss": 0.0, + "step": 329 + }, + { + "epoch": 0.63, + "learning_rate": 1.5988239313430004e-05, + "loss": 0.0, + "step": 330 + }, + { + "epoch": 0.64, + "learning_rate": 1.5963249546767144e-05, + "loss": 0.0, + "step": 331 + }, + { + "epoch": 0.64, + "learning_rate": 1.5938201855735017e-05, + "loss": 0.0, + "step": 332 + }, + { + "epoch": 0.64, + "learning_rate": 1.5913096483635827e-05, + "loss": 0.0, + "step": 333 + }, + { + "epoch": 0.64, + "learning_rate": 1.5887933674332048e-05, + "loss": 0.0, + "step": 334 + }, + { + "epoch": 0.64, + "learning_rate": 1.5862713672244092e-05, + "loss": 0.0, + "step": 335 + }, + { + "epoch": 0.65, + "learning_rate": 1.5837436722347902e-05, + "loss": 0.0, + "step": 336 + }, + { + "epoch": 0.65, + "learning_rate": 1.5812103070172592e-05, + "loss": 0.0, + "step": 337 + }, + { + "epoch": 0.65, + "learning_rate": 1.578671296179806e-05, + "loss": 0.0, + "step": 338 + }, + { + "epoch": 0.65, + "learning_rate": 1.5761266643852587e-05, + "loss": 0.0, + "step": 339 + }, + { + "epoch": 0.65, + "learning_rate": 1.573576436351046e-05, + "loss": 0.0, + "step": 340 + }, + { + "epoch": 0.66, + "learning_rate": 1.5710206368489555e-05, + "loss": 0.0, + "step": 341 + }, + { + "epoch": 0.66, + "learning_rate": 1.5684592907048925e-05, + "loss": 0.0, + "step": 342 + }, + { + "epoch": 0.66, + "learning_rate": 1.5658924227986415e-05, + "loss": 0.0, + "step": 343 + }, + { + "epoch": 0.66, + "learning_rate": 1.563320058063622e-05, + "loss": 0.0, + "step": 344 + }, + { + "epoch": 0.66, + "learning_rate": 1.560742221486648e-05, + "loss": 0.0, + "step": 345 + }, + { + "epoch": 0.67, + "learning_rate": 1.5581589381076843e-05, + "loss": 0.0, + "step": 346 + }, + { + "epoch": 0.67, + "learning_rate": 1.5555702330196024e-05, + "loss": 0.0, + "step": 347 + }, + { + "epoch": 0.67, + "learning_rate": 1.5529761313679396e-05, + "loss": 0.0, + "step": 348 + }, + { + "epoch": 0.67, + "learning_rate": 1.5503766583506522e-05, + "loss": 0.0, + "step": 349 + }, + { + "epoch": 0.67, + "learning_rate": 1.5477718392178716e-05, + "loss": 0.0, + "step": 350 + }, + { + "epoch": 0.68, + "learning_rate": 1.545161699271659e-05, + "loss": 0.0, + "step": 351 + }, + { + "epoch": 0.68, + "learning_rate": 1.5425462638657597e-05, + "loss": 0.0, + "step": 352 + }, + { + "epoch": 0.68, + "learning_rate": 1.5399255584053568e-05, + "loss": 0.0, + "step": 353 + }, + { + "epoch": 0.68, + "learning_rate": 1.5372996083468242e-05, + "loss": 0.0, + "step": 354 + }, + { + "epoch": 0.68, + "learning_rate": 1.5346684391974792e-05, + "loss": 0.0, + "step": 355 + }, + { + "epoch": 0.68, + "learning_rate": 1.5320320765153367e-05, + "loss": 0.0, + "step": 356 + }, + { + "epoch": 0.69, + "learning_rate": 1.529390545908857e-05, + "loss": 0.0, + "step": 357 + }, + { + "epoch": 0.69, + "learning_rate": 1.526743873036701e-05, + "loss": 0.0, + "step": 358 + }, + { + "epoch": 0.69, + "learning_rate": 1.5240920836074777e-05, + "loss": 0.0, + "step": 359 + }, + { + "epoch": 0.69, + "learning_rate": 1.5214352033794981e-05, + "loss": 0.0, + "step": 360 + }, + { + "epoch": 0.69, + "learning_rate": 1.5187732581605217e-05, + "loss": 0.0, + "step": 361 + }, + { + "epoch": 0.7, + "learning_rate": 1.5161062738075068e-05, + "loss": 0.0, + "step": 362 + }, + { + "epoch": 0.7, + "learning_rate": 1.5134342762263606e-05, + "loss": 0.0, + "step": 363 + }, + { + "epoch": 0.7, + "learning_rate": 1.5107572913716859e-05, + "loss": 0.0, + "step": 364 + }, + { + "epoch": 0.7, + "learning_rate": 1.5080753452465296e-05, + "loss": 0.0, + "step": 365 + }, + { + "epoch": 0.7, + "learning_rate": 1.505388463902131e-05, + "loss": 0.0, + "step": 366 + }, + { + "epoch": 0.71, + "learning_rate": 1.502696673437667e-05, + "loss": 0.0, + "step": 367 + }, + { + "epoch": 0.71, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0, + "step": 368 + }, + { + "epoch": 0.71, + "learning_rate": 1.4972984697834238e-05, + "loss": 0.0, + "step": 369 + }, + { + "epoch": 0.71, + "learning_rate": 1.4945921090294076e-05, + "loss": 0.0, + "step": 370 + }, + { + "epoch": 0.71, + "learning_rate": 1.4918809440263435e-05, + "loss": 0.0, + "step": 371 + }, + { + "epoch": 0.72, + "learning_rate": 1.4891650011092896e-05, + "loss": 0.0, + "step": 372 + }, + { + "epoch": 0.72, + "learning_rate": 1.486444306659714e-05, + "loss": 0.0, + "step": 373 + }, + { + "epoch": 0.72, + "learning_rate": 1.4837188871052399e-05, + "loss": 0.0, + "step": 374 + }, + { + "epoch": 0.72, + "learning_rate": 1.4809887689193878e-05, + "loss": 0.0, + "step": 375 + }, + { + "epoch": 0.72, + "learning_rate": 1.4782539786213184e-05, + "loss": 0.0, + "step": 376 + }, + { + "epoch": 0.72, + "learning_rate": 1.4755145427755755e-05, + "loss": 0.0, + "step": 377 + }, + { + "epoch": 0.73, + "learning_rate": 1.4727704879918272e-05, + "loss": 0.0, + "step": 378 + }, + { + "epoch": 0.73, + "learning_rate": 1.4700218409246087e-05, + "loss": 0.0, + "step": 379 + }, + { + "epoch": 0.73, + "learning_rate": 1.4672686282730622e-05, + "loss": 0.0, + "step": 380 + }, + { + "epoch": 0.73, + "learning_rate": 1.4645108767806778e-05, + "loss": 0.0, + "step": 381 + }, + { + "epoch": 0.73, + "learning_rate": 1.4617486132350343e-05, + "loss": 0.0, + "step": 382 + }, + { + "epoch": 0.74, + "learning_rate": 1.4589818644675378e-05, + "loss": 0.0, + "step": 383 + }, + { + "epoch": 0.74, + "learning_rate": 1.4562106573531632e-05, + "loss": 0.0, + "step": 384 + }, + { + "epoch": 0.74, + "learning_rate": 1.4534350188101905e-05, + "loss": 0.0, + "step": 385 + }, + { + "epoch": 0.74, + "learning_rate": 1.4506549757999456e-05, + "loss": 0.0, + "step": 386 + }, + { + "epoch": 0.74, + "learning_rate": 1.4478705553265363e-05, + "loss": 0.0, + "step": 387 + }, + { + "epoch": 0.75, + "learning_rate": 1.4450817844365924e-05, + "loss": 0.0, + "step": 388 + }, + { + "epoch": 0.75, + "learning_rate": 1.4422886902190014e-05, + "loss": 0.0, + "step": 389 + }, + { + "epoch": 0.75, + "learning_rate": 1.4394912998046451e-05, + "loss": 0.0, + "step": 390 + }, + { + "epoch": 0.75, + "learning_rate": 1.436689640366137e-05, + "loss": 0.0, + "step": 391 + }, + { + "epoch": 0.75, + "learning_rate": 1.4338837391175582e-05, + "loss": 0.0, + "step": 392 + }, + { + "epoch": 0.76, + "learning_rate": 1.4310736233141926e-05, + "loss": 0.0, + "step": 393 + }, + { + "epoch": 0.76, + "learning_rate": 1.4282593202522627e-05, + "loss": 0.0, + "step": 394 + }, + { + "epoch": 0.76, + "learning_rate": 1.4254408572686642e-05, + "loss": 0.0, + "step": 395 + }, + { + "epoch": 0.76, + "learning_rate": 1.4226182617406996e-05, + "loss": 0.0, + "step": 396 + }, + { + "epoch": 0.76, + "learning_rate": 1.4197915610858143e-05, + "loss": 0.0, + "step": 397 + }, + { + "epoch": 0.77, + "learning_rate": 1.4169607827613284e-05, + "loss": 0.0, + "step": 398 + }, + { + "epoch": 0.77, + "learning_rate": 1.4141259542641706e-05, + "loss": 0.0, + "step": 399 + }, + { + "epoch": 0.77, + "learning_rate": 1.4112871031306118e-05, + "loss": 0.0, + "step": 400 + }, + { + "epoch": 0.77, + "learning_rate": 1.4084442569359964e-05, + "loss": 0.0, + "step": 401 + }, + { + "epoch": 0.77, + "learning_rate": 1.4055974432944753e-05, + "loss": 0.0, + "step": 402 + }, + { + "epoch": 0.78, + "learning_rate": 1.4027466898587375e-05, + "loss": 0.0, + "step": 403 + }, + { + "epoch": 0.78, + "learning_rate": 1.3998920243197408e-05, + "loss": 0.0, + "step": 404 + }, + { + "epoch": 0.78, + "learning_rate": 1.3970334744064451e-05, + "loss": 0.0, + "step": 405 + }, + { + "epoch": 0.78, + "learning_rate": 1.3941710678855396e-05, + "loss": 0.0, + "step": 406 + }, + { + "epoch": 0.78, + "learning_rate": 1.391304832561175e-05, + "loss": 0.0, + "step": 407 + }, + { + "epoch": 0.78, + "learning_rate": 1.3884347962746949e-05, + "loss": 0.0, + "step": 408 + }, + { + "epoch": 0.79, + "learning_rate": 1.3855609869043618e-05, + "loss": 0.0, + "step": 409 + }, + { + "epoch": 0.79, + "learning_rate": 1.3826834323650899e-05, + "loss": 0.0, + "step": 410 + }, + { + "epoch": 0.79, + "learning_rate": 1.3798021606081713e-05, + "loss": 0.0, + "step": 411 + }, + { + "epoch": 0.79, + "learning_rate": 1.3769171996210053e-05, + "loss": 0.0, + "step": 412 + }, + { + "epoch": 0.79, + "learning_rate": 1.3740285774268282e-05, + "loss": 0.0, + "step": 413 + }, + { + "epoch": 0.8, + "learning_rate": 1.371136322084438e-05, + "loss": 0.0, + "step": 414 + }, + { + "epoch": 0.8, + "learning_rate": 1.3682404616879246e-05, + "loss": 0.0, + "step": 415 + }, + { + "epoch": 0.8, + "learning_rate": 1.3653410243663953e-05, + "loss": 0.0, + "step": 416 + }, + { + "epoch": 0.8, + "learning_rate": 1.3624380382837017e-05, + "loss": 0.0, + "step": 417 + }, + { + "epoch": 0.8, + "learning_rate": 1.3595315316381676e-05, + "loss": 0.0, + "step": 418 + }, + { + "epoch": 0.81, + "learning_rate": 1.3566215326623131e-05, + "loss": 0.0, + "step": 419 + }, + { + "epoch": 0.81, + "learning_rate": 1.3537080696225815e-05, + "loss": 0.0, + "step": 420 + }, + { + "epoch": 0.81, + "learning_rate": 1.3507911708190646e-05, + "loss": 0.0, + "step": 421 + }, + { + "epoch": 0.81, + "learning_rate": 1.3478708645852272e-05, + "loss": 0.0, + "step": 422 + }, + { + "epoch": 0.81, + "learning_rate": 1.3449471792876333e-05, + "loss": 0.0, + "step": 423 + }, + { + "epoch": 0.82, + "learning_rate": 1.342020143325669e-05, + "loss": 0.0, + "step": 424 + }, + { + "epoch": 0.82, + "learning_rate": 1.3390897851312667e-05, + "loss": 0.0, + "step": 425 + }, + { + "epoch": 0.82, + "learning_rate": 1.336156133168631e-05, + "loss": 0.0, + "step": 426 + }, + { + "epoch": 0.82, + "learning_rate": 1.3332192159339595e-05, + "loss": 0.0, + "step": 427 + }, + { + "epoch": 0.82, + "learning_rate": 1.3302790619551673e-05, + "loss": 0.0, + "step": 428 + }, + { + "epoch": 0.82, + "learning_rate": 1.3273356997916106e-05, + "loss": 0.0, + "step": 429 + }, + { + "epoch": 0.83, + "learning_rate": 1.3243891580338074e-05, + "loss": 0.0, + "step": 430 + }, + { + "epoch": 0.83, + "learning_rate": 1.3214394653031616e-05, + "loss": 0.0, + "step": 431 + }, + { + "epoch": 0.83, + "learning_rate": 1.3184866502516846e-05, + "loss": 0.0, + "step": 432 + }, + { + "epoch": 0.83, + "learning_rate": 1.3155307415617156e-05, + "loss": 0.0, + "step": 433 + }, + { + "epoch": 0.83, + "learning_rate": 1.3125717679456447e-05, + "loss": 0.0, + "step": 434 + }, + { + "epoch": 0.84, + "learning_rate": 1.309609758145633e-05, + "loss": 0.0, + "step": 435 + }, + { + "epoch": 0.84, + "learning_rate": 1.3066447409333345e-05, + "loss": 0.0, + "step": 436 + }, + { + "epoch": 0.84, + "learning_rate": 1.3036767451096148e-05, + "loss": 0.0, + "step": 437 + }, + { + "epoch": 0.84, + "learning_rate": 1.300705799504273e-05, + "loss": 0.0, + "step": 438 + }, + { + "epoch": 0.84, + "learning_rate": 1.2977319329757616e-05, + "loss": 0.0, + "step": 439 + }, + { + "epoch": 0.85, + "learning_rate": 1.2947551744109044e-05, + "loss": 0.0, + "step": 440 + }, + { + "epoch": 0.85, + "learning_rate": 1.2917755527246179e-05, + "loss": 0.0, + "step": 441 + }, + { + "epoch": 0.85, + "learning_rate": 1.28879309685963e-05, + "loss": 0.0, + "step": 442 + }, + { + "epoch": 0.85, + "learning_rate": 1.2858078357861979e-05, + "loss": 0.0, + "step": 443 + }, + { + "epoch": 0.85, + "learning_rate": 1.2828197985018276e-05, + "loss": 0.0, + "step": 444 + }, + { + "epoch": 0.86, + "learning_rate": 1.2798290140309924e-05, + "loss": 0.0, + "step": 445 + }, + { + "epoch": 0.86, + "learning_rate": 1.2768355114248493e-05, + "loss": 0.0, + "step": 446 + }, + { + "epoch": 0.86, + "learning_rate": 1.2738393197609602e-05, + "loss": 0.0, + "step": 447 + }, + { + "epoch": 0.86, + "learning_rate": 1.2708404681430054e-05, + "loss": 0.0, + "step": 448 + }, + { + "epoch": 0.86, + "learning_rate": 1.2678389857005033e-05, + "loss": 0.0, + "step": 449 + }, + { + "epoch": 0.87, + "learning_rate": 1.2648349015885272e-05, + "loss": 0.0, + "step": 450 + }, + { + "epoch": 0.87, + "learning_rate": 1.2618282449874221e-05, + "loss": 0.0, + "step": 451 + }, + { + "epoch": 0.87, + "learning_rate": 1.2588190451025209e-05, + "loss": 0.0, + "step": 452 + }, + { + "epoch": 0.87, + "learning_rate": 1.2558073311638604e-05, + "loss": 0.0, + "step": 453 + }, + { + "epoch": 0.87, + "learning_rate": 1.2527931324258975e-05, + "loss": 0.0, + "step": 454 + }, + { + "epoch": 0.88, + "learning_rate": 1.249776478167227e-05, + "loss": 0.0, + "step": 455 + }, + { + "epoch": 0.88, + "learning_rate": 1.2467573976902936e-05, + "loss": 0.0, + "step": 456 + }, + { + "epoch": 0.88, + "learning_rate": 1.2437359203211109e-05, + "loss": 0.0, + "step": 457 + }, + { + "epoch": 0.88, + "learning_rate": 1.2407120754089733e-05, + "loss": 0.0, + "step": 458 + }, + { + "epoch": 0.88, + "learning_rate": 1.2376858923261732e-05, + "loss": 0.0, + "step": 459 + }, + { + "epoch": 0.88, + "learning_rate": 1.2346574004677154e-05, + "loss": 0.0, + "step": 460 + }, + { + "epoch": 0.89, + "learning_rate": 1.2316266292510305e-05, + "loss": 0.0, + "step": 461 + }, + { + "epoch": 0.89, + "learning_rate": 1.2285936081156897e-05, + "loss": 0.0, + "step": 462 + }, + { + "epoch": 0.89, + "learning_rate": 1.2255583665231196e-05, + "loss": 0.0, + "step": 463 + }, + { + "epoch": 0.89, + "learning_rate": 1.2225209339563144e-05, + "loss": 0.0, + "step": 464 + }, + { + "epoch": 0.89, + "learning_rate": 1.2194813399195518e-05, + "loss": 0.0, + "step": 465 + }, + { + "epoch": 0.9, + "learning_rate": 1.2164396139381029e-05, + "loss": 0.0, + "step": 466 + }, + { + "epoch": 0.9, + "learning_rate": 1.2133957855579501e-05, + "loss": 0.0, + "step": 467 + }, + { + "epoch": 0.9, + "learning_rate": 1.210349884345496e-05, + "loss": 0.0, + "step": 468 + }, + { + "epoch": 0.9, + "learning_rate": 1.2073019398872778e-05, + "loss": 0.0, + "step": 469 + }, + { + "epoch": 0.9, + "learning_rate": 1.2042519817896805e-05, + "loss": 0.0, + "step": 470 + }, + { + "epoch": 0.91, + "learning_rate": 1.2012000396786485e-05, + "loss": 0.0, + "step": 471 + }, + { + "epoch": 0.91, + "learning_rate": 1.1981461431993978e-05, + "loss": 0.0, + "step": 472 + }, + { + "epoch": 0.91, + "learning_rate": 1.1950903220161286e-05, + "loss": 0.0, + "step": 473 + }, + { + "epoch": 0.91, + "learning_rate": 1.1920326058117364e-05, + "loss": 0.0, + "step": 474 + }, + { + "epoch": 0.91, + "learning_rate": 1.1889730242875243e-05, + "loss": 0.0, + "step": 475 + }, + { + "epoch": 0.92, + "learning_rate": 1.1859116071629148e-05, + "loss": 0.0, + "step": 476 + }, + { + "epoch": 0.92, + "learning_rate": 1.1828483841751597e-05, + "loss": 0.0, + "step": 477 + }, + { + "epoch": 0.92, + "learning_rate": 1.1797833850790527e-05, + "loss": 0.0, + "step": 478 + }, + { + "epoch": 0.92, + "learning_rate": 1.1767166396466404e-05, + "loss": 0.0, + "step": 479 + }, + { + "epoch": 0.92, + "learning_rate": 1.1736481776669307e-05, + "loss": 0.0, + "step": 480 + }, + { + "epoch": 0.93, + "learning_rate": 1.1705780289456069e-05, + "loss": 0.0, + "step": 481 + }, + { + "epoch": 0.93, + "learning_rate": 1.1675062233047365e-05, + "loss": 0.0, + "step": 482 + }, + { + "epoch": 0.93, + "learning_rate": 1.1644327905824808e-05, + "loss": 0.0, + "step": 483 + }, + { + "epoch": 0.93, + "learning_rate": 1.1613577606328068e-05, + "loss": 0.0, + "step": 484 + }, + { + "epoch": 0.93, + "learning_rate": 1.1582811633251949e-05, + "loss": 0.0, + "step": 485 + }, + { + "epoch": 0.93, + "learning_rate": 1.1552030285443516e-05, + "loss": 0.0, + "step": 486 + }, + { + "epoch": 0.94, + "learning_rate": 1.1521233861899168e-05, + "loss": 0.0, + "step": 487 + }, + { + "epoch": 0.94, + "learning_rate": 1.1490422661761744e-05, + "loss": 0.0, + "step": 488 + }, + { + "epoch": 0.94, + "learning_rate": 1.1459596984317622e-05, + "loss": 0.0, + "step": 489 + }, + { + "epoch": 0.94, + "learning_rate": 1.1428757128993801e-05, + "loss": 0.0, + "step": 490 + }, + { + "epoch": 0.94, + "learning_rate": 1.1397903395354996e-05, + "loss": 0.0, + "step": 491 + }, + { + "epoch": 0.95, + "learning_rate": 1.1367036083100735e-05, + "loss": 0.0, + "step": 492 + }, + { + "epoch": 0.95, + "learning_rate": 1.1336155492062439e-05, + "loss": 0.0, + "step": 493 + }, + { + "epoch": 0.95, + "learning_rate": 1.130526192220052e-05, + "loss": 0.0, + "step": 494 + }, + { + "epoch": 0.95, + "learning_rate": 1.1274355673601446e-05, + "loss": 0.0, + "step": 495 + }, + { + "epoch": 0.95, + "learning_rate": 1.1243437046474854e-05, + "loss": 0.0, + "step": 496 + }, + { + "epoch": 0.96, + "learning_rate": 1.1212506341150615e-05, + "loss": 0.0, + "step": 497 + }, + { + "epoch": 0.96, + "learning_rate": 1.118156385807593e-05, + "loss": 0.0, + "step": 498 + }, + { + "epoch": 0.96, + "learning_rate": 1.1150609897812387e-05, + "loss": 0.0, + "step": 499 + }, + { + "epoch": 0.96, + "learning_rate": 1.1119644761033079e-05, + "loss": 0.0, + "step": 500 + }, + { + "epoch": 0.96, + "learning_rate": 1.1088668748519646e-05, + "loss": 0.0, + "step": 501 + }, + { + "epoch": 0.97, + "learning_rate": 1.105768216115938e-05, + "loss": 0.0, + "step": 502 + }, + { + "epoch": 0.97, + "learning_rate": 1.1026685299942286e-05, + "loss": 0.0, + "step": 503 + }, + { + "epoch": 0.97, + "learning_rate": 1.0995678465958168e-05, + "loss": 0.0, + "step": 504 + }, + { + "epoch": 0.97, + "learning_rate": 1.0964661960393703e-05, + "loss": 0.0, + "step": 505 + }, + { + "epoch": 0.97, + "learning_rate": 1.0933636084529507e-05, + "loss": 0.0, + "step": 506 + }, + { + "epoch": 0.97, + "learning_rate": 1.0902601139737225e-05, + "loss": 0.0, + "step": 507 + }, + { + "epoch": 0.98, + "learning_rate": 1.0871557427476585e-05, + "loss": 0.0, + "step": 508 + }, + { + "epoch": 0.98, + "learning_rate": 1.0840505249292477e-05, + "loss": 0.0, + "step": 509 + }, + { + "epoch": 0.98, + "learning_rate": 1.0809444906812034e-05, + "loss": 0.0, + "step": 510 + }, + { + "epoch": 0.98, + "learning_rate": 1.0778376701741688e-05, + "loss": 0.0, + "step": 511 + }, + { + "epoch": 0.98, + "learning_rate": 1.0747300935864245e-05, + "loss": 0.0, + "step": 512 + }, + { + "epoch": 0.99, + "learning_rate": 1.0716217911035952e-05, + "loss": 0.0, + "step": 513 + }, + { + "epoch": 0.99, + "learning_rate": 1.0685127929183567e-05, + "loss": 0.0, + "step": 514 + }, + { + "epoch": 0.99, + "learning_rate": 1.0654031292301432e-05, + "loss": 0.0, + "step": 515 + }, + { + "epoch": 0.99, + "learning_rate": 1.0622928302448523e-05, + "loss": 0.0, + "step": 516 + }, + { + "epoch": 0.99, + "learning_rate": 1.0591819261745528e-05, + "loss": 0.0, + "step": 517 + }, + { + "epoch": 1.0, + "learning_rate": 1.0560704472371919e-05, + "loss": 0.0, + "step": 518 + }, + { + "epoch": 1.0, + "learning_rate": 1.0529584236562995e-05, + "loss": 0.0, + "step": 519 + }, + { + "epoch": 1.0, + "learning_rate": 1.0498458856606972e-05, + "loss": 0.0, + "step": 520 + }, + { + "epoch": 1.0, + "learning_rate": 1.0467328634842024e-05, + "loss": 0.0, + "step": 521 + }, + { + "epoch": 1.0, + "learning_rate": 1.0436193873653362e-05, + "loss": 0.0, + "step": 522 + }, + { + "epoch": 1.01, + "learning_rate": 1.0405054875470287e-05, + "loss": 0.0, + "step": 523 + }, + { + "epoch": 1.01, + "learning_rate": 1.037391194276326e-05, + "loss": 0.0, + "step": 524 + }, + { + "epoch": 1.01, + "learning_rate": 1.0342765378040953e-05, + "loss": 0.0, + "step": 525 + }, + { + "epoch": 1.01, + "learning_rate": 1.0311615483847333e-05, + "loss": 0.0, + "step": 526 + }, + { + "epoch": 1.01, + "learning_rate": 1.028046256275869e-05, + "loss": 0.0, + "step": 527 + }, + { + "epoch": 1.02, + "learning_rate": 1.0249306917380731e-05, + "loss": 0.0, + "step": 528 + }, + { + "epoch": 1.02, + "learning_rate": 1.0218148850345613e-05, + "loss": 0.0, + "step": 529 + }, + { + "epoch": 1.02, + "learning_rate": 1.0186988664309023e-05, + "loss": 0.0, + "step": 530 + }, + { + "epoch": 1.02, + "learning_rate": 1.0155826661947232e-05, + "loss": 0.0, + "step": 531 + }, + { + "epoch": 1.02, + "learning_rate": 1.0124663145954152e-05, + "loss": 0.0, + "step": 532 + }, + { + "epoch": 1.02, + "learning_rate": 1.0093498419038394e-05, + "loss": 0.0, + "step": 533 + }, + { + "epoch": 1.03, + "learning_rate": 1.0062332783920337e-05, + "loss": 0.0, + "step": 534 + }, + { + "epoch": 1.03, + "learning_rate": 1.0031166543329179e-05, + "loss": 0.0, + "step": 535 + }, + { + "epoch": 1.03, + "learning_rate": 1e-05, + "loss": 0.0, + "step": 536 + }, + { + "epoch": 1.03, + "learning_rate": 9.968833456670824e-06, + "loss": 0.0, + "step": 537 + }, + { + "epoch": 1.03, + "learning_rate": 9.937667216079665e-06, + "loss": 0.0, + "step": 538 + }, + { + "epoch": 1.04, + "learning_rate": 9.90650158096161e-06, + "loss": 0.0, + "step": 539 + }, + { + "epoch": 1.04, + "learning_rate": 9.87533685404585e-06, + "loss": 0.0, + "step": 540 + }, + { + "epoch": 1.04, + "learning_rate": 9.844173338052771e-06, + "loss": 0.0, + "step": 541 + }, + { + "epoch": 1.04, + "learning_rate": 9.81301133569098e-06, + "loss": 0.0, + "step": 542 + }, + { + "epoch": 1.04, + "learning_rate": 9.78185114965439e-06, + "loss": 0.0, + "step": 543 + }, + { + "epoch": 1.05, + "learning_rate": 9.750693082619274e-06, + "loss": 0.0, + "step": 544 + }, + { + "epoch": 1.05, + "learning_rate": 9.719537437241311e-06, + "loss": 0.0, + "step": 545 + }, + { + "epoch": 1.05, + "learning_rate": 9.68838451615267e-06, + "loss": 0.0, + "step": 546 + }, + { + "epoch": 1.05, + "learning_rate": 9.65723462195905e-06, + "loss": 0.0, + "step": 547 + }, + { + "epoch": 1.05, + "learning_rate": 9.626088057236745e-06, + "loss": 0.0, + "step": 548 + }, + { + "epoch": 1.06, + "learning_rate": 9.594945124529718e-06, + "loss": 0.0, + "step": 549 + }, + { + "epoch": 1.06, + "learning_rate": 9.563806126346643e-06, + "loss": 0.0, + "step": 550 + }, + { + "epoch": 1.06, + "learning_rate": 9.532671365157979e-06, + "loss": 0.0, + "step": 551 + }, + { + "epoch": 1.06, + "learning_rate": 9.501541143393028e-06, + "loss": 0.0, + "step": 552 + }, + { + "epoch": 1.06, + "learning_rate": 9.470415763437003e-06, + "loss": 0.0, + "step": 553 + }, + { + "epoch": 1.07, + "learning_rate": 9.439295527628083e-06, + "loss": 0.0, + "step": 554 + }, + { + "epoch": 1.07, + "learning_rate": 9.408180738254472e-06, + "loss": 0.0, + "step": 555 + }, + { + "epoch": 1.07, + "learning_rate": 9.377071697551479e-06, + "loss": 0.0, + "step": 556 + }, + { + "epoch": 1.07, + "learning_rate": 9.34596870769857e-06, + "loss": 0.0, + "step": 557 + }, + { + "epoch": 1.07, + "learning_rate": 9.314872070816435e-06, + "loss": 0.0, + "step": 558 + }, + { + "epoch": 1.07, + "learning_rate": 9.28378208896405e-06, + "loss": 0.0, + "step": 559 + }, + { + "epoch": 1.08, + "learning_rate": 9.252699064135759e-06, + "loss": 0.0, + "step": 560 + }, + { + "epoch": 1.08, + "learning_rate": 9.221623298258315e-06, + "loss": 0.0, + "step": 561 + }, + { + "epoch": 1.08, + "learning_rate": 9.190555093187968e-06, + "loss": 0.0, + "step": 562 + }, + { + "epoch": 1.08, + "learning_rate": 9.159494750707527e-06, + "loss": 0.0, + "step": 563 + }, + { + "epoch": 1.08, + "learning_rate": 9.128442572523418e-06, + "loss": 0.0, + "step": 564 + }, + { + "epoch": 1.09, + "learning_rate": 9.097398860262777e-06, + "loss": 0.0, + "step": 565 + }, + { + "epoch": 1.09, + "learning_rate": 9.066363915470494e-06, + "loss": 0.0, + "step": 566 + }, + { + "epoch": 1.09, + "learning_rate": 9.0353380396063e-06, + "loss": 0.0, + "step": 567 + }, + { + "epoch": 1.09, + "learning_rate": 9.004321534041836e-06, + "loss": 0.0, + "step": 568 + }, + { + "epoch": 1.09, + "learning_rate": 8.973314700057717e-06, + "loss": 0.0, + "step": 569 + }, + { + "epoch": 1.1, + "learning_rate": 8.942317838840625e-06, + "loss": 0.0, + "step": 570 + }, + { + "epoch": 1.1, + "learning_rate": 8.911331251480357e-06, + "loss": 0.0, + "step": 571 + }, + { + "epoch": 1.1, + "learning_rate": 8.880355238966923e-06, + "loss": 0.0, + "step": 572 + }, + { + "epoch": 1.1, + "learning_rate": 8.849390102187615e-06, + "loss": 0.0, + "step": 573 + }, + { + "epoch": 1.1, + "learning_rate": 8.818436141924072e-06, + "loss": 0.0, + "step": 574 + }, + { + "epoch": 1.11, + "learning_rate": 8.787493658849387e-06, + "loss": 0.0, + "step": 575 + }, + { + "epoch": 1.11, + "learning_rate": 8.756562953525151e-06, + "loss": 0.0, + "step": 576 + }, + { + "epoch": 1.11, + "learning_rate": 8.72564432639856e-06, + "loss": 0.0, + "step": 577 + }, + { + "epoch": 1.11, + "learning_rate": 8.694738077799487e-06, + "loss": 0.0, + "step": 578 + }, + { + "epoch": 1.11, + "learning_rate": 8.663844507937563e-06, + "loss": 0.0, + "step": 579 + }, + { + "epoch": 1.12, + "learning_rate": 8.632963916899268e-06, + "loss": 0.0, + "step": 580 + }, + { + "epoch": 1.12, + "learning_rate": 8.602096604645009e-06, + "loss": 0.0, + "step": 581 + }, + { + "epoch": 1.12, + "learning_rate": 8.571242871006202e-06, + "loss": 0.0, + "step": 582 + }, + { + "epoch": 1.12, + "learning_rate": 8.540403015682382e-06, + "loss": 0.0, + "step": 583 + }, + { + "epoch": 1.12, + "learning_rate": 8.509577338238255e-06, + "loss": 0.0, + "step": 584 + }, + { + "epoch": 1.12, + "learning_rate": 8.478766138100834e-06, + "loss": 0.0, + "step": 585 + }, + { + "epoch": 1.13, + "learning_rate": 8.447969714556484e-06, + "loss": 0.0, + "step": 586 + }, + { + "epoch": 1.13, + "learning_rate": 8.417188366748051e-06, + "loss": 0.0, + "step": 587 + }, + { + "epoch": 1.13, + "learning_rate": 8.386422393671934e-06, + "loss": 0.0, + "step": 588 + }, + { + "epoch": 1.13, + "learning_rate": 8.355672094175192e-06, + "loss": 0.0, + "step": 589 + }, + { + "epoch": 1.13, + "learning_rate": 8.324937766952638e-06, + "loss": 0.0, + "step": 590 + }, + { + "epoch": 1.14, + "learning_rate": 8.294219710543931e-06, + "loss": 0.0, + "step": 591 + }, + { + "epoch": 1.14, + "learning_rate": 8.263518223330698e-06, + "loss": 0.0, + "step": 592 + }, + { + "epoch": 1.14, + "learning_rate": 8.232833603533601e-06, + "loss": 0.0, + "step": 593 + }, + { + "epoch": 1.14, + "learning_rate": 8.202166149209475e-06, + "loss": 0.0, + "step": 594 + }, + { + "epoch": 1.14, + "learning_rate": 8.171516158248406e-06, + "loss": 0.0, + "step": 595 + }, + { + "epoch": 1.15, + "learning_rate": 8.140883928370855e-06, + "loss": 0.0, + "step": 596 + }, + { + "epoch": 1.15, + "learning_rate": 8.11026975712476e-06, + "loss": 0.0, + "step": 597 + }, + { + "epoch": 1.15, + "learning_rate": 8.079673941882639e-06, + "loss": 0.0, + "step": 598 + }, + { + "epoch": 1.15, + "learning_rate": 8.04909677983872e-06, + "loss": 0.0, + "step": 599 + }, + { + "epoch": 1.15, + "learning_rate": 8.018538568006027e-06, + "loss": 0.0, + "step": 600 + }, + { + "epoch": 1.16, + "learning_rate": 7.987999603213518e-06, + "loss": 0.0, + "step": 601 + }, + { + "epoch": 1.16, + "learning_rate": 7.957480182103198e-06, + "loss": 0.0, + "step": 602 + }, + { + "epoch": 1.16, + "learning_rate": 7.926980601127225e-06, + "loss": 0.0, + "step": 603 + }, + { + "epoch": 1.16, + "learning_rate": 7.896501156545044e-06, + "loss": 0.0, + "step": 604 + }, + { + "epoch": 1.16, + "learning_rate": 7.866042144420502e-06, + "loss": 0.0, + "step": 605 + }, + { + "epoch": 1.17, + "learning_rate": 7.835603860618973e-06, + "loss": 0.0, + "step": 606 + }, + { + "epoch": 1.17, + "learning_rate": 7.805186600804489e-06, + "loss": 0.0, + "step": 607 + }, + { + "epoch": 1.17, + "learning_rate": 7.774790660436857e-06, + "loss": 0.0, + "step": 608 + }, + { + "epoch": 1.17, + "learning_rate": 7.744416334768809e-06, + "loss": 0.0, + "step": 609 + }, + { + "epoch": 1.17, + "learning_rate": 7.714063918843106e-06, + "loss": 0.0, + "step": 610 + }, + { + "epoch": 1.18, + "learning_rate": 7.6837337074897e-06, + "loss": 0.0, + "step": 611 + }, + { + "epoch": 1.18, + "learning_rate": 7.653425995322852e-06, + "loss": 0.0, + "step": 612 + }, + { + "epoch": 1.18, + "learning_rate": 7.623141076738271e-06, + "loss": 0.0, + "step": 613 + }, + { + "epoch": 1.18, + "learning_rate": 7.592879245910273e-06, + "loss": 0.0, + "step": 614 + }, + { + "epoch": 1.18, + "learning_rate": 7.562640796788893e-06, + "loss": 0.0, + "step": 615 + }, + { + "epoch": 1.18, + "learning_rate": 7.532426023097063e-06, + "loss": 0.0, + "step": 616 + }, + { + "epoch": 1.19, + "learning_rate": 7.50223521832773e-06, + "loss": 0.0, + "step": 617 + }, + { + "epoch": 1.19, + "learning_rate": 7.472068675741024e-06, + "loss": 0.0, + "step": 618 + }, + { + "epoch": 1.19, + "learning_rate": 7.4419266883614e-06, + "loss": 0.0, + "step": 619 + }, + { + "epoch": 1.19, + "learning_rate": 7.411809548974792e-06, + "loss": 0.0, + "step": 620 + }, + { + "epoch": 1.19, + "learning_rate": 7.38171755012578e-06, + "loss": 0.0, + "step": 621 + }, + { + "epoch": 1.2, + "learning_rate": 7.3516509841147276e-06, + "loss": 0.0, + "step": 622 + }, + { + "epoch": 1.2, + "learning_rate": 7.321610142994971e-06, + "loss": 0.0, + "step": 623 + }, + { + "epoch": 1.2, + "learning_rate": 7.291595318569951e-06, + "loss": 0.0, + "step": 624 + }, + { + "epoch": 1.2, + "learning_rate": 7.2616068023904e-06, + "loss": 0.0, + "step": 625 + }, + { + "epoch": 1.2, + "learning_rate": 7.2316448857515076e-06, + "loss": 0.0, + "step": 626 + }, + { + "epoch": 1.21, + "learning_rate": 7.201709859690081e-06, + "loss": 0.0, + "step": 627 + }, + { + "epoch": 1.21, + "learning_rate": 7.171802014981726e-06, + "loss": 0.0, + "step": 628 + }, + { + "epoch": 1.21, + "learning_rate": 7.141921642138025e-06, + "loss": 0.0, + "step": 629 + }, + { + "epoch": 1.21, + "learning_rate": 7.112069031403704e-06, + "loss": 0.0, + "step": 630 + }, + { + "epoch": 1.21, + "learning_rate": 7.082244472753823e-06, + "loss": 0.0, + "step": 631 + }, + { + "epoch": 1.22, + "learning_rate": 7.052448255890958e-06, + "loss": 0.0, + "step": 632 + }, + { + "epoch": 1.22, + "learning_rate": 7.022680670242387e-06, + "loss": 0.0, + "step": 633 + }, + { + "epoch": 1.22, + "learning_rate": 6.992942004957271e-06, + "loss": 0.0, + "step": 634 + }, + { + "epoch": 1.22, + "learning_rate": 6.963232548903853e-06, + "loss": 0.0, + "step": 635 + }, + { + "epoch": 1.22, + "learning_rate": 6.933552590666659e-06, + "loss": 0.0, + "step": 636 + }, + { + "epoch": 1.23, + "learning_rate": 6.903902418543671e-06, + "loss": 0.0, + "step": 637 + }, + { + "epoch": 1.23, + "learning_rate": 6.874282320543557e-06, + "loss": 0.0, + "step": 638 + }, + { + "epoch": 1.23, + "learning_rate": 6.844692584382848e-06, + "loss": 0.0, + "step": 639 + }, + { + "epoch": 1.23, + "learning_rate": 6.815133497483157e-06, + "loss": 0.0, + "step": 640 + }, + { + "epoch": 1.23, + "learning_rate": 6.785605346968387e-06, + "loss": 0.0, + "step": 641 + }, + { + "epoch": 1.23, + "learning_rate": 6.7561084196619306e-06, + "loss": 0.0, + "step": 642 + }, + { + "epoch": 1.24, + "learning_rate": 6.7266430020839e-06, + "loss": 0.0, + "step": 643 + }, + { + "epoch": 1.24, + "learning_rate": 6.697209380448333e-06, + "loss": 0.0, + "step": 644 + }, + { + "epoch": 1.24, + "learning_rate": 6.66780784066041e-06, + "loss": 0.0, + "step": 645 + }, + { + "epoch": 1.24, + "learning_rate": 6.638438668313695e-06, + "loss": 0.0, + "step": 646 + }, + { + "epoch": 1.24, + "learning_rate": 6.609102148687333e-06, + "loss": 0.0, + "step": 647 + }, + { + "epoch": 1.25, + "learning_rate": 6.579798566743314e-06, + "loss": 0.0, + "step": 648 + }, + { + "epoch": 1.25, + "learning_rate": 6.550528207123667e-06, + "loss": 0.0, + "step": 649 + }, + { + "epoch": 1.25, + "learning_rate": 6.521291354147727e-06, + "loss": 0.0, + "step": 650 + }, + { + "epoch": 1.25, + "learning_rate": 6.492088291809355e-06, + "loss": 0.0, + "step": 651 + }, + { + "epoch": 1.25, + "learning_rate": 6.462919303774186e-06, + "loss": 0.0, + "step": 652 + }, + { + "epoch": 1.26, + "learning_rate": 6.43378467337687e-06, + "loss": 0.0, + "step": 653 + }, + { + "epoch": 1.26, + "learning_rate": 6.404684683618325e-06, + "loss": 0.0, + "step": 654 + }, + { + "epoch": 1.26, + "learning_rate": 6.375619617162985e-06, + "loss": 0.0, + "step": 655 + }, + { + "epoch": 1.26, + "learning_rate": 6.34658975633605e-06, + "loss": 0.0, + "step": 656 + }, + { + "epoch": 1.26, + "learning_rate": 6.317595383120756e-06, + "loss": 0.0, + "step": 657 + }, + { + "epoch": 1.27, + "learning_rate": 6.288636779155621e-06, + "loss": 0.0, + "step": 658 + }, + { + "epoch": 1.27, + "learning_rate": 6.2597142257317185e-06, + "loss": 0.0, + "step": 659 + }, + { + "epoch": 1.27, + "learning_rate": 6.230828003789949e-06, + "loss": 0.0, + "step": 660 + }, + { + "epoch": 1.27, + "learning_rate": 6.201978393918291e-06, + "loss": 0.0, + "step": 661 + }, + { + "epoch": 1.27, + "learning_rate": 6.173165676349103e-06, + "loss": 0.0, + "step": 662 + }, + { + "epoch": 1.27, + "learning_rate": 6.144390130956384e-06, + "loss": 0.0, + "step": 663 + }, + { + "epoch": 1.28, + "learning_rate": 6.115652037253054e-06, + "loss": 0.0, + "step": 664 + }, + { + "epoch": 1.28, + "learning_rate": 6.086951674388252e-06, + "loss": 0.0, + "step": 665 + }, + { + "epoch": 1.28, + "learning_rate": 6.058289321144608e-06, + "loss": 0.0, + "step": 666 + }, + { + "epoch": 1.28, + "learning_rate": 6.02966525593555e-06, + "loss": 0.0, + "step": 667 + }, + { + "epoch": 1.28, + "learning_rate": 6.001079756802592e-06, + "loss": 0.0, + "step": 668 + }, + { + "epoch": 1.29, + "learning_rate": 5.97253310141263e-06, + "loss": 0.0, + "step": 669 + }, + { + "epoch": 1.29, + "learning_rate": 5.944025567055251e-06, + "loss": 0.0, + "step": 670 + }, + { + "epoch": 1.29, + "learning_rate": 5.91555743064004e-06, + "loss": 0.0, + "step": 671 + }, + { + "epoch": 1.29, + "learning_rate": 5.887128968693887e-06, + "loss": 0.0, + "step": 672 + }, + { + "epoch": 1.29, + "learning_rate": 5.858740457358298e-06, + "loss": 0.0, + "step": 673 + }, + { + "epoch": 1.3, + "learning_rate": 5.830392172386723e-06, + "loss": 0.0, + "step": 674 + }, + { + "epoch": 1.3, + "learning_rate": 5.802084389141862e-06, + "loss": 0.0, + "step": 675 + }, + { + "epoch": 1.3, + "learning_rate": 5.773817382593008e-06, + "loss": 0.0, + "step": 676 + }, + { + "epoch": 1.3, + "learning_rate": 5.745591427313365e-06, + "loss": 0.0, + "step": 677 + }, + { + "epoch": 1.3, + "learning_rate": 5.717406797477371e-06, + "loss": 0.0, + "step": 678 + }, + { + "epoch": 1.31, + "learning_rate": 5.689263766858072e-06, + "loss": 0.0, + "step": 679 + }, + { + "epoch": 1.31, + "learning_rate": 5.66116260882442e-06, + "loss": 0.0, + "step": 680 + }, + { + "epoch": 1.31, + "learning_rate": 5.633103596338631e-06, + "loss": 0.0, + "step": 681 + }, + { + "epoch": 1.31, + "learning_rate": 5.6050870019535496e-06, + "loss": 0.0, + "step": 682 + }, + { + "epoch": 1.31, + "learning_rate": 5.5771130978099896e-06, + "loss": 0.0, + "step": 683 + }, + { + "epoch": 1.32, + "learning_rate": 5.549182155634076e-06, + "loss": 0.0, + "step": 684 + }, + { + "epoch": 1.32, + "learning_rate": 5.521294446734637e-06, + "loss": 0.0, + "step": 685 + }, + { + "epoch": 1.32, + "learning_rate": 5.493450242000546e-06, + "loss": 0.0, + "step": 686 + }, + { + "epoch": 1.32, + "learning_rate": 5.465649811898098e-06, + "loss": 0.0, + "step": 687 + }, + { + "epoch": 1.32, + "learning_rate": 5.43789342646837e-06, + "loss": 0.0, + "step": 688 + }, + { + "epoch": 1.32, + "learning_rate": 5.410181355324622e-06, + "loss": 0.0, + "step": 689 + }, + { + "epoch": 1.33, + "learning_rate": 5.382513867649663e-06, + "loss": 0.0, + "step": 690 + }, + { + "epoch": 1.33, + "learning_rate": 5.354891232193225e-06, + "loss": 0.0, + "step": 691 + }, + { + "epoch": 1.33, + "learning_rate": 5.32731371726938e-06, + "loss": 0.0, + "step": 692 + }, + { + "epoch": 1.33, + "learning_rate": 5.299781590753916e-06, + "loss": 0.0, + "step": 693 + }, + { + "epoch": 1.33, + "learning_rate": 5.2722951200817315e-06, + "loss": 0.0, + "step": 694 + }, + { + "epoch": 1.34, + "learning_rate": 5.244854572244249e-06, + "loss": 0.0, + "step": 695 + }, + { + "epoch": 1.34, + "learning_rate": 5.217460213786822e-06, + "loss": 0.0, + "step": 696 + }, + { + "epoch": 1.34, + "learning_rate": 5.190112310806126e-06, + "loss": 0.0, + "step": 697 + }, + { + "epoch": 1.34, + "learning_rate": 5.1628111289476025e-06, + "loss": 0.0, + "step": 698 + }, + { + "epoch": 1.34, + "learning_rate": 5.135556933402862e-06, + "loss": 0.0, + "step": 699 + }, + { + "epoch": 1.35, + "learning_rate": 5.108349988907111e-06, + "loss": 0.0, + "step": 700 + } + ], + "logging_steps": 1.0, + "max_steps": 1040, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 100, + "total_flos": 3.4919286073144115e+17, + "train_batch_size": 16, + "trial_name": null, + "trial_params": null +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/training_args.bin b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..2ca4d892afdd453b26723a9aa94e432cb44cc953 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:63da3a2d0bf1dde543b68e123590fcd7c42f45ec7eb68e86c6eadd439321f902 +size 6264 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/zero_to_fp32.py b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..c98caae31534368be22b67fc4ae906836c992a8d --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-700/zero_to_fp32.py @@ -0,0 +1,587 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: python zero_to_fp32.py . pytorch_model.bin + +import argparse +import torch +import glob +import math +import os +import re +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + + total_files = len(files) + state_dicts = [] + for f in files: + state_dict = torch.load(f, map_location=device) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + if zero_stage <= 2: + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + elif zero_stage == 3: + # if there is more than one param group, there will be multiple flattened tensors - one + # flattened tensor per group - for simplicity merge them into a single tensor + # + # XXX: could make the script more memory efficient for when there are multiple groups - it + # will require matching the sub-lists of param_shapes for each param group flattened tensor + + fp32_flat_groups = [ + torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) + ] + + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = fp32_flat_groups[0].numel() * world_size + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + for name, shape in param_shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # XXX: memory usage doubles here + state_dict[name] = torch.cat( + tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), + 0).narrow(0, 0, unpartitioned_numel).view(shape) + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + + Returns: + - pytorch ``state_dict`` + + Note: this approach may not work if your application doesn't have sufficient free CPU memory and + you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + """ + + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + print(f"Saving fp32 state dict to {output_file}") + torch.save(state_dict, output_file) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument( + "output_file", + type=str, + help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag) diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/config.json new file mode 100644 index 0000000000000000000000000000000000000000..44e6d4e17930a42d0aa68dcd3790bd5f32ba4ec4 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/config.json @@ -0,0 +1,73 @@ +{ + "_name_or_path": "../pretrained-models/llava-v1.6-mistral-7b", + "architectures": [ + "LlavaLlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 1, + "eos_token_id": 2, + "freeze_mm_mlp_adapter": false, + "freeze_mm_vision_resampler": false, + "hidden_act": "silu", + "hidden_size": 4096, + "image_aspect_ratio": "pad", + "image_crop_resolution": 224, + "image_grid_pinpoints": [ + [ + 336, + 672 + ], + [ + 672, + 336 + ], + [ + 672, + 672 + ], + [ + 1008, + 336 + ], + [ + 336, + 1008 + ] + ], + "image_split_resolution": 224, + "initializer_range": 0.02, + "intermediate_size": 14336, + "max_position_embeddings": 32768, + "mm_hidden_size": 1024, + "mm_patch_merge_type": "flat", + "mm_projector_lr": null, + "mm_projector_type": "mlp2x_gelu", + "mm_resampler_type": null, + "mm_use_im_patch_token": false, + "mm_use_im_start_end": false, + "mm_vision_select_feature": "patch", + "mm_vision_select_layer": -2, + "mm_vision_tower": "openai/clip-vit-large-patch14-336", + "mm_vision_tower_lr": 2e-06, + "model_type": "llava_llama", + "num_attention_heads": 32, + "num_hidden_layers": 32, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": null, + "rope_theta": 1000000.0, + "sliding_window": null, + "tie_word_embeddings": false, + "tokenizer_model_max_length": 2048, + "tokenizer_padding_side": "right", + "torch_dtype": "bfloat16", + "transformers_version": "4.37.2", + "tune_mm_mlp_adapter": false, + "tune_mm_vision_resampler": false, + "unfreeze_mm_vision_tower": true, + "use_cache": false, + "use_mm_proj": true, + "vocab_size": 32000 +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/generation_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..69b7806611a4865cd48c3e991dbd7d8312e0c5d3 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/generation_config.json @@ -0,0 +1,6 @@ +{ + "_from_model_config": true, + "bos_token_id": 1, + "eos_token_id": 2, + "transformers_version": "4.37.2" +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/latest b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/latest new file mode 100644 index 0000000000000000000000000000000000000000..57729c0be88118cbd582c8c68b4149cee821f0b4 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/latest @@ -0,0 +1 @@ +global_step800 \ No newline at end of file diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/model.safetensors.index.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..927da5be7e6e3ec29d3a967a09ba6a421d7a2191 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/model.safetensors.index.json @@ -0,0 +1,694 @@ +{ + "metadata": { + "total_size": 15132446720 + }, + "weight_map": { + "lm_head.weight": "model-00004-of-00004.safetensors", + "model.embed_tokens.weight": "model-00001-of-00004.safetensors", + "model.image_newline": "model-00001-of-00004.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.mm_projector.0.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.0.weight": "model-00003-of-00004.safetensors", + "model.mm_projector.2.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.2.weight": "model-00003-of-00004.safetensors", + "model.norm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.class_embedding": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.weight": "model-00003-of-00004.safetensors" + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_0.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..b346349ce12dd5a17d4b91ed2a5722bb52550950 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ad8a35afd8967cbb748405387e44426e43ad127028e826eddc9b67d2ca873c85 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_1.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..68f3c6994456cb8d0592a5375d99503c8924b1c4 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f338ce80d7c441076bfc8c53b84067a0181f5a14e80c13d5acb8150b659f4d73 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_2.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_2.pth new file mode 100644 index 0000000000000000000000000000000000000000..be044f6ceeed587d30e80c2f72d5aa19fdc9947b --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_2.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c9fbc9fa428939be10b46779f0eb5cd833e0da426b1cbdee77b3a55b6952235b +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_3.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_3.pth new file mode 100644 index 0000000000000000000000000000000000000000..fc825249656a9b858782542bd3f4386250f1dfe0 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_3.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ac55dba0b79d5fa4699d239da2f966d52040d576d31234ac8d4632e6956481bc +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_4.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_4.pth new file mode 100644 index 0000000000000000000000000000000000000000..d30f52a44be563c152ae09db6ae934da6da0d3ed --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_4.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:af2d0c015100768ffa23faf3b6c2d54ea89eb045603e30e55cd211e06ff34972 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_5.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_5.pth new file mode 100644 index 0000000000000000000000000000000000000000..c8715d27ab23ae545d58039cf949cc44ecc1da5e --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_5.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c60a1b40608e34bc801c8231f97b81c53b5290dfaed1b9cd0ccbeca29574a991 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_6.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_6.pth new file mode 100644 index 0000000000000000000000000000000000000000..1ed791b6ef76eadf0b0c55a5733411771e2ae027 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_6.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3ad6a142a403eb9aafc4a3a9a856bca648fe31fd22d796867baca31fb13656aa +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_7.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_7.pth new file mode 100644 index 0000000000000000000000000000000000000000..800c3bbbc5edf7db01a8316069d439c5fb8d8c30 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/rng_state_7.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:38bc23a138cc800b22881742c0f3f9a71731a9a7111c6058a0077e6274d21773 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/scheduler.pt b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..522b5e783e41d1fdf39b58aa3a02b807ebc04907 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6f69074328a85426f71aa98590d9b0521e0c534d0df8d3a277a9e97971cc12fd +size 1064 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/special_tokens_map.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..14761dcf1466dc232bd41de9c21d4c617b15755e --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/special_tokens_map.json @@ -0,0 +1,24 @@ +{ + "bos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": "", + "unk_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/tokenizer.model b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/tokenizer.model new file mode 100644 index 0000000000000000000000000000000000000000..8b443ef19c2a19acc3ac64fb9c3db4a72921dff6 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/tokenizer.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055 +size 493443 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/tokenizer_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..23dcf70e8cfc9b16310b6ff3dc98fdbc5adc11f8 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/tokenizer_config.json @@ -0,0 +1,44 @@ +{ + "add_bos_token": true, + "add_eos_token": false, + "added_tokens_decoder": { + "0": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "1": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "2": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + } + }, + "additional_special_tokens": [], + "bos_token": "", + "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", + "clean_up_tokenization_spaces": false, + "eos_token": "", + "legacy": true, + "model_max_length": 2048, + "pad_token": "", + "padding_side": "right", + "sp_model_kwargs": {}, + "spaces_between_special_tokens": false, + "tokenizer_class": "LlamaTokenizer", + "unk_token": "", + "use_default_system_prompt": false +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/trainer_state.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..b519216429a5688abf3b0d5b01ea48ed0577e73d --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/trainer_state.json @@ -0,0 +1,4821 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.5384615384615383, + "eval_steps": 500, + "global_step": 800, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 6.25e-07, + "loss": 3.7473, + "step": 1 + }, + { + "epoch": 0.0, + "learning_rate": 1.25e-06, + "loss": 0.0, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 1.8750000000000003e-06, + "loss": 0.0, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 2.5e-06, + "loss": 0.0, + "step": 4 + }, + { + "epoch": 0.01, + "learning_rate": 3.125e-06, + "loss": 0.0, + "step": 5 + }, + { + "epoch": 0.01, + "learning_rate": 3.7500000000000005e-06, + "loss": 0.0, + "step": 6 + }, + { + "epoch": 0.01, + "learning_rate": 4.3750000000000005e-06, + "loss": 0.0, + "step": 7 + }, + { + "epoch": 0.02, + "learning_rate": 5e-06, + "loss": 0.0, + "step": 8 + }, + { + "epoch": 0.02, + "learning_rate": 5.625e-06, + "loss": 0.0, + "step": 9 + }, + { + "epoch": 0.02, + "learning_rate": 6.25e-06, + "loss": 0.0, + "step": 10 + }, + { + "epoch": 0.02, + "learning_rate": 6.875e-06, + "loss": 0.0, + "step": 11 + }, + { + "epoch": 0.02, + "learning_rate": 7.500000000000001e-06, + "loss": 0.0, + "step": 12 + }, + { + "epoch": 0.03, + "learning_rate": 8.125000000000001e-06, + "loss": 0.0, + "step": 13 + }, + { + "epoch": 0.03, + "learning_rate": 8.750000000000001e-06, + "loss": 0.0, + "step": 14 + }, + { + "epoch": 0.03, + "learning_rate": 9.375000000000001e-06, + "loss": 0.0, + "step": 15 + }, + { + "epoch": 0.03, + "learning_rate": 1e-05, + "loss": 0.0, + "step": 16 + }, + { + "epoch": 0.03, + "learning_rate": 1.0625e-05, + "loss": 0.0, + "step": 17 + }, + { + "epoch": 0.03, + "learning_rate": 1.125e-05, + "loss": 0.0, + "step": 18 + }, + { + "epoch": 0.04, + "learning_rate": 1.1875e-05, + "loss": 0.0, + "step": 19 + }, + { + "epoch": 0.04, + "learning_rate": 1.25e-05, + "loss": 0.0, + "step": 20 + }, + { + "epoch": 0.04, + "learning_rate": 1.3125e-05, + "loss": 0.0, + "step": 21 + }, + { + "epoch": 0.04, + "learning_rate": 1.375e-05, + "loss": 0.0, + "step": 22 + }, + { + "epoch": 0.04, + "learning_rate": 1.4375e-05, + "loss": 0.0, + "step": 23 + }, + { + "epoch": 0.05, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0, + "step": 24 + }, + { + "epoch": 0.05, + "learning_rate": 1.5625e-05, + "loss": 0.0, + "step": 25 + }, + { + "epoch": 0.05, + "learning_rate": 1.6250000000000002e-05, + "loss": 0.0, + "step": 26 + }, + { + "epoch": 0.05, + "learning_rate": 1.6875e-05, + "loss": 0.0, + "step": 27 + }, + { + "epoch": 0.05, + "learning_rate": 1.7500000000000002e-05, + "loss": 0.0, + "step": 28 + }, + { + "epoch": 0.06, + "learning_rate": 1.8125e-05, + "loss": 0.0, + "step": 29 + }, + { + "epoch": 0.06, + "learning_rate": 1.8750000000000002e-05, + "loss": 0.0, + "step": 30 + }, + { + "epoch": 0.06, + "learning_rate": 1.9375e-05, + "loss": 0.0, + "step": 31 + }, + { + "epoch": 0.06, + "learning_rate": 2e-05, + "loss": 0.0, + "step": 32 + }, + { + "epoch": 0.06, + "learning_rate": 1.9999951432210905e-05, + "loss": 0.0, + "step": 33 + }, + { + "epoch": 0.07, + "learning_rate": 1.9999805729315383e-05, + "loss": 0.0, + "step": 34 + }, + { + "epoch": 0.07, + "learning_rate": 1.999956289272873e-05, + "loss": 0.0, + "step": 35 + }, + { + "epoch": 0.07, + "learning_rate": 1.999922292480975e-05, + "loss": 0.0, + "step": 36 + }, + { + "epoch": 0.07, + "learning_rate": 1.9998785828860744e-05, + "loss": 0.0, + "step": 37 + }, + { + "epoch": 0.07, + "learning_rate": 1.9998251609127465e-05, + "loss": 0.0, + "step": 38 + }, + { + "epoch": 0.07, + "learning_rate": 1.999762027079909e-05, + "loss": 0.0, + "step": 39 + }, + { + "epoch": 0.08, + "learning_rate": 1.9996891820008165e-05, + "loss": 0.0, + "step": 40 + }, + { + "epoch": 0.08, + "learning_rate": 1.9996066263830533e-05, + "loss": 0.0, + "step": 41 + }, + { + "epoch": 0.08, + "learning_rate": 1.9995143610285275e-05, + "loss": 0.0, + "step": 42 + }, + { + "epoch": 0.08, + "learning_rate": 1.9994123868334655e-05, + "loss": 0.0, + "step": 43 + }, + { + "epoch": 0.08, + "learning_rate": 1.9993007047883988e-05, + "loss": 0.0, + "step": 44 + }, + { + "epoch": 0.09, + "learning_rate": 1.999179315978157e-05, + "loss": 0.0, + "step": 45 + }, + { + "epoch": 0.09, + "learning_rate": 1.999048221581858e-05, + "loss": 0.0, + "step": 46 + }, + { + "epoch": 0.09, + "learning_rate": 1.9989074228728942e-05, + "loss": 0.0, + "step": 47 + }, + { + "epoch": 0.09, + "learning_rate": 1.9987569212189224e-05, + "loss": 0.0, + "step": 48 + }, + { + "epoch": 0.09, + "learning_rate": 1.9985967180818493e-05, + "loss": 0.0, + "step": 49 + }, + { + "epoch": 0.1, + "learning_rate": 1.998426815017817e-05, + "loss": 0.0, + "step": 50 + }, + { + "epoch": 0.1, + "learning_rate": 1.998247213677188e-05, + "loss": 0.0, + "step": 51 + }, + { + "epoch": 0.1, + "learning_rate": 1.9980579158045322e-05, + "loss": 0.0, + "step": 52 + }, + { + "epoch": 0.1, + "learning_rate": 1.9978589232386036e-05, + "loss": 0.0, + "step": 53 + }, + { + "epoch": 0.1, + "learning_rate": 1.997650237912329e-05, + "loss": 0.0, + "step": 54 + }, + { + "epoch": 0.11, + "learning_rate": 1.997431861852785e-05, + "loss": 0.0, + "step": 55 + }, + { + "epoch": 0.11, + "learning_rate": 1.9972037971811802e-05, + "loss": 0.0, + "step": 56 + }, + { + "epoch": 0.11, + "learning_rate": 1.996966046112834e-05, + "loss": 0.0, + "step": 57 + }, + { + "epoch": 0.11, + "learning_rate": 1.996718610957155e-05, + "loss": 0.0, + "step": 58 + }, + { + "epoch": 0.11, + "learning_rate": 1.9964614941176194e-05, + "loss": 0.0, + "step": 59 + }, + { + "epoch": 0.12, + "learning_rate": 1.9961946980917457e-05, + "loss": 0.0, + "step": 60 + }, + { + "epoch": 0.12, + "learning_rate": 1.995918225471073e-05, + "loss": 0.0, + "step": 61 + }, + { + "epoch": 0.12, + "learning_rate": 1.9956320789411338e-05, + "loss": 0.0, + "step": 62 + }, + { + "epoch": 0.12, + "learning_rate": 1.9953362612814294e-05, + "loss": 0.0, + "step": 63 + }, + { + "epoch": 0.12, + "learning_rate": 1.9950307753654016e-05, + "loss": 0.0, + "step": 64 + }, + { + "epoch": 0.12, + "learning_rate": 1.994715624160405e-05, + "loss": 0.0, + "step": 65 + }, + { + "epoch": 0.13, + "learning_rate": 1.99439081072768e-05, + "loss": 0.0, + "step": 66 + }, + { + "epoch": 0.13, + "learning_rate": 1.9940563382223196e-05, + "loss": 0.0, + "step": 67 + }, + { + "epoch": 0.13, + "learning_rate": 1.9937122098932428e-05, + "loss": 0.0, + "step": 68 + }, + { + "epoch": 0.13, + "learning_rate": 1.9933584290831593e-05, + "loss": 0.0, + "step": 69 + }, + { + "epoch": 0.13, + "learning_rate": 1.9929949992285397e-05, + "loss": 0.0, + "step": 70 + }, + { + "epoch": 0.14, + "learning_rate": 1.992621923859581e-05, + "loss": 0.0, + "step": 71 + }, + { + "epoch": 0.14, + "learning_rate": 1.9922392066001724e-05, + "loss": 0.0, + "step": 72 + }, + { + "epoch": 0.14, + "learning_rate": 1.99184685116786e-05, + "loss": 0.0, + "step": 73 + }, + { + "epoch": 0.14, + "learning_rate": 1.9914448613738107e-05, + "loss": 0.0, + "step": 74 + }, + { + "epoch": 0.14, + "learning_rate": 1.991033241122776e-05, + "loss": 0.0, + "step": 75 + }, + { + "epoch": 0.15, + "learning_rate": 1.9906119944130527e-05, + "loss": 0.0, + "step": 76 + }, + { + "epoch": 0.15, + "learning_rate": 1.9901811253364458e-05, + "loss": 0.0, + "step": 77 + }, + { + "epoch": 0.15, + "learning_rate": 1.9897406380782262e-05, + "loss": 0.0, + "step": 78 + }, + { + "epoch": 0.15, + "learning_rate": 1.989290536917093e-05, + "loss": 0.0, + "step": 79 + }, + { + "epoch": 0.15, + "learning_rate": 1.9888308262251286e-05, + "loss": 0.0, + "step": 80 + }, + { + "epoch": 0.16, + "learning_rate": 1.988361510467761e-05, + "loss": 0.0, + "step": 81 + }, + { + "epoch": 0.16, + "learning_rate": 1.9878825942037147e-05, + "loss": 0.0, + "step": 82 + }, + { + "epoch": 0.16, + "learning_rate": 1.9873940820849714e-05, + "loss": 0.0, + "step": 83 + }, + { + "epoch": 0.16, + "learning_rate": 1.9868959788567213e-05, + "loss": 0.0, + "step": 84 + }, + { + "epoch": 0.16, + "learning_rate": 1.9863882893573188e-05, + "loss": 0.0, + "step": 85 + }, + { + "epoch": 0.17, + "learning_rate": 1.985871018518236e-05, + "loss": 0.0, + "step": 86 + }, + { + "epoch": 0.17, + "learning_rate": 1.9853441713640123e-05, + "loss": 0.0, + "step": 87 + }, + { + "epoch": 0.17, + "learning_rate": 1.9848077530122083e-05, + "loss": 0.0, + "step": 88 + }, + { + "epoch": 0.17, + "learning_rate": 1.9842617686733546e-05, + "loss": 0.0, + "step": 89 + }, + { + "epoch": 0.17, + "learning_rate": 1.9837062236509013e-05, + "loss": 0.0, + "step": 90 + }, + { + "epoch": 0.17, + "learning_rate": 1.983141123341168e-05, + "loss": 0.0, + "step": 91 + }, + { + "epoch": 0.18, + "learning_rate": 1.9825664732332886e-05, + "loss": 0.0, + "step": 92 + }, + { + "epoch": 0.18, + "learning_rate": 1.9819822789091597e-05, + "loss": 0.0, + "step": 93 + }, + { + "epoch": 0.18, + "learning_rate": 1.981388546043388e-05, + "loss": 0.0, + "step": 94 + }, + { + "epoch": 0.18, + "learning_rate": 1.9807852804032306e-05, + "loss": 0.0, + "step": 95 + }, + { + "epoch": 0.18, + "learning_rate": 1.9801724878485438e-05, + "loss": 0.0, + "step": 96 + }, + { + "epoch": 0.19, + "learning_rate": 1.979550174331724e-05, + "loss": 0.0, + "step": 97 + }, + { + "epoch": 0.19, + "learning_rate": 1.9789183458976485e-05, + "loss": 0.0, + "step": 98 + }, + { + "epoch": 0.19, + "learning_rate": 1.97827700868362e-05, + "loss": 0.0, + "step": 99 + }, + { + "epoch": 0.19, + "learning_rate": 1.977626168919305e-05, + "loss": 0.0, + "step": 100 + }, + { + "epoch": 0.19, + "learning_rate": 1.9769658329266718e-05, + "loss": 0.0, + "step": 101 + }, + { + "epoch": 0.2, + "learning_rate": 1.9762960071199334e-05, + "loss": 0.0, + "step": 102 + }, + { + "epoch": 0.2, + "learning_rate": 1.9756166980054812e-05, + "loss": 0.0, + "step": 103 + }, + { + "epoch": 0.2, + "learning_rate": 1.9749279121818235e-05, + "loss": 0.0, + "step": 104 + }, + { + "epoch": 0.2, + "learning_rate": 1.9742296563395218e-05, + "loss": 0.0, + "step": 105 + }, + { + "epoch": 0.2, + "learning_rate": 1.9735219372611232e-05, + "loss": 0.0, + "step": 106 + }, + { + "epoch": 0.21, + "learning_rate": 1.9728047618210995e-05, + "loss": 0.0, + "step": 107 + }, + { + "epoch": 0.21, + "learning_rate": 1.9720781369857747e-05, + "loss": 0.0, + "step": 108 + }, + { + "epoch": 0.21, + "learning_rate": 1.9713420698132614e-05, + "loss": 0.0, + "step": 109 + }, + { + "epoch": 0.21, + "learning_rate": 1.970596567453391e-05, + "loss": 0.0, + "step": 110 + }, + { + "epoch": 0.21, + "learning_rate": 1.9698416371476434e-05, + "loss": 0.0, + "step": 111 + }, + { + "epoch": 0.22, + "learning_rate": 1.969077286229078e-05, + "loss": 0.0, + "step": 112 + }, + { + "epoch": 0.22, + "learning_rate": 1.9683035221222617e-05, + "loss": 0.0, + "step": 113 + }, + { + "epoch": 0.22, + "learning_rate": 1.9675203523431964e-05, + "loss": 0.0, + "step": 114 + }, + { + "epoch": 0.22, + "learning_rate": 1.9667277844992476e-05, + "loss": 0.0, + "step": 115 + }, + { + "epoch": 0.22, + "learning_rate": 1.9659258262890683e-05, + "loss": 0.0, + "step": 116 + }, + { + "epoch": 0.23, + "learning_rate": 1.9651144855025265e-05, + "loss": 0.0, + "step": 117 + }, + { + "epoch": 0.23, + "learning_rate": 1.964293770020628e-05, + "loss": 0.0, + "step": 118 + }, + { + "epoch": 0.23, + "learning_rate": 1.9634636878154393e-05, + "loss": 0.0, + "step": 119 + }, + { + "epoch": 0.23, + "learning_rate": 1.962624246950012e-05, + "loss": 0.0, + "step": 120 + }, + { + "epoch": 0.23, + "learning_rate": 1.9617754555783045e-05, + "loss": 0.0, + "step": 121 + }, + { + "epoch": 0.23, + "learning_rate": 1.9609173219450998e-05, + "loss": 0.0, + "step": 122 + }, + { + "epoch": 0.24, + "learning_rate": 1.960049854385929e-05, + "loss": 0.0, + "step": 123 + }, + { + "epoch": 0.24, + "learning_rate": 1.9591730613269878e-05, + "loss": 0.0, + "step": 124 + }, + { + "epoch": 0.24, + "learning_rate": 1.9582869512850576e-05, + "loss": 0.0, + "step": 125 + }, + { + "epoch": 0.24, + "learning_rate": 1.957391532867418e-05, + "loss": 0.0, + "step": 126 + }, + { + "epoch": 0.24, + "learning_rate": 1.956486814771769e-05, + "loss": 0.0, + "step": 127 + }, + { + "epoch": 0.25, + "learning_rate": 1.955572805786141e-05, + "loss": 0.0, + "step": 128 + }, + { + "epoch": 0.25, + "learning_rate": 1.9546495147888134e-05, + "loss": 0.0, + "step": 129 + }, + { + "epoch": 0.25, + "learning_rate": 1.953716950748227e-05, + "loss": 0.0, + "step": 130 + }, + { + "epoch": 0.25, + "learning_rate": 1.9527751227228964e-05, + "loss": 0.0, + "step": 131 + }, + { + "epoch": 0.25, + "learning_rate": 1.9518240398613226e-05, + "loss": 0.0, + "step": 132 + }, + { + "epoch": 0.26, + "learning_rate": 1.9508637114019037e-05, + "loss": 0.0, + "step": 133 + }, + { + "epoch": 0.26, + "learning_rate": 1.9498941466728462e-05, + "loss": 0.0, + "step": 134 + }, + { + "epoch": 0.26, + "learning_rate": 1.9489153550920726e-05, + "loss": 0.0, + "step": 135 + }, + { + "epoch": 0.26, + "learning_rate": 1.947927346167132e-05, + "loss": 0.0, + "step": 136 + }, + { + "epoch": 0.26, + "learning_rate": 1.946930129495106e-05, + "loss": 0.0, + "step": 137 + }, + { + "epoch": 0.27, + "learning_rate": 1.945923714762516e-05, + "loss": 0.0, + "step": 138 + }, + { + "epoch": 0.27, + "learning_rate": 1.9449081117452304e-05, + "loss": 0.0, + "step": 139 + }, + { + "epoch": 0.27, + "learning_rate": 1.9438833303083677e-05, + "loss": 0.0, + "step": 140 + }, + { + "epoch": 0.27, + "learning_rate": 1.9428493804062013e-05, + "loss": 0.0, + "step": 141 + }, + { + "epoch": 0.27, + "learning_rate": 1.9418062720820636e-05, + "loss": 0.0, + "step": 142 + }, + { + "epoch": 0.28, + "learning_rate": 1.9407540154682473e-05, + "loss": 0.0, + "step": 143 + }, + { + "epoch": 0.28, + "learning_rate": 1.9396926207859085e-05, + "loss": 0.0, + "step": 144 + }, + { + "epoch": 0.28, + "learning_rate": 1.9386220983449652e-05, + "loss": 0.0, + "step": 145 + }, + { + "epoch": 0.28, + "learning_rate": 1.9375424585439994e-05, + "loss": 0.0, + "step": 146 + }, + { + "epoch": 0.28, + "learning_rate": 1.9364537118701542e-05, + "loss": 0.0, + "step": 147 + }, + { + "epoch": 0.28, + "learning_rate": 1.935355868899034e-05, + "loss": 0.0, + "step": 148 + }, + { + "epoch": 0.29, + "learning_rate": 1.9342489402945997e-05, + "loss": 0.0, + "step": 149 + }, + { + "epoch": 0.29, + "learning_rate": 1.9331329368090664e-05, + "loss": 0.0, + "step": 150 + }, + { + "epoch": 0.29, + "learning_rate": 1.932007869282799e-05, + "loss": 0.0, + "step": 151 + }, + { + "epoch": 0.29, + "learning_rate": 1.9308737486442045e-05, + "loss": 0.0, + "step": 152 + }, + { + "epoch": 0.29, + "learning_rate": 1.9297305859096305e-05, + "loss": 0.0, + "step": 153 + }, + { + "epoch": 0.3, + "learning_rate": 1.9285783921832537e-05, + "loss": 0.0, + "step": 154 + }, + { + "epoch": 0.3, + "learning_rate": 1.927417178656975e-05, + "loss": 0.0, + "step": 155 + }, + { + "epoch": 0.3, + "learning_rate": 1.926246956610309e-05, + "loss": 0.0, + "step": 156 + }, + { + "epoch": 0.3, + "learning_rate": 1.9250677374102752e-05, + "loss": 0.0, + "step": 157 + }, + { + "epoch": 0.3, + "learning_rate": 1.9238795325112867e-05, + "loss": 0.0, + "step": 158 + }, + { + "epoch": 0.31, + "learning_rate": 1.9226823534550418e-05, + "loss": 0.0, + "step": 159 + }, + { + "epoch": 0.31, + "learning_rate": 1.921476211870408e-05, + "loss": 0.0, + "step": 160 + }, + { + "epoch": 0.31, + "learning_rate": 1.9202611194733107e-05, + "loss": 0.0, + "step": 161 + }, + { + "epoch": 0.31, + "learning_rate": 1.9190370880666206e-05, + "loss": 0.0, + "step": 162 + }, + { + "epoch": 0.31, + "learning_rate": 1.9178041295400383e-05, + "loss": 0.0, + "step": 163 + }, + { + "epoch": 0.32, + "learning_rate": 1.9165622558699763e-05, + "loss": 0.0, + "step": 164 + }, + { + "epoch": 0.32, + "learning_rate": 1.9153114791194475e-05, + "loss": 0.0, + "step": 165 + }, + { + "epoch": 0.32, + "learning_rate": 1.9140518114379433e-05, + "loss": 0.0, + "step": 166 + }, + { + "epoch": 0.32, + "learning_rate": 1.912783265061319e-05, + "loss": 0.0, + "step": 167 + }, + { + "epoch": 0.32, + "learning_rate": 1.9115058523116734e-05, + "loss": 0.0, + "step": 168 + }, + { + "epoch": 0.33, + "learning_rate": 1.9102195855972287e-05, + "loss": 0.0, + "step": 169 + }, + { + "epoch": 0.33, + "learning_rate": 1.908924477412211e-05, + "loss": 0.0, + "step": 170 + }, + { + "epoch": 0.33, + "learning_rate": 1.9076205403367287e-05, + "loss": 0.0, + "step": 171 + }, + { + "epoch": 0.33, + "learning_rate": 1.9063077870366504e-05, + "loss": 0.0, + "step": 172 + }, + { + "epoch": 0.33, + "learning_rate": 1.90498623026348e-05, + "loss": 0.0, + "step": 173 + }, + { + "epoch": 0.33, + "learning_rate": 1.903655882854237e-05, + "loss": 0.0, + "step": 174 + }, + { + "epoch": 0.34, + "learning_rate": 1.9023167577313267e-05, + "loss": 0.0, + "step": 175 + }, + { + "epoch": 0.34, + "learning_rate": 1.900968867902419e-05, + "loss": 0.0, + "step": 176 + }, + { + "epoch": 0.34, + "learning_rate": 1.8996122264603202e-05, + "loss": 0.0, + "step": 177 + }, + { + "epoch": 0.34, + "learning_rate": 1.898246846582844e-05, + "loss": 0.0, + "step": 178 + }, + { + "epoch": 0.34, + "learning_rate": 1.8968727415326885e-05, + "loss": 0.0, + "step": 179 + }, + { + "epoch": 0.35, + "learning_rate": 1.895489924657301e-05, + "loss": 0.0, + "step": 180 + }, + { + "epoch": 0.35, + "learning_rate": 1.894098409388754e-05, + "loss": 0.0, + "step": 181 + }, + { + "epoch": 0.35, + "learning_rate": 1.8926982092436117e-05, + "loss": 0.0, + "step": 182 + }, + { + "epoch": 0.35, + "learning_rate": 1.8912893378227984e-05, + "loss": 0.0, + "step": 183 + }, + { + "epoch": 0.35, + "learning_rate": 1.8898718088114688e-05, + "loss": 0.0, + "step": 184 + }, + { + "epoch": 0.36, + "learning_rate": 1.8884456359788725e-05, + "loss": 0.0, + "step": 185 + }, + { + "epoch": 0.36, + "learning_rate": 1.887010833178222e-05, + "loss": 0.0, + "step": 186 + }, + { + "epoch": 0.36, + "learning_rate": 1.8855674143465567e-05, + "loss": 0.0, + "step": 187 + }, + { + "epoch": 0.36, + "learning_rate": 1.8841153935046098e-05, + "loss": 0.0, + "step": 188 + }, + { + "epoch": 0.36, + "learning_rate": 1.8826547847566692e-05, + "loss": 0.0, + "step": 189 + }, + { + "epoch": 0.37, + "learning_rate": 1.8811856022904423e-05, + "loss": 0.0, + "step": 190 + }, + { + "epoch": 0.37, + "learning_rate": 1.8797078603769184e-05, + "loss": 0.0, + "step": 191 + }, + { + "epoch": 0.37, + "learning_rate": 1.8782215733702286e-05, + "loss": 0.0, + "step": 192 + }, + { + "epoch": 0.37, + "learning_rate": 1.876726755707508e-05, + "loss": 0.0, + "step": 193 + }, + { + "epoch": 0.37, + "learning_rate": 1.8752234219087538e-05, + "loss": 0.0, + "step": 194 + }, + { + "epoch": 0.38, + "learning_rate": 1.8737115865766865e-05, + "loss": 0.0, + "step": 195 + }, + { + "epoch": 0.38, + "learning_rate": 1.8721912643966055e-05, + "loss": 0.0, + "step": 196 + }, + { + "epoch": 0.38, + "learning_rate": 1.8706624701362485e-05, + "loss": 0.0, + "step": 197 + }, + { + "epoch": 0.38, + "learning_rate": 1.8691252186456465e-05, + "loss": 0.0, + "step": 198 + }, + { + "epoch": 0.38, + "learning_rate": 1.8675795248569816e-05, + "loss": 0.0, + "step": 199 + }, + { + "epoch": 0.38, + "learning_rate": 1.866025403784439e-05, + "loss": 0.0, + "step": 200 + }, + { + "epoch": 0.39, + "learning_rate": 1.8644628705240636e-05, + "loss": 0.0, + "step": 201 + }, + { + "epoch": 0.39, + "learning_rate": 1.862891940253613e-05, + "loss": 0.0, + "step": 202 + }, + { + "epoch": 0.39, + "learning_rate": 1.8613126282324092e-05, + "loss": 0.0, + "step": 203 + }, + { + "epoch": 0.39, + "learning_rate": 1.8597249498011906e-05, + "loss": 0.0, + "step": 204 + }, + { + "epoch": 0.39, + "learning_rate": 1.858128920381963e-05, + "loss": 0.0, + "step": 205 + }, + { + "epoch": 0.4, + "learning_rate": 1.8565245554778516e-05, + "loss": 0.0, + "step": 206 + }, + { + "epoch": 0.4, + "learning_rate": 1.854911870672947e-05, + "loss": 0.0, + "step": 207 + }, + { + "epoch": 0.4, + "learning_rate": 1.8532908816321557e-05, + "loss": 0.0, + "step": 208 + }, + { + "epoch": 0.4, + "learning_rate": 1.8516616041010495e-05, + "loss": 0.0, + "step": 209 + }, + { + "epoch": 0.4, + "learning_rate": 1.8500240539057093e-05, + "loss": 0.0, + "step": 210 + }, + { + "epoch": 0.41, + "learning_rate": 1.848378246952574e-05, + "loss": 0.0, + "step": 211 + }, + { + "epoch": 0.41, + "learning_rate": 1.8467241992282842e-05, + "loss": 0.0, + "step": 212 + }, + { + "epoch": 0.41, + "learning_rate": 1.8450619267995283e-05, + "loss": 0.0, + "step": 213 + }, + { + "epoch": 0.41, + "learning_rate": 1.843391445812886e-05, + "loss": 0.0, + "step": 214 + }, + { + "epoch": 0.41, + "learning_rate": 1.84171277249467e-05, + "loss": 0.0, + "step": 215 + }, + { + "epoch": 0.42, + "learning_rate": 1.8400259231507716e-05, + "loss": 0.0, + "step": 216 + }, + { + "epoch": 0.42, + "learning_rate": 1.8383309141664992e-05, + "loss": 0.0, + "step": 217 + }, + { + "epoch": 0.42, + "learning_rate": 1.83662776200642e-05, + "loss": 0.0, + "step": 218 + }, + { + "epoch": 0.42, + "learning_rate": 1.8349164832142015e-05, + "loss": 0.0, + "step": 219 + }, + { + "epoch": 0.42, + "learning_rate": 1.833197094412449e-05, + "loss": 0.0, + "step": 220 + }, + { + "epoch": 0.42, + "learning_rate": 1.8314696123025456e-05, + "loss": 0.0, + "step": 221 + }, + { + "epoch": 0.43, + "learning_rate": 1.8297340536644877e-05, + "loss": 0.0, + "step": 222 + }, + { + "epoch": 0.43, + "learning_rate": 1.827990435356725e-05, + "loss": 0.0, + "step": 223 + }, + { + "epoch": 0.43, + "learning_rate": 1.826238774315995e-05, + "loss": 0.0, + "step": 224 + }, + { + "epoch": 0.43, + "learning_rate": 1.8244790875571582e-05, + "loss": 0.0, + "step": 225 + }, + { + "epoch": 0.43, + "learning_rate": 1.8227113921730336e-05, + "loss": 0.0, + "step": 226 + }, + { + "epoch": 0.44, + "learning_rate": 1.8209357053342325e-05, + "loss": 0.0, + "step": 227 + }, + { + "epoch": 0.44, + "learning_rate": 1.819152044288992e-05, + "loss": 0.0, + "step": 228 + }, + { + "epoch": 0.44, + "learning_rate": 1.8173604263630066e-05, + "loss": 0.0, + "step": 229 + }, + { + "epoch": 0.44, + "learning_rate": 1.8155608689592604e-05, + "loss": 0.0, + "step": 230 + }, + { + "epoch": 0.44, + "learning_rate": 1.8137533895578585e-05, + "loss": 0.0, + "step": 231 + }, + { + "epoch": 0.45, + "learning_rate": 1.811938005715857e-05, + "loss": 0.0, + "step": 232 + }, + { + "epoch": 0.45, + "learning_rate": 1.8101147350670905e-05, + "loss": 0.0, + "step": 233 + }, + { + "epoch": 0.45, + "learning_rate": 1.8082835953220055e-05, + "loss": 0.0, + "step": 234 + }, + { + "epoch": 0.45, + "learning_rate": 1.806444604267483e-05, + "loss": 0.0, + "step": 235 + }, + { + "epoch": 0.45, + "learning_rate": 1.8045977797666685e-05, + "loss": 0.0, + "step": 236 + }, + { + "epoch": 0.46, + "learning_rate": 1.8027431397587993e-05, + "loss": 0.0, + "step": 237 + }, + { + "epoch": 0.46, + "learning_rate": 1.8008807022590283e-05, + "loss": 0.0, + "step": 238 + }, + { + "epoch": 0.46, + "learning_rate": 1.7990104853582494e-05, + "loss": 0.0, + "step": 239 + }, + { + "epoch": 0.46, + "learning_rate": 1.7971325072229227e-05, + "loss": 0.0, + "step": 240 + }, + { + "epoch": 0.46, + "learning_rate": 1.7952467860948975e-05, + "loss": 0.0, + "step": 241 + }, + { + "epoch": 0.47, + "learning_rate": 1.7933533402912354e-05, + "loss": 0.0, + "step": 242 + }, + { + "epoch": 0.47, + "learning_rate": 1.791452188204031e-05, + "loss": 0.0, + "step": 243 + }, + { + "epoch": 0.47, + "learning_rate": 1.7895433483002356e-05, + "loss": 0.0, + "step": 244 + }, + { + "epoch": 0.47, + "learning_rate": 1.7876268391214756e-05, + "loss": 0.0, + "step": 245 + }, + { + "epoch": 0.47, + "learning_rate": 1.785702679283874e-05, + "loss": 0.0, + "step": 246 + }, + { + "epoch": 0.47, + "learning_rate": 1.7837708874778683e-05, + "loss": 0.0, + "step": 247 + }, + { + "epoch": 0.48, + "learning_rate": 1.78183148246803e-05, + "loss": 0.0, + "step": 248 + }, + { + "epoch": 0.48, + "learning_rate": 1.7798844830928818e-05, + "loss": 0.0, + "step": 249 + }, + { + "epoch": 0.48, + "learning_rate": 1.777929908264715e-05, + "loss": 0.0, + "step": 250 + }, + { + "epoch": 0.48, + "learning_rate": 1.775967776969405e-05, + "loss": 0.0, + "step": 251 + }, + { + "epoch": 0.48, + "learning_rate": 1.7739981082662275e-05, + "loss": 0.0, + "step": 252 + }, + { + "epoch": 0.49, + "learning_rate": 1.772020921287674e-05, + "loss": 0.0, + "step": 253 + }, + { + "epoch": 0.49, + "learning_rate": 1.7700362352392632e-05, + "loss": 0.0, + "step": 254 + }, + { + "epoch": 0.49, + "learning_rate": 1.7680440693993586e-05, + "loss": 0.0, + "step": 255 + }, + { + "epoch": 0.49, + "learning_rate": 1.766044443118978e-05, + "loss": 0.0, + "step": 256 + }, + { + "epoch": 0.49, + "learning_rate": 1.7640373758216075e-05, + "loss": 0.0, + "step": 257 + }, + { + "epoch": 0.5, + "learning_rate": 1.762022887003011e-05, + "loss": 0.0, + "step": 258 + }, + { + "epoch": 0.5, + "learning_rate": 1.7600009962310417e-05, + "loss": 0.0, + "step": 259 + }, + { + "epoch": 0.5, + "learning_rate": 1.757971723145453e-05, + "loss": 0.0, + "step": 260 + }, + { + "epoch": 0.5, + "learning_rate": 1.7559350874577066e-05, + "loss": 0.0, + "step": 261 + }, + { + "epoch": 0.5, + "learning_rate": 1.75389110895078e-05, + "loss": 0.0, + "step": 262 + }, + { + "epoch": 0.51, + "learning_rate": 1.7518398074789776e-05, + "loss": 0.0, + "step": 263 + }, + { + "epoch": 0.51, + "learning_rate": 1.7497812029677344e-05, + "loss": 0.0, + "step": 264 + }, + { + "epoch": 0.51, + "learning_rate": 1.7477153154134244e-05, + "loss": 0.0, + "step": 265 + }, + { + "epoch": 0.51, + "learning_rate": 1.7456421648831658e-05, + "loss": 0.0, + "step": 266 + }, + { + "epoch": 0.51, + "learning_rate": 1.743561771514626e-05, + "loss": 0.0, + "step": 267 + }, + { + "epoch": 0.52, + "learning_rate": 1.741474155515827e-05, + "loss": 0.0, + "step": 268 + }, + { + "epoch": 0.52, + "learning_rate": 1.739379337164946e-05, + "loss": 0.0, + "step": 269 + }, + { + "epoch": 0.52, + "learning_rate": 1.737277336810124e-05, + "loss": 0.0, + "step": 270 + }, + { + "epoch": 0.52, + "learning_rate": 1.7351681748692622e-05, + "loss": 0.0, + "step": 271 + }, + { + "epoch": 0.52, + "learning_rate": 1.7330518718298263e-05, + "loss": 0.0, + "step": 272 + }, + { + "epoch": 0.53, + "learning_rate": 1.7309284482486494e-05, + "loss": 0.0, + "step": 273 + }, + { + "epoch": 0.53, + "learning_rate": 1.7287979247517285e-05, + "loss": 0.0, + "step": 274 + }, + { + "epoch": 0.53, + "learning_rate": 1.7266603220340273e-05, + "loss": 0.0, + "step": 275 + }, + { + "epoch": 0.53, + "learning_rate": 1.7245156608592727e-05, + "loss": 0.0, + "step": 276 + }, + { + "epoch": 0.53, + "learning_rate": 1.7223639620597556e-05, + "loss": 0.0, + "step": 277 + }, + { + "epoch": 0.53, + "learning_rate": 1.7202052465361268e-05, + "loss": 0.0, + "step": 278 + }, + { + "epoch": 0.54, + "learning_rate": 1.718039535257194e-05, + "loss": 0.0, + "step": 279 + }, + { + "epoch": 0.54, + "learning_rate": 1.7158668492597186e-05, + "loss": 0.0, + "step": 280 + }, + { + "epoch": 0.54, + "learning_rate": 1.7136872096482123e-05, + "loss": 0.0, + "step": 281 + }, + { + "epoch": 0.54, + "learning_rate": 1.7115006375947304e-05, + "loss": 0.0, + "step": 282 + }, + { + "epoch": 0.54, + "learning_rate": 1.7093071543386667e-05, + "loss": 0.0, + "step": 283 + }, + { + "epoch": 0.55, + "learning_rate": 1.7071067811865477e-05, + "loss": 0.0, + "step": 284 + }, + { + "epoch": 0.55, + "learning_rate": 1.7048995395118253e-05, + "loss": 0.0, + "step": 285 + }, + { + "epoch": 0.55, + "learning_rate": 1.7026854507546694e-05, + "loss": 0.0, + "step": 286 + }, + { + "epoch": 0.55, + "learning_rate": 1.7004645364217584e-05, + "loss": 0.0, + "step": 287 + }, + { + "epoch": 0.55, + "learning_rate": 1.698236818086073e-05, + "loss": 0.0, + "step": 288 + }, + { + "epoch": 0.56, + "learning_rate": 1.6960023173866834e-05, + "loss": 0.0, + "step": 289 + }, + { + "epoch": 0.56, + "learning_rate": 1.693761056028542e-05, + "loss": 0.0, + "step": 290 + }, + { + "epoch": 0.56, + "learning_rate": 1.6915130557822698e-05, + "loss": 0.0, + "step": 291 + }, + { + "epoch": 0.56, + "learning_rate": 1.689258338483947e-05, + "loss": 0.0, + "step": 292 + }, + { + "epoch": 0.56, + "learning_rate": 1.686996926034902e-05, + "loss": 0.0, + "step": 293 + }, + { + "epoch": 0.57, + "learning_rate": 1.6847288404014937e-05, + "loss": 0.0, + "step": 294 + }, + { + "epoch": 0.57, + "learning_rate": 1.682454103614904e-05, + "loss": 0.0, + "step": 295 + }, + { + "epoch": 0.57, + "learning_rate": 1.6801727377709195e-05, + "loss": 0.0, + "step": 296 + }, + { + "epoch": 0.57, + "learning_rate": 1.67788476502972e-05, + "loss": 0.0, + "step": 297 + }, + { + "epoch": 0.57, + "learning_rate": 1.6755902076156606e-05, + "loss": 0.0, + "step": 298 + }, + { + "epoch": 0.57, + "learning_rate": 1.6732890878170573e-05, + "loss": 0.0, + "step": 299 + }, + { + "epoch": 0.58, + "learning_rate": 1.67098142798597e-05, + "loss": 0.0, + "step": 300 + }, + { + "epoch": 0.58, + "learning_rate": 1.668667250537987e-05, + "loss": 0.0, + "step": 301 + }, + { + "epoch": 0.58, + "learning_rate": 1.6663465779520042e-05, + "loss": 0.0, + "step": 302 + }, + { + "epoch": 0.58, + "learning_rate": 1.6640194327700087e-05, + "loss": 0.0, + "step": 303 + }, + { + "epoch": 0.58, + "learning_rate": 1.6616858375968596e-05, + "loss": 0.0, + "step": 304 + }, + { + "epoch": 0.59, + "learning_rate": 1.659345815100069e-05, + "loss": 0.0, + "step": 305 + }, + { + "epoch": 0.59, + "learning_rate": 1.6569993880095807e-05, + "loss": 0.0, + "step": 306 + }, + { + "epoch": 0.59, + "learning_rate": 1.6546465791175498e-05, + "loss": 0.0, + "step": 307 + }, + { + "epoch": 0.59, + "learning_rate": 1.6522874112781213e-05, + "loss": 0.0, + "step": 308 + }, + { + "epoch": 0.59, + "learning_rate": 1.6499219074072087e-05, + "loss": 0.0, + "step": 309 + }, + { + "epoch": 0.6, + "learning_rate": 1.6475500904822707e-05, + "loss": 0.0, + "step": 310 + }, + { + "epoch": 0.6, + "learning_rate": 1.645171983542088e-05, + "loss": 0.0, + "step": 311 + }, + { + "epoch": 0.6, + "learning_rate": 1.6427876096865394e-05, + "loss": 0.0, + "step": 312 + }, + { + "epoch": 0.6, + "learning_rate": 1.640396992076379e-05, + "loss": 0.0, + "step": 313 + }, + { + "epoch": 0.6, + "learning_rate": 1.6380001539330088e-05, + "loss": 0.0, + "step": 314 + }, + { + "epoch": 0.61, + "learning_rate": 1.6355971185382547e-05, + "loss": 0.0, + "step": 315 + }, + { + "epoch": 0.61, + "learning_rate": 1.6331879092341402e-05, + "loss": 0.0, + "step": 316 + }, + { + "epoch": 0.61, + "learning_rate": 1.6307725494226586e-05, + "loss": 0.0, + "step": 317 + }, + { + "epoch": 0.61, + "learning_rate": 1.6283510625655474e-05, + "loss": 0.0, + "step": 318 + }, + { + "epoch": 0.61, + "learning_rate": 1.6259234721840595e-05, + "loss": 0.0, + "step": 319 + }, + { + "epoch": 0.62, + "learning_rate": 1.6234898018587336e-05, + "loss": 0.0, + "step": 320 + }, + { + "epoch": 0.62, + "learning_rate": 1.6210500752291682e-05, + "loss": 0.0, + "step": 321 + }, + { + "epoch": 0.62, + "learning_rate": 1.6186043159937884e-05, + "loss": 0.0, + "step": 322 + }, + { + "epoch": 0.62, + "learning_rate": 1.616152547909618e-05, + "loss": 0.0, + "step": 323 + }, + { + "epoch": 0.62, + "learning_rate": 1.6136947947920477e-05, + "loss": 0.0, + "step": 324 + }, + { + "epoch": 0.62, + "learning_rate": 1.611231080514605e-05, + "loss": 0.0, + "step": 325 + }, + { + "epoch": 0.63, + "learning_rate": 1.608761429008721e-05, + "loss": 0.0, + "step": 326 + }, + { + "epoch": 0.63, + "learning_rate": 1.606285864263498e-05, + "loss": 0.0, + "step": 327 + }, + { + "epoch": 0.63, + "learning_rate": 1.6038044103254775e-05, + "loss": 0.0, + "step": 328 + }, + { + "epoch": 0.63, + "learning_rate": 1.601317091298406e-05, + "loss": 0.0, + "step": 329 + }, + { + "epoch": 0.63, + "learning_rate": 1.5988239313430004e-05, + "loss": 0.0, + "step": 330 + }, + { + "epoch": 0.64, + "learning_rate": 1.5963249546767144e-05, + "loss": 0.0, + "step": 331 + }, + { + "epoch": 0.64, + "learning_rate": 1.5938201855735017e-05, + "loss": 0.0, + "step": 332 + }, + { + "epoch": 0.64, + "learning_rate": 1.5913096483635827e-05, + "loss": 0.0, + "step": 333 + }, + { + "epoch": 0.64, + "learning_rate": 1.5887933674332048e-05, + "loss": 0.0, + "step": 334 + }, + { + "epoch": 0.64, + "learning_rate": 1.5862713672244092e-05, + "loss": 0.0, + "step": 335 + }, + { + "epoch": 0.65, + "learning_rate": 1.5837436722347902e-05, + "loss": 0.0, + "step": 336 + }, + { + "epoch": 0.65, + "learning_rate": 1.5812103070172592e-05, + "loss": 0.0, + "step": 337 + }, + { + "epoch": 0.65, + "learning_rate": 1.578671296179806e-05, + "loss": 0.0, + "step": 338 + }, + { + "epoch": 0.65, + "learning_rate": 1.5761266643852587e-05, + "loss": 0.0, + "step": 339 + }, + { + "epoch": 0.65, + "learning_rate": 1.573576436351046e-05, + "loss": 0.0, + "step": 340 + }, + { + "epoch": 0.66, + "learning_rate": 1.5710206368489555e-05, + "loss": 0.0, + "step": 341 + }, + { + "epoch": 0.66, + "learning_rate": 1.5684592907048925e-05, + "loss": 0.0, + "step": 342 + }, + { + "epoch": 0.66, + "learning_rate": 1.5658924227986415e-05, + "loss": 0.0, + "step": 343 + }, + { + "epoch": 0.66, + "learning_rate": 1.563320058063622e-05, + "loss": 0.0, + "step": 344 + }, + { + "epoch": 0.66, + "learning_rate": 1.560742221486648e-05, + "loss": 0.0, + "step": 345 + }, + { + "epoch": 0.67, + "learning_rate": 1.5581589381076843e-05, + "loss": 0.0, + "step": 346 + }, + { + "epoch": 0.67, + "learning_rate": 1.5555702330196024e-05, + "loss": 0.0, + "step": 347 + }, + { + "epoch": 0.67, + "learning_rate": 1.5529761313679396e-05, + "loss": 0.0, + "step": 348 + }, + { + "epoch": 0.67, + "learning_rate": 1.5503766583506522e-05, + "loss": 0.0, + "step": 349 + }, + { + "epoch": 0.67, + "learning_rate": 1.5477718392178716e-05, + "loss": 0.0, + "step": 350 + }, + { + "epoch": 0.68, + "learning_rate": 1.545161699271659e-05, + "loss": 0.0, + "step": 351 + }, + { + "epoch": 0.68, + "learning_rate": 1.5425462638657597e-05, + "loss": 0.0, + "step": 352 + }, + { + "epoch": 0.68, + "learning_rate": 1.5399255584053568e-05, + "loss": 0.0, + "step": 353 + }, + { + "epoch": 0.68, + "learning_rate": 1.5372996083468242e-05, + "loss": 0.0, + "step": 354 + }, + { + "epoch": 0.68, + "learning_rate": 1.5346684391974792e-05, + "loss": 0.0, + "step": 355 + }, + { + "epoch": 0.68, + "learning_rate": 1.5320320765153367e-05, + "loss": 0.0, + "step": 356 + }, + { + "epoch": 0.69, + "learning_rate": 1.529390545908857e-05, + "loss": 0.0, + "step": 357 + }, + { + "epoch": 0.69, + "learning_rate": 1.526743873036701e-05, + "loss": 0.0, + "step": 358 + }, + { + "epoch": 0.69, + "learning_rate": 1.5240920836074777e-05, + "loss": 0.0, + "step": 359 + }, + { + "epoch": 0.69, + "learning_rate": 1.5214352033794981e-05, + "loss": 0.0, + "step": 360 + }, + { + "epoch": 0.69, + "learning_rate": 1.5187732581605217e-05, + "loss": 0.0, + "step": 361 + }, + { + "epoch": 0.7, + "learning_rate": 1.5161062738075068e-05, + "loss": 0.0, + "step": 362 + }, + { + "epoch": 0.7, + "learning_rate": 1.5134342762263606e-05, + "loss": 0.0, + "step": 363 + }, + { + "epoch": 0.7, + "learning_rate": 1.5107572913716859e-05, + "loss": 0.0, + "step": 364 + }, + { + "epoch": 0.7, + "learning_rate": 1.5080753452465296e-05, + "loss": 0.0, + "step": 365 + }, + { + "epoch": 0.7, + "learning_rate": 1.505388463902131e-05, + "loss": 0.0, + "step": 366 + }, + { + "epoch": 0.71, + "learning_rate": 1.502696673437667e-05, + "loss": 0.0, + "step": 367 + }, + { + "epoch": 0.71, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0, + "step": 368 + }, + { + "epoch": 0.71, + "learning_rate": 1.4972984697834238e-05, + "loss": 0.0, + "step": 369 + }, + { + "epoch": 0.71, + "learning_rate": 1.4945921090294076e-05, + "loss": 0.0, + "step": 370 + }, + { + "epoch": 0.71, + "learning_rate": 1.4918809440263435e-05, + "loss": 0.0, + "step": 371 + }, + { + "epoch": 0.72, + "learning_rate": 1.4891650011092896e-05, + "loss": 0.0, + "step": 372 + }, + { + "epoch": 0.72, + "learning_rate": 1.486444306659714e-05, + "loss": 0.0, + "step": 373 + }, + { + "epoch": 0.72, + "learning_rate": 1.4837188871052399e-05, + "loss": 0.0, + "step": 374 + }, + { + "epoch": 0.72, + "learning_rate": 1.4809887689193878e-05, + "loss": 0.0, + "step": 375 + }, + { + "epoch": 0.72, + "learning_rate": 1.4782539786213184e-05, + "loss": 0.0, + "step": 376 + }, + { + "epoch": 0.72, + "learning_rate": 1.4755145427755755e-05, + "loss": 0.0, + "step": 377 + }, + { + "epoch": 0.73, + "learning_rate": 1.4727704879918272e-05, + "loss": 0.0, + "step": 378 + }, + { + "epoch": 0.73, + "learning_rate": 1.4700218409246087e-05, + "loss": 0.0, + "step": 379 + }, + { + "epoch": 0.73, + "learning_rate": 1.4672686282730622e-05, + "loss": 0.0, + "step": 380 + }, + { + "epoch": 0.73, + "learning_rate": 1.4645108767806778e-05, + "loss": 0.0, + "step": 381 + }, + { + "epoch": 0.73, + "learning_rate": 1.4617486132350343e-05, + "loss": 0.0, + "step": 382 + }, + { + "epoch": 0.74, + "learning_rate": 1.4589818644675378e-05, + "loss": 0.0, + "step": 383 + }, + { + "epoch": 0.74, + "learning_rate": 1.4562106573531632e-05, + "loss": 0.0, + "step": 384 + }, + { + "epoch": 0.74, + "learning_rate": 1.4534350188101905e-05, + "loss": 0.0, + "step": 385 + }, + { + "epoch": 0.74, + "learning_rate": 1.4506549757999456e-05, + "loss": 0.0, + "step": 386 + }, + { + "epoch": 0.74, + "learning_rate": 1.4478705553265363e-05, + "loss": 0.0, + "step": 387 + }, + { + "epoch": 0.75, + "learning_rate": 1.4450817844365924e-05, + "loss": 0.0, + "step": 388 + }, + { + "epoch": 0.75, + "learning_rate": 1.4422886902190014e-05, + "loss": 0.0, + "step": 389 + }, + { + "epoch": 0.75, + "learning_rate": 1.4394912998046451e-05, + "loss": 0.0, + "step": 390 + }, + { + "epoch": 0.75, + "learning_rate": 1.436689640366137e-05, + "loss": 0.0, + "step": 391 + }, + { + "epoch": 0.75, + "learning_rate": 1.4338837391175582e-05, + "loss": 0.0, + "step": 392 + }, + { + "epoch": 0.76, + "learning_rate": 1.4310736233141926e-05, + "loss": 0.0, + "step": 393 + }, + { + "epoch": 0.76, + "learning_rate": 1.4282593202522627e-05, + "loss": 0.0, + "step": 394 + }, + { + "epoch": 0.76, + "learning_rate": 1.4254408572686642e-05, + "loss": 0.0, + "step": 395 + }, + { + "epoch": 0.76, + "learning_rate": 1.4226182617406996e-05, + "loss": 0.0, + "step": 396 + }, + { + "epoch": 0.76, + "learning_rate": 1.4197915610858143e-05, + "loss": 0.0, + "step": 397 + }, + { + "epoch": 0.77, + "learning_rate": 1.4169607827613284e-05, + "loss": 0.0, + "step": 398 + }, + { + "epoch": 0.77, + "learning_rate": 1.4141259542641706e-05, + "loss": 0.0, + "step": 399 + }, + { + "epoch": 0.77, + "learning_rate": 1.4112871031306118e-05, + "loss": 0.0, + "step": 400 + }, + { + "epoch": 0.77, + "learning_rate": 1.4084442569359964e-05, + "loss": 0.0, + "step": 401 + }, + { + "epoch": 0.77, + "learning_rate": 1.4055974432944753e-05, + "loss": 0.0, + "step": 402 + }, + { + "epoch": 0.78, + "learning_rate": 1.4027466898587375e-05, + "loss": 0.0, + "step": 403 + }, + { + "epoch": 0.78, + "learning_rate": 1.3998920243197408e-05, + "loss": 0.0, + "step": 404 + }, + { + "epoch": 0.78, + "learning_rate": 1.3970334744064451e-05, + "loss": 0.0, + "step": 405 + }, + { + "epoch": 0.78, + "learning_rate": 1.3941710678855396e-05, + "loss": 0.0, + "step": 406 + }, + { + "epoch": 0.78, + "learning_rate": 1.391304832561175e-05, + "loss": 0.0, + "step": 407 + }, + { + "epoch": 0.78, + "learning_rate": 1.3884347962746949e-05, + "loss": 0.0, + "step": 408 + }, + { + "epoch": 0.79, + "learning_rate": 1.3855609869043618e-05, + "loss": 0.0, + "step": 409 + }, + { + "epoch": 0.79, + "learning_rate": 1.3826834323650899e-05, + "loss": 0.0, + "step": 410 + }, + { + "epoch": 0.79, + "learning_rate": 1.3798021606081713e-05, + "loss": 0.0, + "step": 411 + }, + { + "epoch": 0.79, + "learning_rate": 1.3769171996210053e-05, + "loss": 0.0, + "step": 412 + }, + { + "epoch": 0.79, + "learning_rate": 1.3740285774268282e-05, + "loss": 0.0, + "step": 413 + }, + { + "epoch": 0.8, + "learning_rate": 1.371136322084438e-05, + "loss": 0.0, + "step": 414 + }, + { + "epoch": 0.8, + "learning_rate": 1.3682404616879246e-05, + "loss": 0.0, + "step": 415 + }, + { + "epoch": 0.8, + "learning_rate": 1.3653410243663953e-05, + "loss": 0.0, + "step": 416 + }, + { + "epoch": 0.8, + "learning_rate": 1.3624380382837017e-05, + "loss": 0.0, + "step": 417 + }, + { + "epoch": 0.8, + "learning_rate": 1.3595315316381676e-05, + "loss": 0.0, + "step": 418 + }, + { + "epoch": 0.81, + "learning_rate": 1.3566215326623131e-05, + "loss": 0.0, + "step": 419 + }, + { + "epoch": 0.81, + "learning_rate": 1.3537080696225815e-05, + "loss": 0.0, + "step": 420 + }, + { + "epoch": 0.81, + "learning_rate": 1.3507911708190646e-05, + "loss": 0.0, + "step": 421 + }, + { + "epoch": 0.81, + "learning_rate": 1.3478708645852272e-05, + "loss": 0.0, + "step": 422 + }, + { + "epoch": 0.81, + "learning_rate": 1.3449471792876333e-05, + "loss": 0.0, + "step": 423 + }, + { + "epoch": 0.82, + "learning_rate": 1.342020143325669e-05, + "loss": 0.0, + "step": 424 + }, + { + "epoch": 0.82, + "learning_rate": 1.3390897851312667e-05, + "loss": 0.0, + "step": 425 + }, + { + "epoch": 0.82, + "learning_rate": 1.336156133168631e-05, + "loss": 0.0, + "step": 426 + }, + { + "epoch": 0.82, + "learning_rate": 1.3332192159339595e-05, + "loss": 0.0, + "step": 427 + }, + { + "epoch": 0.82, + "learning_rate": 1.3302790619551673e-05, + "loss": 0.0, + "step": 428 + }, + { + "epoch": 0.82, + "learning_rate": 1.3273356997916106e-05, + "loss": 0.0, + "step": 429 + }, + { + "epoch": 0.83, + "learning_rate": 1.3243891580338074e-05, + "loss": 0.0, + "step": 430 + }, + { + "epoch": 0.83, + "learning_rate": 1.3214394653031616e-05, + "loss": 0.0, + "step": 431 + }, + { + "epoch": 0.83, + "learning_rate": 1.3184866502516846e-05, + "loss": 0.0, + "step": 432 + }, + { + "epoch": 0.83, + "learning_rate": 1.3155307415617156e-05, + "loss": 0.0, + "step": 433 + }, + { + "epoch": 0.83, + "learning_rate": 1.3125717679456447e-05, + "loss": 0.0, + "step": 434 + }, + { + "epoch": 0.84, + "learning_rate": 1.309609758145633e-05, + "loss": 0.0, + "step": 435 + }, + { + "epoch": 0.84, + "learning_rate": 1.3066447409333345e-05, + "loss": 0.0, + "step": 436 + }, + { + "epoch": 0.84, + "learning_rate": 1.3036767451096148e-05, + "loss": 0.0, + "step": 437 + }, + { + "epoch": 0.84, + "learning_rate": 1.300705799504273e-05, + "loss": 0.0, + "step": 438 + }, + { + "epoch": 0.84, + "learning_rate": 1.2977319329757616e-05, + "loss": 0.0, + "step": 439 + }, + { + "epoch": 0.85, + "learning_rate": 1.2947551744109044e-05, + "loss": 0.0, + "step": 440 + }, + { + "epoch": 0.85, + "learning_rate": 1.2917755527246179e-05, + "loss": 0.0, + "step": 441 + }, + { + "epoch": 0.85, + "learning_rate": 1.28879309685963e-05, + "loss": 0.0, + "step": 442 + }, + { + "epoch": 0.85, + "learning_rate": 1.2858078357861979e-05, + "loss": 0.0, + "step": 443 + }, + { + "epoch": 0.85, + "learning_rate": 1.2828197985018276e-05, + "loss": 0.0, + "step": 444 + }, + { + "epoch": 0.86, + "learning_rate": 1.2798290140309924e-05, + "loss": 0.0, + "step": 445 + }, + { + "epoch": 0.86, + "learning_rate": 1.2768355114248493e-05, + "loss": 0.0, + "step": 446 + }, + { + "epoch": 0.86, + "learning_rate": 1.2738393197609602e-05, + "loss": 0.0, + "step": 447 + }, + { + "epoch": 0.86, + "learning_rate": 1.2708404681430054e-05, + "loss": 0.0, + "step": 448 + }, + { + "epoch": 0.86, + "learning_rate": 1.2678389857005033e-05, + "loss": 0.0, + "step": 449 + }, + { + "epoch": 0.87, + "learning_rate": 1.2648349015885272e-05, + "loss": 0.0, + "step": 450 + }, + { + "epoch": 0.87, + "learning_rate": 1.2618282449874221e-05, + "loss": 0.0, + "step": 451 + }, + { + "epoch": 0.87, + "learning_rate": 1.2588190451025209e-05, + "loss": 0.0, + "step": 452 + }, + { + "epoch": 0.87, + "learning_rate": 1.2558073311638604e-05, + "loss": 0.0, + "step": 453 + }, + { + "epoch": 0.87, + "learning_rate": 1.2527931324258975e-05, + "loss": 0.0, + "step": 454 + }, + { + "epoch": 0.88, + "learning_rate": 1.249776478167227e-05, + "loss": 0.0, + "step": 455 + }, + { + "epoch": 0.88, + "learning_rate": 1.2467573976902936e-05, + "loss": 0.0, + "step": 456 + }, + { + "epoch": 0.88, + "learning_rate": 1.2437359203211109e-05, + "loss": 0.0, + "step": 457 + }, + { + "epoch": 0.88, + "learning_rate": 1.2407120754089733e-05, + "loss": 0.0, + "step": 458 + }, + { + "epoch": 0.88, + "learning_rate": 1.2376858923261732e-05, + "loss": 0.0, + "step": 459 + }, + { + "epoch": 0.88, + "learning_rate": 1.2346574004677154e-05, + "loss": 0.0, + "step": 460 + }, + { + "epoch": 0.89, + "learning_rate": 1.2316266292510305e-05, + "loss": 0.0, + "step": 461 + }, + { + "epoch": 0.89, + "learning_rate": 1.2285936081156897e-05, + "loss": 0.0, + "step": 462 + }, + { + "epoch": 0.89, + "learning_rate": 1.2255583665231196e-05, + "loss": 0.0, + "step": 463 + }, + { + "epoch": 0.89, + "learning_rate": 1.2225209339563144e-05, + "loss": 0.0, + "step": 464 + }, + { + "epoch": 0.89, + "learning_rate": 1.2194813399195518e-05, + "loss": 0.0, + "step": 465 + }, + { + "epoch": 0.9, + "learning_rate": 1.2164396139381029e-05, + "loss": 0.0, + "step": 466 + }, + { + "epoch": 0.9, + "learning_rate": 1.2133957855579501e-05, + "loss": 0.0, + "step": 467 + }, + { + "epoch": 0.9, + "learning_rate": 1.210349884345496e-05, + "loss": 0.0, + "step": 468 + }, + { + "epoch": 0.9, + "learning_rate": 1.2073019398872778e-05, + "loss": 0.0, + "step": 469 + }, + { + "epoch": 0.9, + "learning_rate": 1.2042519817896805e-05, + "loss": 0.0, + "step": 470 + }, + { + "epoch": 0.91, + "learning_rate": 1.2012000396786485e-05, + "loss": 0.0, + "step": 471 + }, + { + "epoch": 0.91, + "learning_rate": 1.1981461431993978e-05, + "loss": 0.0, + "step": 472 + }, + { + "epoch": 0.91, + "learning_rate": 1.1950903220161286e-05, + "loss": 0.0, + "step": 473 + }, + { + "epoch": 0.91, + "learning_rate": 1.1920326058117364e-05, + "loss": 0.0, + "step": 474 + }, + { + "epoch": 0.91, + "learning_rate": 1.1889730242875243e-05, + "loss": 0.0, + "step": 475 + }, + { + "epoch": 0.92, + "learning_rate": 1.1859116071629148e-05, + "loss": 0.0, + "step": 476 + }, + { + "epoch": 0.92, + "learning_rate": 1.1828483841751597e-05, + "loss": 0.0, + "step": 477 + }, + { + "epoch": 0.92, + "learning_rate": 1.1797833850790527e-05, + "loss": 0.0, + "step": 478 + }, + { + "epoch": 0.92, + "learning_rate": 1.1767166396466404e-05, + "loss": 0.0, + "step": 479 + }, + { + "epoch": 0.92, + "learning_rate": 1.1736481776669307e-05, + "loss": 0.0, + "step": 480 + }, + { + "epoch": 0.93, + "learning_rate": 1.1705780289456069e-05, + "loss": 0.0, + "step": 481 + }, + { + "epoch": 0.93, + "learning_rate": 1.1675062233047365e-05, + "loss": 0.0, + "step": 482 + }, + { + "epoch": 0.93, + "learning_rate": 1.1644327905824808e-05, + "loss": 0.0, + "step": 483 + }, + { + "epoch": 0.93, + "learning_rate": 1.1613577606328068e-05, + "loss": 0.0, + "step": 484 + }, + { + "epoch": 0.93, + "learning_rate": 1.1582811633251949e-05, + "loss": 0.0, + "step": 485 + }, + { + "epoch": 0.93, + "learning_rate": 1.1552030285443516e-05, + "loss": 0.0, + "step": 486 + }, + { + "epoch": 0.94, + "learning_rate": 1.1521233861899168e-05, + "loss": 0.0, + "step": 487 + }, + { + "epoch": 0.94, + "learning_rate": 1.1490422661761744e-05, + "loss": 0.0, + "step": 488 + }, + { + "epoch": 0.94, + "learning_rate": 1.1459596984317622e-05, + "loss": 0.0, + "step": 489 + }, + { + "epoch": 0.94, + "learning_rate": 1.1428757128993801e-05, + "loss": 0.0, + "step": 490 + }, + { + "epoch": 0.94, + "learning_rate": 1.1397903395354996e-05, + "loss": 0.0, + "step": 491 + }, + { + "epoch": 0.95, + "learning_rate": 1.1367036083100735e-05, + "loss": 0.0, + "step": 492 + }, + { + "epoch": 0.95, + "learning_rate": 1.1336155492062439e-05, + "loss": 0.0, + "step": 493 + }, + { + "epoch": 0.95, + "learning_rate": 1.130526192220052e-05, + "loss": 0.0, + "step": 494 + }, + { + "epoch": 0.95, + "learning_rate": 1.1274355673601446e-05, + "loss": 0.0, + "step": 495 + }, + { + "epoch": 0.95, + "learning_rate": 1.1243437046474854e-05, + "loss": 0.0, + "step": 496 + }, + { + "epoch": 0.96, + "learning_rate": 1.1212506341150615e-05, + "loss": 0.0, + "step": 497 + }, + { + "epoch": 0.96, + "learning_rate": 1.118156385807593e-05, + "loss": 0.0, + "step": 498 + }, + { + "epoch": 0.96, + "learning_rate": 1.1150609897812387e-05, + "loss": 0.0, + "step": 499 + }, + { + "epoch": 0.96, + "learning_rate": 1.1119644761033079e-05, + "loss": 0.0, + "step": 500 + }, + { + "epoch": 0.96, + "learning_rate": 1.1088668748519646e-05, + "loss": 0.0, + "step": 501 + }, + { + "epoch": 0.97, + "learning_rate": 1.105768216115938e-05, + "loss": 0.0, + "step": 502 + }, + { + "epoch": 0.97, + "learning_rate": 1.1026685299942286e-05, + "loss": 0.0, + "step": 503 + }, + { + "epoch": 0.97, + "learning_rate": 1.0995678465958168e-05, + "loss": 0.0, + "step": 504 + }, + { + "epoch": 0.97, + "learning_rate": 1.0964661960393703e-05, + "loss": 0.0, + "step": 505 + }, + { + "epoch": 0.97, + "learning_rate": 1.0933636084529507e-05, + "loss": 0.0, + "step": 506 + }, + { + "epoch": 0.97, + "learning_rate": 1.0902601139737225e-05, + "loss": 0.0, + "step": 507 + }, + { + "epoch": 0.98, + "learning_rate": 1.0871557427476585e-05, + "loss": 0.0, + "step": 508 + }, + { + "epoch": 0.98, + "learning_rate": 1.0840505249292477e-05, + "loss": 0.0, + "step": 509 + }, + { + "epoch": 0.98, + "learning_rate": 1.0809444906812034e-05, + "loss": 0.0, + "step": 510 + }, + { + "epoch": 0.98, + "learning_rate": 1.0778376701741688e-05, + "loss": 0.0, + "step": 511 + }, + { + "epoch": 0.98, + "learning_rate": 1.0747300935864245e-05, + "loss": 0.0, + "step": 512 + }, + { + "epoch": 0.99, + "learning_rate": 1.0716217911035952e-05, + "loss": 0.0, + "step": 513 + }, + { + "epoch": 0.99, + "learning_rate": 1.0685127929183567e-05, + "loss": 0.0, + "step": 514 + }, + { + "epoch": 0.99, + "learning_rate": 1.0654031292301432e-05, + "loss": 0.0, + "step": 515 + }, + { + "epoch": 0.99, + "learning_rate": 1.0622928302448523e-05, + "loss": 0.0, + "step": 516 + }, + { + "epoch": 0.99, + "learning_rate": 1.0591819261745528e-05, + "loss": 0.0, + "step": 517 + }, + { + "epoch": 1.0, + "learning_rate": 1.0560704472371919e-05, + "loss": 0.0, + "step": 518 + }, + { + "epoch": 1.0, + "learning_rate": 1.0529584236562995e-05, + "loss": 0.0, + "step": 519 + }, + { + "epoch": 1.0, + "learning_rate": 1.0498458856606972e-05, + "loss": 0.0, + "step": 520 + }, + { + "epoch": 1.0, + "learning_rate": 1.0467328634842024e-05, + "loss": 0.0, + "step": 521 + }, + { + "epoch": 1.0, + "learning_rate": 1.0436193873653362e-05, + "loss": 0.0, + "step": 522 + }, + { + "epoch": 1.01, + "learning_rate": 1.0405054875470287e-05, + "loss": 0.0, + "step": 523 + }, + { + "epoch": 1.01, + "learning_rate": 1.037391194276326e-05, + "loss": 0.0, + "step": 524 + }, + { + "epoch": 1.01, + "learning_rate": 1.0342765378040953e-05, + "loss": 0.0, + "step": 525 + }, + { + "epoch": 1.01, + "learning_rate": 1.0311615483847333e-05, + "loss": 0.0, + "step": 526 + }, + { + "epoch": 1.01, + "learning_rate": 1.028046256275869e-05, + "loss": 0.0, + "step": 527 + }, + { + "epoch": 1.02, + "learning_rate": 1.0249306917380731e-05, + "loss": 0.0, + "step": 528 + }, + { + "epoch": 1.02, + "learning_rate": 1.0218148850345613e-05, + "loss": 0.0, + "step": 529 + }, + { + "epoch": 1.02, + "learning_rate": 1.0186988664309023e-05, + "loss": 0.0, + "step": 530 + }, + { + "epoch": 1.02, + "learning_rate": 1.0155826661947232e-05, + "loss": 0.0, + "step": 531 + }, + { + "epoch": 1.02, + "learning_rate": 1.0124663145954152e-05, + "loss": 0.0, + "step": 532 + }, + { + "epoch": 1.02, + "learning_rate": 1.0093498419038394e-05, + "loss": 0.0, + "step": 533 + }, + { + "epoch": 1.03, + "learning_rate": 1.0062332783920337e-05, + "loss": 0.0, + "step": 534 + }, + { + "epoch": 1.03, + "learning_rate": 1.0031166543329179e-05, + "loss": 0.0, + "step": 535 + }, + { + "epoch": 1.03, + "learning_rate": 1e-05, + "loss": 0.0, + "step": 536 + }, + { + "epoch": 1.03, + "learning_rate": 9.968833456670824e-06, + "loss": 0.0, + "step": 537 + }, + { + "epoch": 1.03, + "learning_rate": 9.937667216079665e-06, + "loss": 0.0, + "step": 538 + }, + { + "epoch": 1.04, + "learning_rate": 9.90650158096161e-06, + "loss": 0.0, + "step": 539 + }, + { + "epoch": 1.04, + "learning_rate": 9.87533685404585e-06, + "loss": 0.0, + "step": 540 + }, + { + "epoch": 1.04, + "learning_rate": 9.844173338052771e-06, + "loss": 0.0, + "step": 541 + }, + { + "epoch": 1.04, + "learning_rate": 9.81301133569098e-06, + "loss": 0.0, + "step": 542 + }, + { + "epoch": 1.04, + "learning_rate": 9.78185114965439e-06, + "loss": 0.0, + "step": 543 + }, + { + "epoch": 1.05, + "learning_rate": 9.750693082619274e-06, + "loss": 0.0, + "step": 544 + }, + { + "epoch": 1.05, + "learning_rate": 9.719537437241311e-06, + "loss": 0.0, + "step": 545 + }, + { + "epoch": 1.05, + "learning_rate": 9.68838451615267e-06, + "loss": 0.0, + "step": 546 + }, + { + "epoch": 1.05, + "learning_rate": 9.65723462195905e-06, + "loss": 0.0, + "step": 547 + }, + { + "epoch": 1.05, + "learning_rate": 9.626088057236745e-06, + "loss": 0.0, + "step": 548 + }, + { + "epoch": 1.06, + "learning_rate": 9.594945124529718e-06, + "loss": 0.0, + "step": 549 + }, + { + "epoch": 1.06, + "learning_rate": 9.563806126346643e-06, + "loss": 0.0, + "step": 550 + }, + { + "epoch": 1.06, + "learning_rate": 9.532671365157979e-06, + "loss": 0.0, + "step": 551 + }, + { + "epoch": 1.06, + "learning_rate": 9.501541143393028e-06, + "loss": 0.0, + "step": 552 + }, + { + "epoch": 1.06, + "learning_rate": 9.470415763437003e-06, + "loss": 0.0, + "step": 553 + }, + { + "epoch": 1.07, + "learning_rate": 9.439295527628083e-06, + "loss": 0.0, + "step": 554 + }, + { + "epoch": 1.07, + "learning_rate": 9.408180738254472e-06, + "loss": 0.0, + "step": 555 + }, + { + "epoch": 1.07, + "learning_rate": 9.377071697551479e-06, + "loss": 0.0, + "step": 556 + }, + { + "epoch": 1.07, + "learning_rate": 9.34596870769857e-06, + "loss": 0.0, + "step": 557 + }, + { + "epoch": 1.07, + "learning_rate": 9.314872070816435e-06, + "loss": 0.0, + "step": 558 + }, + { + "epoch": 1.07, + "learning_rate": 9.28378208896405e-06, + "loss": 0.0, + "step": 559 + }, + { + "epoch": 1.08, + "learning_rate": 9.252699064135759e-06, + "loss": 0.0, + "step": 560 + }, + { + "epoch": 1.08, + "learning_rate": 9.221623298258315e-06, + "loss": 0.0, + "step": 561 + }, + { + "epoch": 1.08, + "learning_rate": 9.190555093187968e-06, + "loss": 0.0, + "step": 562 + }, + { + "epoch": 1.08, + "learning_rate": 9.159494750707527e-06, + "loss": 0.0, + "step": 563 + }, + { + "epoch": 1.08, + "learning_rate": 9.128442572523418e-06, + "loss": 0.0, + "step": 564 + }, + { + "epoch": 1.09, + "learning_rate": 9.097398860262777e-06, + "loss": 0.0, + "step": 565 + }, + { + "epoch": 1.09, + "learning_rate": 9.066363915470494e-06, + "loss": 0.0, + "step": 566 + }, + { + "epoch": 1.09, + "learning_rate": 9.0353380396063e-06, + "loss": 0.0, + "step": 567 + }, + { + "epoch": 1.09, + "learning_rate": 9.004321534041836e-06, + "loss": 0.0, + "step": 568 + }, + { + "epoch": 1.09, + "learning_rate": 8.973314700057717e-06, + "loss": 0.0, + "step": 569 + }, + { + "epoch": 1.1, + "learning_rate": 8.942317838840625e-06, + "loss": 0.0, + "step": 570 + }, + { + "epoch": 1.1, + "learning_rate": 8.911331251480357e-06, + "loss": 0.0, + "step": 571 + }, + { + "epoch": 1.1, + "learning_rate": 8.880355238966923e-06, + "loss": 0.0, + "step": 572 + }, + { + "epoch": 1.1, + "learning_rate": 8.849390102187615e-06, + "loss": 0.0, + "step": 573 + }, + { + "epoch": 1.1, + "learning_rate": 8.818436141924072e-06, + "loss": 0.0, + "step": 574 + }, + { + "epoch": 1.11, + "learning_rate": 8.787493658849387e-06, + "loss": 0.0, + "step": 575 + }, + { + "epoch": 1.11, + "learning_rate": 8.756562953525151e-06, + "loss": 0.0, + "step": 576 + }, + { + "epoch": 1.11, + "learning_rate": 8.72564432639856e-06, + "loss": 0.0, + "step": 577 + }, + { + "epoch": 1.11, + "learning_rate": 8.694738077799487e-06, + "loss": 0.0, + "step": 578 + }, + { + "epoch": 1.11, + "learning_rate": 8.663844507937563e-06, + "loss": 0.0, + "step": 579 + }, + { + "epoch": 1.12, + "learning_rate": 8.632963916899268e-06, + "loss": 0.0, + "step": 580 + }, + { + "epoch": 1.12, + "learning_rate": 8.602096604645009e-06, + "loss": 0.0, + "step": 581 + }, + { + "epoch": 1.12, + "learning_rate": 8.571242871006202e-06, + "loss": 0.0, + "step": 582 + }, + { + "epoch": 1.12, + "learning_rate": 8.540403015682382e-06, + "loss": 0.0, + "step": 583 + }, + { + "epoch": 1.12, + "learning_rate": 8.509577338238255e-06, + "loss": 0.0, + "step": 584 + }, + { + "epoch": 1.12, + "learning_rate": 8.478766138100834e-06, + "loss": 0.0, + "step": 585 + }, + { + "epoch": 1.13, + "learning_rate": 8.447969714556484e-06, + "loss": 0.0, + "step": 586 + }, + { + "epoch": 1.13, + "learning_rate": 8.417188366748051e-06, + "loss": 0.0, + "step": 587 + }, + { + "epoch": 1.13, + "learning_rate": 8.386422393671934e-06, + "loss": 0.0, + "step": 588 + }, + { + "epoch": 1.13, + "learning_rate": 8.355672094175192e-06, + "loss": 0.0, + "step": 589 + }, + { + "epoch": 1.13, + "learning_rate": 8.324937766952638e-06, + "loss": 0.0, + "step": 590 + }, + { + "epoch": 1.14, + "learning_rate": 8.294219710543931e-06, + "loss": 0.0, + "step": 591 + }, + { + "epoch": 1.14, + "learning_rate": 8.263518223330698e-06, + "loss": 0.0, + "step": 592 + }, + { + "epoch": 1.14, + "learning_rate": 8.232833603533601e-06, + "loss": 0.0, + "step": 593 + }, + { + "epoch": 1.14, + "learning_rate": 8.202166149209475e-06, + "loss": 0.0, + "step": 594 + }, + { + "epoch": 1.14, + "learning_rate": 8.171516158248406e-06, + "loss": 0.0, + "step": 595 + }, + { + "epoch": 1.15, + "learning_rate": 8.140883928370855e-06, + "loss": 0.0, + "step": 596 + }, + { + "epoch": 1.15, + "learning_rate": 8.11026975712476e-06, + "loss": 0.0, + "step": 597 + }, + { + "epoch": 1.15, + "learning_rate": 8.079673941882639e-06, + "loss": 0.0, + "step": 598 + }, + { + "epoch": 1.15, + "learning_rate": 8.04909677983872e-06, + "loss": 0.0, + "step": 599 + }, + { + "epoch": 1.15, + "learning_rate": 8.018538568006027e-06, + "loss": 0.0, + "step": 600 + }, + { + "epoch": 1.16, + "learning_rate": 7.987999603213518e-06, + "loss": 0.0, + "step": 601 + }, + { + "epoch": 1.16, + "learning_rate": 7.957480182103198e-06, + "loss": 0.0, + "step": 602 + }, + { + "epoch": 1.16, + "learning_rate": 7.926980601127225e-06, + "loss": 0.0, + "step": 603 + }, + { + "epoch": 1.16, + "learning_rate": 7.896501156545044e-06, + "loss": 0.0, + "step": 604 + }, + { + "epoch": 1.16, + "learning_rate": 7.866042144420502e-06, + "loss": 0.0, + "step": 605 + }, + { + "epoch": 1.17, + "learning_rate": 7.835603860618973e-06, + "loss": 0.0, + "step": 606 + }, + { + "epoch": 1.17, + "learning_rate": 7.805186600804489e-06, + "loss": 0.0, + "step": 607 + }, + { + "epoch": 1.17, + "learning_rate": 7.774790660436857e-06, + "loss": 0.0, + "step": 608 + }, + { + "epoch": 1.17, + "learning_rate": 7.744416334768809e-06, + "loss": 0.0, + "step": 609 + }, + { + "epoch": 1.17, + "learning_rate": 7.714063918843106e-06, + "loss": 0.0, + "step": 610 + }, + { + "epoch": 1.18, + "learning_rate": 7.6837337074897e-06, + "loss": 0.0, + "step": 611 + }, + { + "epoch": 1.18, + "learning_rate": 7.653425995322852e-06, + "loss": 0.0, + "step": 612 + }, + { + "epoch": 1.18, + "learning_rate": 7.623141076738271e-06, + "loss": 0.0, + "step": 613 + }, + { + "epoch": 1.18, + "learning_rate": 7.592879245910273e-06, + "loss": 0.0, + "step": 614 + }, + { + "epoch": 1.18, + "learning_rate": 7.562640796788893e-06, + "loss": 0.0, + "step": 615 + }, + { + "epoch": 1.18, + "learning_rate": 7.532426023097063e-06, + "loss": 0.0, + "step": 616 + }, + { + "epoch": 1.19, + "learning_rate": 7.50223521832773e-06, + "loss": 0.0, + "step": 617 + }, + { + "epoch": 1.19, + "learning_rate": 7.472068675741024e-06, + "loss": 0.0, + "step": 618 + }, + { + "epoch": 1.19, + "learning_rate": 7.4419266883614e-06, + "loss": 0.0, + "step": 619 + }, + { + "epoch": 1.19, + "learning_rate": 7.411809548974792e-06, + "loss": 0.0, + "step": 620 + }, + { + "epoch": 1.19, + "learning_rate": 7.38171755012578e-06, + "loss": 0.0, + "step": 621 + }, + { + "epoch": 1.2, + "learning_rate": 7.3516509841147276e-06, + "loss": 0.0, + "step": 622 + }, + { + "epoch": 1.2, + "learning_rate": 7.321610142994971e-06, + "loss": 0.0, + "step": 623 + }, + { + "epoch": 1.2, + "learning_rate": 7.291595318569951e-06, + "loss": 0.0, + "step": 624 + }, + { + "epoch": 1.2, + "learning_rate": 7.2616068023904e-06, + "loss": 0.0, + "step": 625 + }, + { + "epoch": 1.2, + "learning_rate": 7.2316448857515076e-06, + "loss": 0.0, + "step": 626 + }, + { + "epoch": 1.21, + "learning_rate": 7.201709859690081e-06, + "loss": 0.0, + "step": 627 + }, + { + "epoch": 1.21, + "learning_rate": 7.171802014981726e-06, + "loss": 0.0, + "step": 628 + }, + { + "epoch": 1.21, + "learning_rate": 7.141921642138025e-06, + "loss": 0.0, + "step": 629 + }, + { + "epoch": 1.21, + "learning_rate": 7.112069031403704e-06, + "loss": 0.0, + "step": 630 + }, + { + "epoch": 1.21, + "learning_rate": 7.082244472753823e-06, + "loss": 0.0, + "step": 631 + }, + { + "epoch": 1.22, + "learning_rate": 7.052448255890958e-06, + "loss": 0.0, + "step": 632 + }, + { + "epoch": 1.22, + "learning_rate": 7.022680670242387e-06, + "loss": 0.0, + "step": 633 + }, + { + "epoch": 1.22, + "learning_rate": 6.992942004957271e-06, + "loss": 0.0, + "step": 634 + }, + { + "epoch": 1.22, + "learning_rate": 6.963232548903853e-06, + "loss": 0.0, + "step": 635 + }, + { + "epoch": 1.22, + "learning_rate": 6.933552590666659e-06, + "loss": 0.0, + "step": 636 + }, + { + "epoch": 1.23, + "learning_rate": 6.903902418543671e-06, + "loss": 0.0, + "step": 637 + }, + { + "epoch": 1.23, + "learning_rate": 6.874282320543557e-06, + "loss": 0.0, + "step": 638 + }, + { + "epoch": 1.23, + "learning_rate": 6.844692584382848e-06, + "loss": 0.0, + "step": 639 + }, + { + "epoch": 1.23, + "learning_rate": 6.815133497483157e-06, + "loss": 0.0, + "step": 640 + }, + { + "epoch": 1.23, + "learning_rate": 6.785605346968387e-06, + "loss": 0.0, + "step": 641 + }, + { + "epoch": 1.23, + "learning_rate": 6.7561084196619306e-06, + "loss": 0.0, + "step": 642 + }, + { + "epoch": 1.24, + "learning_rate": 6.7266430020839e-06, + "loss": 0.0, + "step": 643 + }, + { + "epoch": 1.24, + "learning_rate": 6.697209380448333e-06, + "loss": 0.0, + "step": 644 + }, + { + "epoch": 1.24, + "learning_rate": 6.66780784066041e-06, + "loss": 0.0, + "step": 645 + }, + { + "epoch": 1.24, + "learning_rate": 6.638438668313695e-06, + "loss": 0.0, + "step": 646 + }, + { + "epoch": 1.24, + "learning_rate": 6.609102148687333e-06, + "loss": 0.0, + "step": 647 + }, + { + "epoch": 1.25, + "learning_rate": 6.579798566743314e-06, + "loss": 0.0, + "step": 648 + }, + { + "epoch": 1.25, + "learning_rate": 6.550528207123667e-06, + "loss": 0.0, + "step": 649 + }, + { + "epoch": 1.25, + "learning_rate": 6.521291354147727e-06, + "loss": 0.0, + "step": 650 + }, + { + "epoch": 1.25, + "learning_rate": 6.492088291809355e-06, + "loss": 0.0, + "step": 651 + }, + { + "epoch": 1.25, + "learning_rate": 6.462919303774186e-06, + "loss": 0.0, + "step": 652 + }, + { + "epoch": 1.26, + "learning_rate": 6.43378467337687e-06, + "loss": 0.0, + "step": 653 + }, + { + "epoch": 1.26, + "learning_rate": 6.404684683618325e-06, + "loss": 0.0, + "step": 654 + }, + { + "epoch": 1.26, + "learning_rate": 6.375619617162985e-06, + "loss": 0.0, + "step": 655 + }, + { + "epoch": 1.26, + "learning_rate": 6.34658975633605e-06, + "loss": 0.0, + "step": 656 + }, + { + "epoch": 1.26, + "learning_rate": 6.317595383120756e-06, + "loss": 0.0, + "step": 657 + }, + { + "epoch": 1.27, + "learning_rate": 6.288636779155621e-06, + "loss": 0.0, + "step": 658 + }, + { + "epoch": 1.27, + "learning_rate": 6.2597142257317185e-06, + "loss": 0.0, + "step": 659 + }, + { + "epoch": 1.27, + "learning_rate": 6.230828003789949e-06, + "loss": 0.0, + "step": 660 + }, + { + "epoch": 1.27, + "learning_rate": 6.201978393918291e-06, + "loss": 0.0, + "step": 661 + }, + { + "epoch": 1.27, + "learning_rate": 6.173165676349103e-06, + "loss": 0.0, + "step": 662 + }, + { + "epoch": 1.27, + "learning_rate": 6.144390130956384e-06, + "loss": 0.0, + "step": 663 + }, + { + "epoch": 1.28, + "learning_rate": 6.115652037253054e-06, + "loss": 0.0, + "step": 664 + }, + { + "epoch": 1.28, + "learning_rate": 6.086951674388252e-06, + "loss": 0.0, + "step": 665 + }, + { + "epoch": 1.28, + "learning_rate": 6.058289321144608e-06, + "loss": 0.0, + "step": 666 + }, + { + "epoch": 1.28, + "learning_rate": 6.02966525593555e-06, + "loss": 0.0, + "step": 667 + }, + { + "epoch": 1.28, + "learning_rate": 6.001079756802592e-06, + "loss": 0.0, + "step": 668 + }, + { + "epoch": 1.29, + "learning_rate": 5.97253310141263e-06, + "loss": 0.0, + "step": 669 + }, + { + "epoch": 1.29, + "learning_rate": 5.944025567055251e-06, + "loss": 0.0, + "step": 670 + }, + { + "epoch": 1.29, + "learning_rate": 5.91555743064004e-06, + "loss": 0.0, + "step": 671 + }, + { + "epoch": 1.29, + "learning_rate": 5.887128968693887e-06, + "loss": 0.0, + "step": 672 + }, + { + "epoch": 1.29, + "learning_rate": 5.858740457358298e-06, + "loss": 0.0, + "step": 673 + }, + { + "epoch": 1.3, + "learning_rate": 5.830392172386723e-06, + "loss": 0.0, + "step": 674 + }, + { + "epoch": 1.3, + "learning_rate": 5.802084389141862e-06, + "loss": 0.0, + "step": 675 + }, + { + "epoch": 1.3, + "learning_rate": 5.773817382593008e-06, + "loss": 0.0, + "step": 676 + }, + { + "epoch": 1.3, + "learning_rate": 5.745591427313365e-06, + "loss": 0.0, + "step": 677 + }, + { + "epoch": 1.3, + "learning_rate": 5.717406797477371e-06, + "loss": 0.0, + "step": 678 + }, + { + "epoch": 1.31, + "learning_rate": 5.689263766858072e-06, + "loss": 0.0, + "step": 679 + }, + { + "epoch": 1.31, + "learning_rate": 5.66116260882442e-06, + "loss": 0.0, + "step": 680 + }, + { + "epoch": 1.31, + "learning_rate": 5.633103596338631e-06, + "loss": 0.0, + "step": 681 + }, + { + "epoch": 1.31, + "learning_rate": 5.6050870019535496e-06, + "loss": 0.0, + "step": 682 + }, + { + "epoch": 1.31, + "learning_rate": 5.5771130978099896e-06, + "loss": 0.0, + "step": 683 + }, + { + "epoch": 1.32, + "learning_rate": 5.549182155634076e-06, + "loss": 0.0, + "step": 684 + }, + { + "epoch": 1.32, + "learning_rate": 5.521294446734637e-06, + "loss": 0.0, + "step": 685 + }, + { + "epoch": 1.32, + "learning_rate": 5.493450242000546e-06, + "loss": 0.0, + "step": 686 + }, + { + "epoch": 1.32, + "learning_rate": 5.465649811898098e-06, + "loss": 0.0, + "step": 687 + }, + { + "epoch": 1.32, + "learning_rate": 5.43789342646837e-06, + "loss": 0.0, + "step": 688 + }, + { + "epoch": 1.32, + "learning_rate": 5.410181355324622e-06, + "loss": 0.0, + "step": 689 + }, + { + "epoch": 1.33, + "learning_rate": 5.382513867649663e-06, + "loss": 0.0, + "step": 690 + }, + { + "epoch": 1.33, + "learning_rate": 5.354891232193225e-06, + "loss": 0.0, + "step": 691 + }, + { + "epoch": 1.33, + "learning_rate": 5.32731371726938e-06, + "loss": 0.0, + "step": 692 + }, + { + "epoch": 1.33, + "learning_rate": 5.299781590753916e-06, + "loss": 0.0, + "step": 693 + }, + { + "epoch": 1.33, + "learning_rate": 5.2722951200817315e-06, + "loss": 0.0, + "step": 694 + }, + { + "epoch": 1.34, + "learning_rate": 5.244854572244249e-06, + "loss": 0.0, + "step": 695 + }, + { + "epoch": 1.34, + "learning_rate": 5.217460213786822e-06, + "loss": 0.0, + "step": 696 + }, + { + "epoch": 1.34, + "learning_rate": 5.190112310806126e-06, + "loss": 0.0, + "step": 697 + }, + { + "epoch": 1.34, + "learning_rate": 5.1628111289476025e-06, + "loss": 0.0, + "step": 698 + }, + { + "epoch": 1.34, + "learning_rate": 5.135556933402862e-06, + "loss": 0.0, + "step": 699 + }, + { + "epoch": 1.35, + "learning_rate": 5.108349988907111e-06, + "loss": 0.0, + "step": 700 + }, + { + "epoch": 1.35, + "learning_rate": 5.081190559736569e-06, + "loss": 0.0, + "step": 701 + }, + { + "epoch": 1.35, + "learning_rate": 5.054078909705926e-06, + "loss": 0.0, + "step": 702 + }, + { + "epoch": 1.35, + "learning_rate": 5.027015302165768e-06, + "loss": 0.0, + "step": 703 + }, + { + "epoch": 1.35, + "learning_rate": 5.000000000000003e-06, + "loss": 0.0, + "step": 704 + }, + { + "epoch": 1.36, + "learning_rate": 4.973033265623333e-06, + "loss": 0.0, + "step": 705 + }, + { + "epoch": 1.36, + "learning_rate": 4.946115360978696e-06, + "loss": 0.0, + "step": 706 + }, + { + "epoch": 1.36, + "learning_rate": 4.919246547534709e-06, + "loss": 0.0, + "step": 707 + }, + { + "epoch": 1.36, + "learning_rate": 4.892427086283147e-06, + "loss": 0.0, + "step": 708 + }, + { + "epoch": 1.36, + "learning_rate": 4.865657237736397e-06, + "loss": 0.0, + "step": 709 + }, + { + "epoch": 1.37, + "learning_rate": 4.838937261924933e-06, + "loss": 0.0, + "step": 710 + }, + { + "epoch": 1.37, + "learning_rate": 4.812267418394784e-06, + "loss": 0.0, + "step": 711 + }, + { + "epoch": 1.37, + "learning_rate": 4.78564796620502e-06, + "loss": 0.0, + "step": 712 + }, + { + "epoch": 1.37, + "learning_rate": 4.759079163925223e-06, + "loss": 0.0, + "step": 713 + }, + { + "epoch": 1.37, + "learning_rate": 4.732561269632992e-06, + "loss": 0.0, + "step": 714 + }, + { + "epoch": 1.38, + "learning_rate": 4.706094540911429e-06, + "loss": 0.0, + "step": 715 + }, + { + "epoch": 1.38, + "learning_rate": 4.679679234846636e-06, + "loss": 0.0, + "step": 716 + }, + { + "epoch": 1.38, + "learning_rate": 4.6533156080252076e-06, + "loss": 0.0, + "step": 717 + }, + { + "epoch": 1.38, + "learning_rate": 4.627003916531761e-06, + "loss": 0.0, + "step": 718 + }, + { + "epoch": 1.38, + "learning_rate": 4.600744415946438e-06, + "loss": 0.0, + "step": 719 + }, + { + "epoch": 1.38, + "learning_rate": 4.5745373613424075e-06, + "loss": 0.0, + "step": 720 + }, + { + "epoch": 1.39, + "learning_rate": 4.548383007283412e-06, + "loss": 0.0, + "step": 721 + }, + { + "epoch": 1.39, + "learning_rate": 4.522281607821288e-06, + "loss": 0.0, + "step": 722 + }, + { + "epoch": 1.39, + "learning_rate": 4.496233416493481e-06, + "loss": 0.0, + "step": 723 + }, + { + "epoch": 1.39, + "learning_rate": 4.470238686320606e-06, + "loss": 0.0, + "step": 724 + }, + { + "epoch": 1.39, + "learning_rate": 4.444297669803981e-06, + "loss": 0.0, + "step": 725 + }, + { + "epoch": 1.4, + "learning_rate": 4.418410618923163e-06, + "loss": 0.0, + "step": 726 + }, + { + "epoch": 1.4, + "learning_rate": 4.392577785133521e-06, + "loss": 0.0, + "step": 727 + }, + { + "epoch": 1.4, + "learning_rate": 4.3667994193637794e-06, + "loss": 0.0, + "step": 728 + }, + { + "epoch": 1.4, + "learning_rate": 4.3410757720135886e-06, + "loss": 0.0, + "step": 729 + }, + { + "epoch": 1.4, + "learning_rate": 4.315407092951078e-06, + "loss": 0.0, + "step": 730 + }, + { + "epoch": 1.41, + "learning_rate": 4.289793631510449e-06, + "loss": 0.0, + "step": 731 + }, + { + "epoch": 1.41, + "learning_rate": 4.264235636489542e-06, + "loss": 0.0, + "step": 732 + }, + { + "epoch": 1.41, + "learning_rate": 4.238733356147414e-06, + "loss": 0.0, + "step": 733 + }, + { + "epoch": 1.41, + "learning_rate": 4.213287038201943e-06, + "loss": 0.0, + "step": 734 + }, + { + "epoch": 1.41, + "learning_rate": 4.187896929827414e-06, + "loss": 0.0, + "step": 735 + }, + { + "epoch": 1.42, + "learning_rate": 4.162563277652104e-06, + "loss": 0.0, + "step": 736 + }, + { + "epoch": 1.42, + "learning_rate": 4.137286327755913e-06, + "loss": 0.0, + "step": 737 + }, + { + "epoch": 1.42, + "learning_rate": 4.112066325667954e-06, + "loss": 0.0, + "step": 738 + }, + { + "epoch": 1.42, + "learning_rate": 4.086903516364179e-06, + "loss": 0.0, + "step": 739 + }, + { + "epoch": 1.42, + "learning_rate": 4.061798144264986e-06, + "loss": 0.0, + "step": 740 + }, + { + "epoch": 1.43, + "learning_rate": 4.03675045323286e-06, + "loss": 0.0, + "step": 741 + }, + { + "epoch": 1.43, + "learning_rate": 4.0117606865699975e-06, + "loss": 0.0, + "step": 742 + }, + { + "epoch": 1.43, + "learning_rate": 3.986829087015941e-06, + "loss": 0.0, + "step": 743 + }, + { + "epoch": 1.43, + "learning_rate": 3.961955896745224e-06, + "loss": 0.0, + "step": 744 + }, + { + "epoch": 1.43, + "learning_rate": 3.937141357365023e-06, + "loss": 0.0, + "step": 745 + }, + { + "epoch": 1.43, + "learning_rate": 3.912385709912794e-06, + "loss": 0.0, + "step": 746 + }, + { + "epoch": 1.44, + "learning_rate": 3.887689194853951e-06, + "loss": 0.0, + "step": 747 + }, + { + "epoch": 1.44, + "learning_rate": 3.8630520520795275e-06, + "loss": 0.0, + "step": 748 + }, + { + "epoch": 1.44, + "learning_rate": 3.838474520903825e-06, + "loss": 0.0, + "step": 749 + }, + { + "epoch": 1.44, + "learning_rate": 3.8139568400621184e-06, + "loss": 0.0, + "step": 750 + }, + { + "epoch": 1.44, + "learning_rate": 3.7894992477083226e-06, + "loss": 0.0, + "step": 751 + }, + { + "epoch": 1.45, + "learning_rate": 3.7651019814126656e-06, + "loss": 0.0, + "step": 752 + }, + { + "epoch": 1.45, + "learning_rate": 3.7407652781594094e-06, + "loss": 0.0, + "step": 753 + }, + { + "epoch": 1.45, + "learning_rate": 3.7164893743445274e-06, + "loss": 0.0, + "step": 754 + }, + { + "epoch": 1.45, + "learning_rate": 3.692274505773419e-06, + "loss": 0.0, + "step": 755 + }, + { + "epoch": 1.45, + "learning_rate": 3.6681209076586035e-06, + "loss": 0.0, + "step": 756 + }, + { + "epoch": 1.46, + "learning_rate": 3.644028814617454e-06, + "loss": 0.0, + "step": 757 + }, + { + "epoch": 1.46, + "learning_rate": 3.619998460669916e-06, + "loss": 0.0, + "step": 758 + }, + { + "epoch": 1.46, + "learning_rate": 3.5960300792362124e-06, + "loss": 0.0, + "step": 759 + }, + { + "epoch": 1.46, + "learning_rate": 3.5721239031346067e-06, + "loss": 0.0, + "step": 760 + }, + { + "epoch": 1.46, + "learning_rate": 3.5482801645791266e-06, + "loss": 0.0, + "step": 761 + }, + { + "epoch": 1.47, + "learning_rate": 3.5244990951772972e-06, + "loss": 0.0, + "step": 762 + }, + { + "epoch": 1.47, + "learning_rate": 3.5007809259279146e-06, + "loss": 0.0, + "step": 763 + }, + { + "epoch": 1.47, + "learning_rate": 3.4771258872187917e-06, + "loss": 0.0, + "step": 764 + }, + { + "epoch": 1.47, + "learning_rate": 3.453534208824507e-06, + "loss": 0.0, + "step": 765 + }, + { + "epoch": 1.47, + "learning_rate": 3.4300061199041967e-06, + "loss": 0.0, + "step": 766 + }, + { + "epoch": 1.48, + "learning_rate": 3.4065418489993118e-06, + "loss": 0.0, + "step": 767 + }, + { + "epoch": 1.48, + "learning_rate": 3.3831416240314085e-06, + "loss": 0.0, + "step": 768 + }, + { + "epoch": 1.48, + "learning_rate": 3.3598056722999185e-06, + "loss": 0.0, + "step": 769 + }, + { + "epoch": 1.48, + "learning_rate": 3.3365342204799613e-06, + "loss": 0.0, + "step": 770 + }, + { + "epoch": 1.48, + "learning_rate": 3.3133274946201333e-06, + "loss": 0.0, + "step": 771 + }, + { + "epoch": 1.48, + "learning_rate": 3.290185720140301e-06, + "loss": 0.0, + "step": 772 + }, + { + "epoch": 1.49, + "learning_rate": 3.267109121829428e-06, + "loss": 0.0, + "step": 773 + }, + { + "epoch": 1.49, + "learning_rate": 3.2440979238433977e-06, + "loss": 0.0, + "step": 774 + }, + { + "epoch": 1.49, + "learning_rate": 3.221152349702802e-06, + "loss": 0.0, + "step": 775 + }, + { + "epoch": 1.49, + "learning_rate": 3.1982726222908046e-06, + "loss": 0.0, + "step": 776 + }, + { + "epoch": 1.49, + "learning_rate": 3.1754589638509647e-06, + "loss": 0.0, + "step": 777 + }, + { + "epoch": 1.5, + "learning_rate": 3.152711595985065e-06, + "loss": 0.0, + "step": 778 + }, + { + "epoch": 1.5, + "learning_rate": 3.1300307396509833e-06, + "loss": 0.0, + "step": 779 + }, + { + "epoch": 1.5, + "learning_rate": 3.10741661516053e-06, + "loss": 0.0, + "step": 780 + }, + { + "epoch": 1.5, + "learning_rate": 3.0848694421773075e-06, + "loss": 0.0, + "step": 781 + }, + { + "epoch": 1.5, + "learning_rate": 3.0623894397145837e-06, + "loss": 0.0, + "step": 782 + }, + { + "epoch": 1.51, + "learning_rate": 3.0399768261331664e-06, + "loss": 0.0, + "step": 783 + }, + { + "epoch": 1.51, + "learning_rate": 3.017631819139273e-06, + "loss": 0.0, + "step": 784 + }, + { + "epoch": 1.51, + "learning_rate": 2.995354635782417e-06, + "loss": 0.0, + "step": 785 + }, + { + "epoch": 1.51, + "learning_rate": 2.9731454924533086e-06, + "loss": 0.0, + "step": 786 + }, + { + "epoch": 1.51, + "learning_rate": 2.95100460488175e-06, + "loss": 0.0, + "step": 787 + }, + { + "epoch": 1.52, + "learning_rate": 2.9289321881345257e-06, + "loss": 0.0, + "step": 788 + }, + { + "epoch": 1.52, + "learning_rate": 2.906928456613336e-06, + "loss": 0.0, + "step": 789 + }, + { + "epoch": 1.52, + "learning_rate": 2.884993624052701e-06, + "loss": 0.0, + "step": 790 + }, + { + "epoch": 1.52, + "learning_rate": 2.8631279035178796e-06, + "loss": 0.0, + "step": 791 + }, + { + "epoch": 1.52, + "learning_rate": 2.8413315074028157e-06, + "loss": 0.0, + "step": 792 + }, + { + "epoch": 1.52, + "learning_rate": 2.819604647428067e-06, + "loss": 0.0, + "step": 793 + }, + { + "epoch": 1.53, + "learning_rate": 2.7979475346387363e-06, + "loss": 0.0, + "step": 794 + }, + { + "epoch": 1.53, + "learning_rate": 2.776360379402445e-06, + "loss": 0.0, + "step": 795 + }, + { + "epoch": 1.53, + "learning_rate": 2.7548433914072736e-06, + "loss": 0.0, + "step": 796 + }, + { + "epoch": 1.53, + "learning_rate": 2.7333967796597317e-06, + "loss": 0.0, + "step": 797 + }, + { + "epoch": 1.53, + "learning_rate": 2.712020752482717e-06, + "loss": 0.0, + "step": 798 + }, + { + "epoch": 1.54, + "learning_rate": 2.690715517513508e-06, + "loss": 0.0, + "step": 799 + }, + { + "epoch": 1.54, + "learning_rate": 2.669481281701739e-06, + "loss": 0.0, + "step": 800 + } + ], + "logging_steps": 1.0, + "max_steps": 1040, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 100, + "total_flos": 3.991516798003446e+17, + "train_batch_size": 16, + "trial_name": null, + "trial_params": null +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/training_args.bin b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..2ca4d892afdd453b26723a9aa94e432cb44cc953 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:63da3a2d0bf1dde543b68e123590fcd7c42f45ec7eb68e86c6eadd439321f902 +size 6264 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/zero_to_fp32.py b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..c98caae31534368be22b67fc4ae906836c992a8d --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-800/zero_to_fp32.py @@ -0,0 +1,587 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: python zero_to_fp32.py . pytorch_model.bin + +import argparse +import torch +import glob +import math +import os +import re +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + + total_files = len(files) + state_dicts = [] + for f in files: + state_dict = torch.load(f, map_location=device) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + if zero_stage <= 2: + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + elif zero_stage == 3: + # if there is more than one param group, there will be multiple flattened tensors - one + # flattened tensor per group - for simplicity merge them into a single tensor + # + # XXX: could make the script more memory efficient for when there are multiple groups - it + # will require matching the sub-lists of param_shapes for each param group flattened tensor + + fp32_flat_groups = [ + torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) + ] + + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = fp32_flat_groups[0].numel() * world_size + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + for name, shape in param_shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # XXX: memory usage doubles here + state_dict[name] = torch.cat( + tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), + 0).narrow(0, 0, unpartitioned_numel).view(shape) + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + + Returns: + - pytorch ``state_dict`` + + Note: this approach may not work if your application doesn't have sufficient free CPU memory and + you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + """ + + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + print(f"Saving fp32 state dict to {output_file}") + torch.save(state_dict, output_file) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument( + "output_file", + type=str, + help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag) diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/config.json new file mode 100644 index 0000000000000000000000000000000000000000..44e6d4e17930a42d0aa68dcd3790bd5f32ba4ec4 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/config.json @@ -0,0 +1,73 @@ +{ + "_name_or_path": "../pretrained-models/llava-v1.6-mistral-7b", + "architectures": [ + "LlavaLlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 1, + "eos_token_id": 2, + "freeze_mm_mlp_adapter": false, + "freeze_mm_vision_resampler": false, + "hidden_act": "silu", + "hidden_size": 4096, + "image_aspect_ratio": "pad", + "image_crop_resolution": 224, + "image_grid_pinpoints": [ + [ + 336, + 672 + ], + [ + 672, + 336 + ], + [ + 672, + 672 + ], + [ + 1008, + 336 + ], + [ + 336, + 1008 + ] + ], + "image_split_resolution": 224, + "initializer_range": 0.02, + "intermediate_size": 14336, + "max_position_embeddings": 32768, + "mm_hidden_size": 1024, + "mm_patch_merge_type": "flat", + "mm_projector_lr": null, + "mm_projector_type": "mlp2x_gelu", + "mm_resampler_type": null, + "mm_use_im_patch_token": false, + "mm_use_im_start_end": false, + "mm_vision_select_feature": "patch", + "mm_vision_select_layer": -2, + "mm_vision_tower": "openai/clip-vit-large-patch14-336", + "mm_vision_tower_lr": 2e-06, + "model_type": "llava_llama", + "num_attention_heads": 32, + "num_hidden_layers": 32, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": null, + "rope_theta": 1000000.0, + "sliding_window": null, + "tie_word_embeddings": false, + "tokenizer_model_max_length": 2048, + "tokenizer_padding_side": "right", + "torch_dtype": "bfloat16", + "transformers_version": "4.37.2", + "tune_mm_mlp_adapter": false, + "tune_mm_vision_resampler": false, + "unfreeze_mm_vision_tower": true, + "use_cache": false, + "use_mm_proj": true, + "vocab_size": 32000 +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/generation_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..69b7806611a4865cd48c3e991dbd7d8312e0c5d3 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/generation_config.json @@ -0,0 +1,6 @@ +{ + "_from_model_config": true, + "bos_token_id": 1, + "eos_token_id": 2, + "transformers_version": "4.37.2" +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/latest b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/latest new file mode 100644 index 0000000000000000000000000000000000000000..4b10acccf3e8395339ff8799cea202bbc54d7f7d --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/latest @@ -0,0 +1 @@ +global_step900 \ No newline at end of file diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/model.safetensors.index.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..927da5be7e6e3ec29d3a967a09ba6a421d7a2191 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/model.safetensors.index.json @@ -0,0 +1,694 @@ +{ + "metadata": { + "total_size": 15132446720 + }, + "weight_map": { + "lm_head.weight": "model-00004-of-00004.safetensors", + "model.embed_tokens.weight": "model-00001-of-00004.safetensors", + "model.image_newline": "model-00001-of-00004.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.mm_projector.0.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.0.weight": "model-00003-of-00004.safetensors", + "model.mm_projector.2.bias": "model-00003-of-00004.safetensors", + "model.mm_projector.2.weight": "model-00003-of-00004.safetensors", + "model.norm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.class_embedding": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.bias": "model-00003-of-00004.safetensors", + "model.vision_tower.vision_tower.vision_model.pre_layrnorm.weight": "model-00003-of-00004.safetensors" + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_0.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..b346349ce12dd5a17d4b91ed2a5722bb52550950 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ad8a35afd8967cbb748405387e44426e43ad127028e826eddc9b67d2ca873c85 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_1.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..68f3c6994456cb8d0592a5375d99503c8924b1c4 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f338ce80d7c441076bfc8c53b84067a0181f5a14e80c13d5acb8150b659f4d73 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_2.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_2.pth new file mode 100644 index 0000000000000000000000000000000000000000..be044f6ceeed587d30e80c2f72d5aa19fdc9947b --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_2.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c9fbc9fa428939be10b46779f0eb5cd833e0da426b1cbdee77b3a55b6952235b +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_3.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_3.pth new file mode 100644 index 0000000000000000000000000000000000000000..fc825249656a9b858782542bd3f4386250f1dfe0 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_3.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ac55dba0b79d5fa4699d239da2f966d52040d576d31234ac8d4632e6956481bc +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_4.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_4.pth new file mode 100644 index 0000000000000000000000000000000000000000..d30f52a44be563c152ae09db6ae934da6da0d3ed --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_4.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:af2d0c015100768ffa23faf3b6c2d54ea89eb045603e30e55cd211e06ff34972 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_5.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_5.pth new file mode 100644 index 0000000000000000000000000000000000000000..c8715d27ab23ae545d58039cf949cc44ecc1da5e --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_5.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c60a1b40608e34bc801c8231f97b81c53b5290dfaed1b9cd0ccbeca29574a991 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_6.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_6.pth new file mode 100644 index 0000000000000000000000000000000000000000..1ed791b6ef76eadf0b0c55a5733411771e2ae027 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_6.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3ad6a142a403eb9aafc4a3a9a856bca648fe31fd22d796867baca31fb13656aa +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_7.pth b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_7.pth new file mode 100644 index 0000000000000000000000000000000000000000..800c3bbbc5edf7db01a8316069d439c5fb8d8c30 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/rng_state_7.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:38bc23a138cc800b22881742c0f3f9a71731a9a7111c6058a0077e6274d21773 +size 15984 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/scheduler.pt b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..ce15623afb638ee28c575115527a0e4f70c730c4 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:19d5eacdb1832860d506b1ab60e4ef78418bb865b82ed94d3b0294052717c4f2 +size 1064 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/special_tokens_map.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..14761dcf1466dc232bd41de9c21d4c617b15755e --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/special_tokens_map.json @@ -0,0 +1,24 @@ +{ + "bos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": "", + "unk_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/tokenizer.model b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/tokenizer.model new file mode 100644 index 0000000000000000000000000000000000000000..8b443ef19c2a19acc3ac64fb9c3db4a72921dff6 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/tokenizer.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055 +size 493443 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/tokenizer_config.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..23dcf70e8cfc9b16310b6ff3dc98fdbc5adc11f8 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/tokenizer_config.json @@ -0,0 +1,44 @@ +{ + "add_bos_token": true, + "add_eos_token": false, + "added_tokens_decoder": { + "0": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "1": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "2": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + } + }, + "additional_special_tokens": [], + "bos_token": "", + "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", + "clean_up_tokenization_spaces": false, + "eos_token": "", + "legacy": true, + "model_max_length": 2048, + "pad_token": "", + "padding_side": "right", + "sp_model_kwargs": {}, + "spaces_between_special_tokens": false, + "tokenizer_class": "LlamaTokenizer", + "unk_token": "", + "use_default_system_prompt": false +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/trainer_state.json b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..b52114ef0d3a1d5541d30d5d7e4dc5177ee7cc37 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/trainer_state.json @@ -0,0 +1,5421 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.7307692307692308, + "eval_steps": 500, + "global_step": 900, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 6.25e-07, + "loss": 3.7473, + "step": 1 + }, + { + "epoch": 0.0, + "learning_rate": 1.25e-06, + "loss": 0.0, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 1.8750000000000003e-06, + "loss": 0.0, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 2.5e-06, + "loss": 0.0, + "step": 4 + }, + { + "epoch": 0.01, + "learning_rate": 3.125e-06, + "loss": 0.0, + "step": 5 + }, + { + "epoch": 0.01, + "learning_rate": 3.7500000000000005e-06, + "loss": 0.0, + "step": 6 + }, + { + "epoch": 0.01, + "learning_rate": 4.3750000000000005e-06, + "loss": 0.0, + "step": 7 + }, + { + "epoch": 0.02, + "learning_rate": 5e-06, + "loss": 0.0, + "step": 8 + }, + { + "epoch": 0.02, + "learning_rate": 5.625e-06, + "loss": 0.0, + "step": 9 + }, + { + "epoch": 0.02, + "learning_rate": 6.25e-06, + "loss": 0.0, + "step": 10 + }, + { + "epoch": 0.02, + "learning_rate": 6.875e-06, + "loss": 0.0, + "step": 11 + }, + { + "epoch": 0.02, + "learning_rate": 7.500000000000001e-06, + "loss": 0.0, + "step": 12 + }, + { + "epoch": 0.03, + "learning_rate": 8.125000000000001e-06, + "loss": 0.0, + "step": 13 + }, + { + "epoch": 0.03, + "learning_rate": 8.750000000000001e-06, + "loss": 0.0, + "step": 14 + }, + { + "epoch": 0.03, + "learning_rate": 9.375000000000001e-06, + "loss": 0.0, + "step": 15 + }, + { + "epoch": 0.03, + "learning_rate": 1e-05, + "loss": 0.0, + "step": 16 + }, + { + "epoch": 0.03, + "learning_rate": 1.0625e-05, + "loss": 0.0, + "step": 17 + }, + { + "epoch": 0.03, + "learning_rate": 1.125e-05, + "loss": 0.0, + "step": 18 + }, + { + "epoch": 0.04, + "learning_rate": 1.1875e-05, + "loss": 0.0, + "step": 19 + }, + { + "epoch": 0.04, + "learning_rate": 1.25e-05, + "loss": 0.0, + "step": 20 + }, + { + "epoch": 0.04, + "learning_rate": 1.3125e-05, + "loss": 0.0, + "step": 21 + }, + { + "epoch": 0.04, + "learning_rate": 1.375e-05, + "loss": 0.0, + "step": 22 + }, + { + "epoch": 0.04, + "learning_rate": 1.4375e-05, + "loss": 0.0, + "step": 23 + }, + { + "epoch": 0.05, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0, + "step": 24 + }, + { + "epoch": 0.05, + "learning_rate": 1.5625e-05, + "loss": 0.0, + "step": 25 + }, + { + "epoch": 0.05, + "learning_rate": 1.6250000000000002e-05, + "loss": 0.0, + "step": 26 + }, + { + "epoch": 0.05, + "learning_rate": 1.6875e-05, + "loss": 0.0, + "step": 27 + }, + { + "epoch": 0.05, + "learning_rate": 1.7500000000000002e-05, + "loss": 0.0, + "step": 28 + }, + { + "epoch": 0.06, + "learning_rate": 1.8125e-05, + "loss": 0.0, + "step": 29 + }, + { + "epoch": 0.06, + "learning_rate": 1.8750000000000002e-05, + "loss": 0.0, + "step": 30 + }, + { + "epoch": 0.06, + "learning_rate": 1.9375e-05, + "loss": 0.0, + "step": 31 + }, + { + "epoch": 0.06, + "learning_rate": 2e-05, + "loss": 0.0, + "step": 32 + }, + { + "epoch": 0.06, + "learning_rate": 1.9999951432210905e-05, + "loss": 0.0, + "step": 33 + }, + { + "epoch": 0.07, + "learning_rate": 1.9999805729315383e-05, + "loss": 0.0, + "step": 34 + }, + { + "epoch": 0.07, + "learning_rate": 1.999956289272873e-05, + "loss": 0.0, + "step": 35 + }, + { + "epoch": 0.07, + "learning_rate": 1.999922292480975e-05, + "loss": 0.0, + "step": 36 + }, + { + "epoch": 0.07, + "learning_rate": 1.9998785828860744e-05, + "loss": 0.0, + "step": 37 + }, + { + "epoch": 0.07, + "learning_rate": 1.9998251609127465e-05, + "loss": 0.0, + "step": 38 + }, + { + "epoch": 0.07, + "learning_rate": 1.999762027079909e-05, + "loss": 0.0, + "step": 39 + }, + { + "epoch": 0.08, + "learning_rate": 1.9996891820008165e-05, + "loss": 0.0, + "step": 40 + }, + { + "epoch": 0.08, + "learning_rate": 1.9996066263830533e-05, + "loss": 0.0, + "step": 41 + }, + { + "epoch": 0.08, + "learning_rate": 1.9995143610285275e-05, + "loss": 0.0, + "step": 42 + }, + { + "epoch": 0.08, + "learning_rate": 1.9994123868334655e-05, + "loss": 0.0, + "step": 43 + }, + { + "epoch": 0.08, + "learning_rate": 1.9993007047883988e-05, + "loss": 0.0, + "step": 44 + }, + { + "epoch": 0.09, + "learning_rate": 1.999179315978157e-05, + "loss": 0.0, + "step": 45 + }, + { + "epoch": 0.09, + "learning_rate": 1.999048221581858e-05, + "loss": 0.0, + "step": 46 + }, + { + "epoch": 0.09, + "learning_rate": 1.9989074228728942e-05, + "loss": 0.0, + "step": 47 + }, + { + "epoch": 0.09, + "learning_rate": 1.9987569212189224e-05, + "loss": 0.0, + "step": 48 + }, + { + "epoch": 0.09, + "learning_rate": 1.9985967180818493e-05, + "loss": 0.0, + "step": 49 + }, + { + "epoch": 0.1, + "learning_rate": 1.998426815017817e-05, + "loss": 0.0, + "step": 50 + }, + { + "epoch": 0.1, + "learning_rate": 1.998247213677188e-05, + "loss": 0.0, + "step": 51 + }, + { + "epoch": 0.1, + "learning_rate": 1.9980579158045322e-05, + "loss": 0.0, + "step": 52 + }, + { + "epoch": 0.1, + "learning_rate": 1.9978589232386036e-05, + "loss": 0.0, + "step": 53 + }, + { + "epoch": 0.1, + "learning_rate": 1.997650237912329e-05, + "loss": 0.0, + "step": 54 + }, + { + "epoch": 0.11, + "learning_rate": 1.997431861852785e-05, + "loss": 0.0, + "step": 55 + }, + { + "epoch": 0.11, + "learning_rate": 1.9972037971811802e-05, + "loss": 0.0, + "step": 56 + }, + { + "epoch": 0.11, + "learning_rate": 1.996966046112834e-05, + "loss": 0.0, + "step": 57 + }, + { + "epoch": 0.11, + "learning_rate": 1.996718610957155e-05, + "loss": 0.0, + "step": 58 + }, + { + "epoch": 0.11, + "learning_rate": 1.9964614941176194e-05, + "loss": 0.0, + "step": 59 + }, + { + "epoch": 0.12, + "learning_rate": 1.9961946980917457e-05, + "loss": 0.0, + "step": 60 + }, + { + "epoch": 0.12, + "learning_rate": 1.995918225471073e-05, + "loss": 0.0, + "step": 61 + }, + { + "epoch": 0.12, + "learning_rate": 1.9956320789411338e-05, + "loss": 0.0, + "step": 62 + }, + { + "epoch": 0.12, + "learning_rate": 1.9953362612814294e-05, + "loss": 0.0, + "step": 63 + }, + { + "epoch": 0.12, + "learning_rate": 1.9950307753654016e-05, + "loss": 0.0, + "step": 64 + }, + { + "epoch": 0.12, + "learning_rate": 1.994715624160405e-05, + "loss": 0.0, + "step": 65 + }, + { + "epoch": 0.13, + "learning_rate": 1.99439081072768e-05, + "loss": 0.0, + "step": 66 + }, + { + "epoch": 0.13, + "learning_rate": 1.9940563382223196e-05, + "loss": 0.0, + "step": 67 + }, + { + "epoch": 0.13, + "learning_rate": 1.9937122098932428e-05, + "loss": 0.0, + "step": 68 + }, + { + "epoch": 0.13, + "learning_rate": 1.9933584290831593e-05, + "loss": 0.0, + "step": 69 + }, + { + "epoch": 0.13, + "learning_rate": 1.9929949992285397e-05, + "loss": 0.0, + "step": 70 + }, + { + "epoch": 0.14, + "learning_rate": 1.992621923859581e-05, + "loss": 0.0, + "step": 71 + }, + { + "epoch": 0.14, + "learning_rate": 1.9922392066001724e-05, + "loss": 0.0, + "step": 72 + }, + { + "epoch": 0.14, + "learning_rate": 1.99184685116786e-05, + "loss": 0.0, + "step": 73 + }, + { + "epoch": 0.14, + "learning_rate": 1.9914448613738107e-05, + "loss": 0.0, + "step": 74 + }, + { + "epoch": 0.14, + "learning_rate": 1.991033241122776e-05, + "loss": 0.0, + "step": 75 + }, + { + "epoch": 0.15, + "learning_rate": 1.9906119944130527e-05, + "loss": 0.0, + "step": 76 + }, + { + "epoch": 0.15, + "learning_rate": 1.9901811253364458e-05, + "loss": 0.0, + "step": 77 + }, + { + "epoch": 0.15, + "learning_rate": 1.9897406380782262e-05, + "loss": 0.0, + "step": 78 + }, + { + "epoch": 0.15, + "learning_rate": 1.989290536917093e-05, + "loss": 0.0, + "step": 79 + }, + { + "epoch": 0.15, + "learning_rate": 1.9888308262251286e-05, + "loss": 0.0, + "step": 80 + }, + { + "epoch": 0.16, + "learning_rate": 1.988361510467761e-05, + "loss": 0.0, + "step": 81 + }, + { + "epoch": 0.16, + "learning_rate": 1.9878825942037147e-05, + "loss": 0.0, + "step": 82 + }, + { + "epoch": 0.16, + "learning_rate": 1.9873940820849714e-05, + "loss": 0.0, + "step": 83 + }, + { + "epoch": 0.16, + "learning_rate": 1.9868959788567213e-05, + "loss": 0.0, + "step": 84 + }, + { + "epoch": 0.16, + "learning_rate": 1.9863882893573188e-05, + "loss": 0.0, + "step": 85 + }, + { + "epoch": 0.17, + "learning_rate": 1.985871018518236e-05, + "loss": 0.0, + "step": 86 + }, + { + "epoch": 0.17, + "learning_rate": 1.9853441713640123e-05, + "loss": 0.0, + "step": 87 + }, + { + "epoch": 0.17, + "learning_rate": 1.9848077530122083e-05, + "loss": 0.0, + "step": 88 + }, + { + "epoch": 0.17, + "learning_rate": 1.9842617686733546e-05, + "loss": 0.0, + "step": 89 + }, + { + "epoch": 0.17, + "learning_rate": 1.9837062236509013e-05, + "loss": 0.0, + "step": 90 + }, + { + "epoch": 0.17, + "learning_rate": 1.983141123341168e-05, + "loss": 0.0, + "step": 91 + }, + { + "epoch": 0.18, + "learning_rate": 1.9825664732332886e-05, + "loss": 0.0, + "step": 92 + }, + { + "epoch": 0.18, + "learning_rate": 1.9819822789091597e-05, + "loss": 0.0, + "step": 93 + }, + { + "epoch": 0.18, + "learning_rate": 1.981388546043388e-05, + "loss": 0.0, + "step": 94 + }, + { + "epoch": 0.18, + "learning_rate": 1.9807852804032306e-05, + "loss": 0.0, + "step": 95 + }, + { + "epoch": 0.18, + "learning_rate": 1.9801724878485438e-05, + "loss": 0.0, + "step": 96 + }, + { + "epoch": 0.19, + "learning_rate": 1.979550174331724e-05, + "loss": 0.0, + "step": 97 + }, + { + "epoch": 0.19, + "learning_rate": 1.9789183458976485e-05, + "loss": 0.0, + "step": 98 + }, + { + "epoch": 0.19, + "learning_rate": 1.97827700868362e-05, + "loss": 0.0, + "step": 99 + }, + { + "epoch": 0.19, + "learning_rate": 1.977626168919305e-05, + "loss": 0.0, + "step": 100 + }, + { + "epoch": 0.19, + "learning_rate": 1.9769658329266718e-05, + "loss": 0.0, + "step": 101 + }, + { + "epoch": 0.2, + "learning_rate": 1.9762960071199334e-05, + "loss": 0.0, + "step": 102 + }, + { + "epoch": 0.2, + "learning_rate": 1.9756166980054812e-05, + "loss": 0.0, + "step": 103 + }, + { + "epoch": 0.2, + "learning_rate": 1.9749279121818235e-05, + "loss": 0.0, + "step": 104 + }, + { + "epoch": 0.2, + "learning_rate": 1.9742296563395218e-05, + "loss": 0.0, + "step": 105 + }, + { + "epoch": 0.2, + "learning_rate": 1.9735219372611232e-05, + "loss": 0.0, + "step": 106 + }, + { + "epoch": 0.21, + "learning_rate": 1.9728047618210995e-05, + "loss": 0.0, + "step": 107 + }, + { + "epoch": 0.21, + "learning_rate": 1.9720781369857747e-05, + "loss": 0.0, + "step": 108 + }, + { + "epoch": 0.21, + "learning_rate": 1.9713420698132614e-05, + "loss": 0.0, + "step": 109 + }, + { + "epoch": 0.21, + "learning_rate": 1.970596567453391e-05, + "loss": 0.0, + "step": 110 + }, + { + "epoch": 0.21, + "learning_rate": 1.9698416371476434e-05, + "loss": 0.0, + "step": 111 + }, + { + "epoch": 0.22, + "learning_rate": 1.969077286229078e-05, + "loss": 0.0, + "step": 112 + }, + { + "epoch": 0.22, + "learning_rate": 1.9683035221222617e-05, + "loss": 0.0, + "step": 113 + }, + { + "epoch": 0.22, + "learning_rate": 1.9675203523431964e-05, + "loss": 0.0, + "step": 114 + }, + { + "epoch": 0.22, + "learning_rate": 1.9667277844992476e-05, + "loss": 0.0, + "step": 115 + }, + { + "epoch": 0.22, + "learning_rate": 1.9659258262890683e-05, + "loss": 0.0, + "step": 116 + }, + { + "epoch": 0.23, + "learning_rate": 1.9651144855025265e-05, + "loss": 0.0, + "step": 117 + }, + { + "epoch": 0.23, + "learning_rate": 1.964293770020628e-05, + "loss": 0.0, + "step": 118 + }, + { + "epoch": 0.23, + "learning_rate": 1.9634636878154393e-05, + "loss": 0.0, + "step": 119 + }, + { + "epoch": 0.23, + "learning_rate": 1.962624246950012e-05, + "loss": 0.0, + "step": 120 + }, + { + "epoch": 0.23, + "learning_rate": 1.9617754555783045e-05, + "loss": 0.0, + "step": 121 + }, + { + "epoch": 0.23, + "learning_rate": 1.9609173219450998e-05, + "loss": 0.0, + "step": 122 + }, + { + "epoch": 0.24, + "learning_rate": 1.960049854385929e-05, + "loss": 0.0, + "step": 123 + }, + { + "epoch": 0.24, + "learning_rate": 1.9591730613269878e-05, + "loss": 0.0, + "step": 124 + }, + { + "epoch": 0.24, + "learning_rate": 1.9582869512850576e-05, + "loss": 0.0, + "step": 125 + }, + { + "epoch": 0.24, + "learning_rate": 1.957391532867418e-05, + "loss": 0.0, + "step": 126 + }, + { + "epoch": 0.24, + "learning_rate": 1.956486814771769e-05, + "loss": 0.0, + "step": 127 + }, + { + "epoch": 0.25, + "learning_rate": 1.955572805786141e-05, + "loss": 0.0, + "step": 128 + }, + { + "epoch": 0.25, + "learning_rate": 1.9546495147888134e-05, + "loss": 0.0, + "step": 129 + }, + { + "epoch": 0.25, + "learning_rate": 1.953716950748227e-05, + "loss": 0.0, + "step": 130 + }, + { + "epoch": 0.25, + "learning_rate": 1.9527751227228964e-05, + "loss": 0.0, + "step": 131 + }, + { + "epoch": 0.25, + "learning_rate": 1.9518240398613226e-05, + "loss": 0.0, + "step": 132 + }, + { + "epoch": 0.26, + "learning_rate": 1.9508637114019037e-05, + "loss": 0.0, + "step": 133 + }, + { + "epoch": 0.26, + "learning_rate": 1.9498941466728462e-05, + "loss": 0.0, + "step": 134 + }, + { + "epoch": 0.26, + "learning_rate": 1.9489153550920726e-05, + "loss": 0.0, + "step": 135 + }, + { + "epoch": 0.26, + "learning_rate": 1.947927346167132e-05, + "loss": 0.0, + "step": 136 + }, + { + "epoch": 0.26, + "learning_rate": 1.946930129495106e-05, + "loss": 0.0, + "step": 137 + }, + { + "epoch": 0.27, + "learning_rate": 1.945923714762516e-05, + "loss": 0.0, + "step": 138 + }, + { + "epoch": 0.27, + "learning_rate": 1.9449081117452304e-05, + "loss": 0.0, + "step": 139 + }, + { + "epoch": 0.27, + "learning_rate": 1.9438833303083677e-05, + "loss": 0.0, + "step": 140 + }, + { + "epoch": 0.27, + "learning_rate": 1.9428493804062013e-05, + "loss": 0.0, + "step": 141 + }, + { + "epoch": 0.27, + "learning_rate": 1.9418062720820636e-05, + "loss": 0.0, + "step": 142 + }, + { + "epoch": 0.28, + "learning_rate": 1.9407540154682473e-05, + "loss": 0.0, + "step": 143 + }, + { + "epoch": 0.28, + "learning_rate": 1.9396926207859085e-05, + "loss": 0.0, + "step": 144 + }, + { + "epoch": 0.28, + "learning_rate": 1.9386220983449652e-05, + "loss": 0.0, + "step": 145 + }, + { + "epoch": 0.28, + "learning_rate": 1.9375424585439994e-05, + "loss": 0.0, + "step": 146 + }, + { + "epoch": 0.28, + "learning_rate": 1.9364537118701542e-05, + "loss": 0.0, + "step": 147 + }, + { + "epoch": 0.28, + "learning_rate": 1.935355868899034e-05, + "loss": 0.0, + "step": 148 + }, + { + "epoch": 0.29, + "learning_rate": 1.9342489402945997e-05, + "loss": 0.0, + "step": 149 + }, + { + "epoch": 0.29, + "learning_rate": 1.9331329368090664e-05, + "loss": 0.0, + "step": 150 + }, + { + "epoch": 0.29, + "learning_rate": 1.932007869282799e-05, + "loss": 0.0, + "step": 151 + }, + { + "epoch": 0.29, + "learning_rate": 1.9308737486442045e-05, + "loss": 0.0, + "step": 152 + }, + { + "epoch": 0.29, + "learning_rate": 1.9297305859096305e-05, + "loss": 0.0, + "step": 153 + }, + { + "epoch": 0.3, + "learning_rate": 1.9285783921832537e-05, + "loss": 0.0, + "step": 154 + }, + { + "epoch": 0.3, + "learning_rate": 1.927417178656975e-05, + "loss": 0.0, + "step": 155 + }, + { + "epoch": 0.3, + "learning_rate": 1.926246956610309e-05, + "loss": 0.0, + "step": 156 + }, + { + "epoch": 0.3, + "learning_rate": 1.9250677374102752e-05, + "loss": 0.0, + "step": 157 + }, + { + "epoch": 0.3, + "learning_rate": 1.9238795325112867e-05, + "loss": 0.0, + "step": 158 + }, + { + "epoch": 0.31, + "learning_rate": 1.9226823534550418e-05, + "loss": 0.0, + "step": 159 + }, + { + "epoch": 0.31, + "learning_rate": 1.921476211870408e-05, + "loss": 0.0, + "step": 160 + }, + { + "epoch": 0.31, + "learning_rate": 1.9202611194733107e-05, + "loss": 0.0, + "step": 161 + }, + { + "epoch": 0.31, + "learning_rate": 1.9190370880666206e-05, + "loss": 0.0, + "step": 162 + }, + { + "epoch": 0.31, + "learning_rate": 1.9178041295400383e-05, + "loss": 0.0, + "step": 163 + }, + { + "epoch": 0.32, + "learning_rate": 1.9165622558699763e-05, + "loss": 0.0, + "step": 164 + }, + { + "epoch": 0.32, + "learning_rate": 1.9153114791194475e-05, + "loss": 0.0, + "step": 165 + }, + { + "epoch": 0.32, + "learning_rate": 1.9140518114379433e-05, + "loss": 0.0, + "step": 166 + }, + { + "epoch": 0.32, + "learning_rate": 1.912783265061319e-05, + "loss": 0.0, + "step": 167 + }, + { + "epoch": 0.32, + "learning_rate": 1.9115058523116734e-05, + "loss": 0.0, + "step": 168 + }, + { + "epoch": 0.33, + "learning_rate": 1.9102195855972287e-05, + "loss": 0.0, + "step": 169 + }, + { + "epoch": 0.33, + "learning_rate": 1.908924477412211e-05, + "loss": 0.0, + "step": 170 + }, + { + "epoch": 0.33, + "learning_rate": 1.9076205403367287e-05, + "loss": 0.0, + "step": 171 + }, + { + "epoch": 0.33, + "learning_rate": 1.9063077870366504e-05, + "loss": 0.0, + "step": 172 + }, + { + "epoch": 0.33, + "learning_rate": 1.90498623026348e-05, + "loss": 0.0, + "step": 173 + }, + { + "epoch": 0.33, + "learning_rate": 1.903655882854237e-05, + "loss": 0.0, + "step": 174 + }, + { + "epoch": 0.34, + "learning_rate": 1.9023167577313267e-05, + "loss": 0.0, + "step": 175 + }, + { + "epoch": 0.34, + "learning_rate": 1.900968867902419e-05, + "loss": 0.0, + "step": 176 + }, + { + "epoch": 0.34, + "learning_rate": 1.8996122264603202e-05, + "loss": 0.0, + "step": 177 + }, + { + "epoch": 0.34, + "learning_rate": 1.898246846582844e-05, + "loss": 0.0, + "step": 178 + }, + { + "epoch": 0.34, + "learning_rate": 1.8968727415326885e-05, + "loss": 0.0, + "step": 179 + }, + { + "epoch": 0.35, + "learning_rate": 1.895489924657301e-05, + "loss": 0.0, + "step": 180 + }, + { + "epoch": 0.35, + "learning_rate": 1.894098409388754e-05, + "loss": 0.0, + "step": 181 + }, + { + "epoch": 0.35, + "learning_rate": 1.8926982092436117e-05, + "loss": 0.0, + "step": 182 + }, + { + "epoch": 0.35, + "learning_rate": 1.8912893378227984e-05, + "loss": 0.0, + "step": 183 + }, + { + "epoch": 0.35, + "learning_rate": 1.8898718088114688e-05, + "loss": 0.0, + "step": 184 + }, + { + "epoch": 0.36, + "learning_rate": 1.8884456359788725e-05, + "loss": 0.0, + "step": 185 + }, + { + "epoch": 0.36, + "learning_rate": 1.887010833178222e-05, + "loss": 0.0, + "step": 186 + }, + { + "epoch": 0.36, + "learning_rate": 1.8855674143465567e-05, + "loss": 0.0, + "step": 187 + }, + { + "epoch": 0.36, + "learning_rate": 1.8841153935046098e-05, + "loss": 0.0, + "step": 188 + }, + { + "epoch": 0.36, + "learning_rate": 1.8826547847566692e-05, + "loss": 0.0, + "step": 189 + }, + { + "epoch": 0.37, + "learning_rate": 1.8811856022904423e-05, + "loss": 0.0, + "step": 190 + }, + { + "epoch": 0.37, + "learning_rate": 1.8797078603769184e-05, + "loss": 0.0, + "step": 191 + }, + { + "epoch": 0.37, + "learning_rate": 1.8782215733702286e-05, + "loss": 0.0, + "step": 192 + }, + { + "epoch": 0.37, + "learning_rate": 1.876726755707508e-05, + "loss": 0.0, + "step": 193 + }, + { + "epoch": 0.37, + "learning_rate": 1.8752234219087538e-05, + "loss": 0.0, + "step": 194 + }, + { + "epoch": 0.38, + "learning_rate": 1.8737115865766865e-05, + "loss": 0.0, + "step": 195 + }, + { + "epoch": 0.38, + "learning_rate": 1.8721912643966055e-05, + "loss": 0.0, + "step": 196 + }, + { + "epoch": 0.38, + "learning_rate": 1.8706624701362485e-05, + "loss": 0.0, + "step": 197 + }, + { + "epoch": 0.38, + "learning_rate": 1.8691252186456465e-05, + "loss": 0.0, + "step": 198 + }, + { + "epoch": 0.38, + "learning_rate": 1.8675795248569816e-05, + "loss": 0.0, + "step": 199 + }, + { + "epoch": 0.38, + "learning_rate": 1.866025403784439e-05, + "loss": 0.0, + "step": 200 + }, + { + "epoch": 0.39, + "learning_rate": 1.8644628705240636e-05, + "loss": 0.0, + "step": 201 + }, + { + "epoch": 0.39, + "learning_rate": 1.862891940253613e-05, + "loss": 0.0, + "step": 202 + }, + { + "epoch": 0.39, + "learning_rate": 1.8613126282324092e-05, + "loss": 0.0, + "step": 203 + }, + { + "epoch": 0.39, + "learning_rate": 1.8597249498011906e-05, + "loss": 0.0, + "step": 204 + }, + { + "epoch": 0.39, + "learning_rate": 1.858128920381963e-05, + "loss": 0.0, + "step": 205 + }, + { + "epoch": 0.4, + "learning_rate": 1.8565245554778516e-05, + "loss": 0.0, + "step": 206 + }, + { + "epoch": 0.4, + "learning_rate": 1.854911870672947e-05, + "loss": 0.0, + "step": 207 + }, + { + "epoch": 0.4, + "learning_rate": 1.8532908816321557e-05, + "loss": 0.0, + "step": 208 + }, + { + "epoch": 0.4, + "learning_rate": 1.8516616041010495e-05, + "loss": 0.0, + "step": 209 + }, + { + "epoch": 0.4, + "learning_rate": 1.8500240539057093e-05, + "loss": 0.0, + "step": 210 + }, + { + "epoch": 0.41, + "learning_rate": 1.848378246952574e-05, + "loss": 0.0, + "step": 211 + }, + { + "epoch": 0.41, + "learning_rate": 1.8467241992282842e-05, + "loss": 0.0, + "step": 212 + }, + { + "epoch": 0.41, + "learning_rate": 1.8450619267995283e-05, + "loss": 0.0, + "step": 213 + }, + { + "epoch": 0.41, + "learning_rate": 1.843391445812886e-05, + "loss": 0.0, + "step": 214 + }, + { + "epoch": 0.41, + "learning_rate": 1.84171277249467e-05, + "loss": 0.0, + "step": 215 + }, + { + "epoch": 0.42, + "learning_rate": 1.8400259231507716e-05, + "loss": 0.0, + "step": 216 + }, + { + "epoch": 0.42, + "learning_rate": 1.8383309141664992e-05, + "loss": 0.0, + "step": 217 + }, + { + "epoch": 0.42, + "learning_rate": 1.83662776200642e-05, + "loss": 0.0, + "step": 218 + }, + { + "epoch": 0.42, + "learning_rate": 1.8349164832142015e-05, + "loss": 0.0, + "step": 219 + }, + { + "epoch": 0.42, + "learning_rate": 1.833197094412449e-05, + "loss": 0.0, + "step": 220 + }, + { + "epoch": 0.42, + "learning_rate": 1.8314696123025456e-05, + "loss": 0.0, + "step": 221 + }, + { + "epoch": 0.43, + "learning_rate": 1.8297340536644877e-05, + "loss": 0.0, + "step": 222 + }, + { + "epoch": 0.43, + "learning_rate": 1.827990435356725e-05, + "loss": 0.0, + "step": 223 + }, + { + "epoch": 0.43, + "learning_rate": 1.826238774315995e-05, + "loss": 0.0, + "step": 224 + }, + { + "epoch": 0.43, + "learning_rate": 1.8244790875571582e-05, + "loss": 0.0, + "step": 225 + }, + { + "epoch": 0.43, + "learning_rate": 1.8227113921730336e-05, + "loss": 0.0, + "step": 226 + }, + { + "epoch": 0.44, + "learning_rate": 1.8209357053342325e-05, + "loss": 0.0, + "step": 227 + }, + { + "epoch": 0.44, + "learning_rate": 1.819152044288992e-05, + "loss": 0.0, + "step": 228 + }, + { + "epoch": 0.44, + "learning_rate": 1.8173604263630066e-05, + "loss": 0.0, + "step": 229 + }, + { + "epoch": 0.44, + "learning_rate": 1.8155608689592604e-05, + "loss": 0.0, + "step": 230 + }, + { + "epoch": 0.44, + "learning_rate": 1.8137533895578585e-05, + "loss": 0.0, + "step": 231 + }, + { + "epoch": 0.45, + "learning_rate": 1.811938005715857e-05, + "loss": 0.0, + "step": 232 + }, + { + "epoch": 0.45, + "learning_rate": 1.8101147350670905e-05, + "loss": 0.0, + "step": 233 + }, + { + "epoch": 0.45, + "learning_rate": 1.8082835953220055e-05, + "loss": 0.0, + "step": 234 + }, + { + "epoch": 0.45, + "learning_rate": 1.806444604267483e-05, + "loss": 0.0, + "step": 235 + }, + { + "epoch": 0.45, + "learning_rate": 1.8045977797666685e-05, + "loss": 0.0, + "step": 236 + }, + { + "epoch": 0.46, + "learning_rate": 1.8027431397587993e-05, + "loss": 0.0, + "step": 237 + }, + { + "epoch": 0.46, + "learning_rate": 1.8008807022590283e-05, + "loss": 0.0, + "step": 238 + }, + { + "epoch": 0.46, + "learning_rate": 1.7990104853582494e-05, + "loss": 0.0, + "step": 239 + }, + { + "epoch": 0.46, + "learning_rate": 1.7971325072229227e-05, + "loss": 0.0, + "step": 240 + }, + { + "epoch": 0.46, + "learning_rate": 1.7952467860948975e-05, + "loss": 0.0, + "step": 241 + }, + { + "epoch": 0.47, + "learning_rate": 1.7933533402912354e-05, + "loss": 0.0, + "step": 242 + }, + { + "epoch": 0.47, + "learning_rate": 1.791452188204031e-05, + "loss": 0.0, + "step": 243 + }, + { + "epoch": 0.47, + "learning_rate": 1.7895433483002356e-05, + "loss": 0.0, + "step": 244 + }, + { + "epoch": 0.47, + "learning_rate": 1.7876268391214756e-05, + "loss": 0.0, + "step": 245 + }, + { + "epoch": 0.47, + "learning_rate": 1.785702679283874e-05, + "loss": 0.0, + "step": 246 + }, + { + "epoch": 0.47, + "learning_rate": 1.7837708874778683e-05, + "loss": 0.0, + "step": 247 + }, + { + "epoch": 0.48, + "learning_rate": 1.78183148246803e-05, + "loss": 0.0, + "step": 248 + }, + { + "epoch": 0.48, + "learning_rate": 1.7798844830928818e-05, + "loss": 0.0, + "step": 249 + }, + { + "epoch": 0.48, + "learning_rate": 1.777929908264715e-05, + "loss": 0.0, + "step": 250 + }, + { + "epoch": 0.48, + "learning_rate": 1.775967776969405e-05, + "loss": 0.0, + "step": 251 + }, + { + "epoch": 0.48, + "learning_rate": 1.7739981082662275e-05, + "loss": 0.0, + "step": 252 + }, + { + "epoch": 0.49, + "learning_rate": 1.772020921287674e-05, + "loss": 0.0, + "step": 253 + }, + { + "epoch": 0.49, + "learning_rate": 1.7700362352392632e-05, + "loss": 0.0, + "step": 254 + }, + { + "epoch": 0.49, + "learning_rate": 1.7680440693993586e-05, + "loss": 0.0, + "step": 255 + }, + { + "epoch": 0.49, + "learning_rate": 1.766044443118978e-05, + "loss": 0.0, + "step": 256 + }, + { + "epoch": 0.49, + "learning_rate": 1.7640373758216075e-05, + "loss": 0.0, + "step": 257 + }, + { + "epoch": 0.5, + "learning_rate": 1.762022887003011e-05, + "loss": 0.0, + "step": 258 + }, + { + "epoch": 0.5, + "learning_rate": 1.7600009962310417e-05, + "loss": 0.0, + "step": 259 + }, + { + "epoch": 0.5, + "learning_rate": 1.757971723145453e-05, + "loss": 0.0, + "step": 260 + }, + { + "epoch": 0.5, + "learning_rate": 1.7559350874577066e-05, + "loss": 0.0, + "step": 261 + }, + { + "epoch": 0.5, + "learning_rate": 1.75389110895078e-05, + "loss": 0.0, + "step": 262 + }, + { + "epoch": 0.51, + "learning_rate": 1.7518398074789776e-05, + "loss": 0.0, + "step": 263 + }, + { + "epoch": 0.51, + "learning_rate": 1.7497812029677344e-05, + "loss": 0.0, + "step": 264 + }, + { + "epoch": 0.51, + "learning_rate": 1.7477153154134244e-05, + "loss": 0.0, + "step": 265 + }, + { + "epoch": 0.51, + "learning_rate": 1.7456421648831658e-05, + "loss": 0.0, + "step": 266 + }, + { + "epoch": 0.51, + "learning_rate": 1.743561771514626e-05, + "loss": 0.0, + "step": 267 + }, + { + "epoch": 0.52, + "learning_rate": 1.741474155515827e-05, + "loss": 0.0, + "step": 268 + }, + { + "epoch": 0.52, + "learning_rate": 1.739379337164946e-05, + "loss": 0.0, + "step": 269 + }, + { + "epoch": 0.52, + "learning_rate": 1.737277336810124e-05, + "loss": 0.0, + "step": 270 + }, + { + "epoch": 0.52, + "learning_rate": 1.7351681748692622e-05, + "loss": 0.0, + "step": 271 + }, + { + "epoch": 0.52, + "learning_rate": 1.7330518718298263e-05, + "loss": 0.0, + "step": 272 + }, + { + "epoch": 0.53, + "learning_rate": 1.7309284482486494e-05, + "loss": 0.0, + "step": 273 + }, + { + "epoch": 0.53, + "learning_rate": 1.7287979247517285e-05, + "loss": 0.0, + "step": 274 + }, + { + "epoch": 0.53, + "learning_rate": 1.7266603220340273e-05, + "loss": 0.0, + "step": 275 + }, + { + "epoch": 0.53, + "learning_rate": 1.7245156608592727e-05, + "loss": 0.0, + "step": 276 + }, + { + "epoch": 0.53, + "learning_rate": 1.7223639620597556e-05, + "loss": 0.0, + "step": 277 + }, + { + "epoch": 0.53, + "learning_rate": 1.7202052465361268e-05, + "loss": 0.0, + "step": 278 + }, + { + "epoch": 0.54, + "learning_rate": 1.718039535257194e-05, + "loss": 0.0, + "step": 279 + }, + { + "epoch": 0.54, + "learning_rate": 1.7158668492597186e-05, + "loss": 0.0, + "step": 280 + }, + { + "epoch": 0.54, + "learning_rate": 1.7136872096482123e-05, + "loss": 0.0, + "step": 281 + }, + { + "epoch": 0.54, + "learning_rate": 1.7115006375947304e-05, + "loss": 0.0, + "step": 282 + }, + { + "epoch": 0.54, + "learning_rate": 1.7093071543386667e-05, + "loss": 0.0, + "step": 283 + }, + { + "epoch": 0.55, + "learning_rate": 1.7071067811865477e-05, + "loss": 0.0, + "step": 284 + }, + { + "epoch": 0.55, + "learning_rate": 1.7048995395118253e-05, + "loss": 0.0, + "step": 285 + }, + { + "epoch": 0.55, + "learning_rate": 1.7026854507546694e-05, + "loss": 0.0, + "step": 286 + }, + { + "epoch": 0.55, + "learning_rate": 1.7004645364217584e-05, + "loss": 0.0, + "step": 287 + }, + { + "epoch": 0.55, + "learning_rate": 1.698236818086073e-05, + "loss": 0.0, + "step": 288 + }, + { + "epoch": 0.56, + "learning_rate": 1.6960023173866834e-05, + "loss": 0.0, + "step": 289 + }, + { + "epoch": 0.56, + "learning_rate": 1.693761056028542e-05, + "loss": 0.0, + "step": 290 + }, + { + "epoch": 0.56, + "learning_rate": 1.6915130557822698e-05, + "loss": 0.0, + "step": 291 + }, + { + "epoch": 0.56, + "learning_rate": 1.689258338483947e-05, + "loss": 0.0, + "step": 292 + }, + { + "epoch": 0.56, + "learning_rate": 1.686996926034902e-05, + "loss": 0.0, + "step": 293 + }, + { + "epoch": 0.57, + "learning_rate": 1.6847288404014937e-05, + "loss": 0.0, + "step": 294 + }, + { + "epoch": 0.57, + "learning_rate": 1.682454103614904e-05, + "loss": 0.0, + "step": 295 + }, + { + "epoch": 0.57, + "learning_rate": 1.6801727377709195e-05, + "loss": 0.0, + "step": 296 + }, + { + "epoch": 0.57, + "learning_rate": 1.67788476502972e-05, + "loss": 0.0, + "step": 297 + }, + { + "epoch": 0.57, + "learning_rate": 1.6755902076156606e-05, + "loss": 0.0, + "step": 298 + }, + { + "epoch": 0.57, + "learning_rate": 1.6732890878170573e-05, + "loss": 0.0, + "step": 299 + }, + { + "epoch": 0.58, + "learning_rate": 1.67098142798597e-05, + "loss": 0.0, + "step": 300 + }, + { + "epoch": 0.58, + "learning_rate": 1.668667250537987e-05, + "loss": 0.0, + "step": 301 + }, + { + "epoch": 0.58, + "learning_rate": 1.6663465779520042e-05, + "loss": 0.0, + "step": 302 + }, + { + "epoch": 0.58, + "learning_rate": 1.6640194327700087e-05, + "loss": 0.0, + "step": 303 + }, + { + "epoch": 0.58, + "learning_rate": 1.6616858375968596e-05, + "loss": 0.0, + "step": 304 + }, + { + "epoch": 0.59, + "learning_rate": 1.659345815100069e-05, + "loss": 0.0, + "step": 305 + }, + { + "epoch": 0.59, + "learning_rate": 1.6569993880095807e-05, + "loss": 0.0, + "step": 306 + }, + { + "epoch": 0.59, + "learning_rate": 1.6546465791175498e-05, + "loss": 0.0, + "step": 307 + }, + { + "epoch": 0.59, + "learning_rate": 1.6522874112781213e-05, + "loss": 0.0, + "step": 308 + }, + { + "epoch": 0.59, + "learning_rate": 1.6499219074072087e-05, + "loss": 0.0, + "step": 309 + }, + { + "epoch": 0.6, + "learning_rate": 1.6475500904822707e-05, + "loss": 0.0, + "step": 310 + }, + { + "epoch": 0.6, + "learning_rate": 1.645171983542088e-05, + "loss": 0.0, + "step": 311 + }, + { + "epoch": 0.6, + "learning_rate": 1.6427876096865394e-05, + "loss": 0.0, + "step": 312 + }, + { + "epoch": 0.6, + "learning_rate": 1.640396992076379e-05, + "loss": 0.0, + "step": 313 + }, + { + "epoch": 0.6, + "learning_rate": 1.6380001539330088e-05, + "loss": 0.0, + "step": 314 + }, + { + "epoch": 0.61, + "learning_rate": 1.6355971185382547e-05, + "loss": 0.0, + "step": 315 + }, + { + "epoch": 0.61, + "learning_rate": 1.6331879092341402e-05, + "loss": 0.0, + "step": 316 + }, + { + "epoch": 0.61, + "learning_rate": 1.6307725494226586e-05, + "loss": 0.0, + "step": 317 + }, + { + "epoch": 0.61, + "learning_rate": 1.6283510625655474e-05, + "loss": 0.0, + "step": 318 + }, + { + "epoch": 0.61, + "learning_rate": 1.6259234721840595e-05, + "loss": 0.0, + "step": 319 + }, + { + "epoch": 0.62, + "learning_rate": 1.6234898018587336e-05, + "loss": 0.0, + "step": 320 + }, + { + "epoch": 0.62, + "learning_rate": 1.6210500752291682e-05, + "loss": 0.0, + "step": 321 + }, + { + "epoch": 0.62, + "learning_rate": 1.6186043159937884e-05, + "loss": 0.0, + "step": 322 + }, + { + "epoch": 0.62, + "learning_rate": 1.616152547909618e-05, + "loss": 0.0, + "step": 323 + }, + { + "epoch": 0.62, + "learning_rate": 1.6136947947920477e-05, + "loss": 0.0, + "step": 324 + }, + { + "epoch": 0.62, + "learning_rate": 1.611231080514605e-05, + "loss": 0.0, + "step": 325 + }, + { + "epoch": 0.63, + "learning_rate": 1.608761429008721e-05, + "loss": 0.0, + "step": 326 + }, + { + "epoch": 0.63, + "learning_rate": 1.606285864263498e-05, + "loss": 0.0, + "step": 327 + }, + { + "epoch": 0.63, + "learning_rate": 1.6038044103254775e-05, + "loss": 0.0, + "step": 328 + }, + { + "epoch": 0.63, + "learning_rate": 1.601317091298406e-05, + "loss": 0.0, + "step": 329 + }, + { + "epoch": 0.63, + "learning_rate": 1.5988239313430004e-05, + "loss": 0.0, + "step": 330 + }, + { + "epoch": 0.64, + "learning_rate": 1.5963249546767144e-05, + "loss": 0.0, + "step": 331 + }, + { + "epoch": 0.64, + "learning_rate": 1.5938201855735017e-05, + "loss": 0.0, + "step": 332 + }, + { + "epoch": 0.64, + "learning_rate": 1.5913096483635827e-05, + "loss": 0.0, + "step": 333 + }, + { + "epoch": 0.64, + "learning_rate": 1.5887933674332048e-05, + "loss": 0.0, + "step": 334 + }, + { + "epoch": 0.64, + "learning_rate": 1.5862713672244092e-05, + "loss": 0.0, + "step": 335 + }, + { + "epoch": 0.65, + "learning_rate": 1.5837436722347902e-05, + "loss": 0.0, + "step": 336 + }, + { + "epoch": 0.65, + "learning_rate": 1.5812103070172592e-05, + "loss": 0.0, + "step": 337 + }, + { + "epoch": 0.65, + "learning_rate": 1.578671296179806e-05, + "loss": 0.0, + "step": 338 + }, + { + "epoch": 0.65, + "learning_rate": 1.5761266643852587e-05, + "loss": 0.0, + "step": 339 + }, + { + "epoch": 0.65, + "learning_rate": 1.573576436351046e-05, + "loss": 0.0, + "step": 340 + }, + { + "epoch": 0.66, + "learning_rate": 1.5710206368489555e-05, + "loss": 0.0, + "step": 341 + }, + { + "epoch": 0.66, + "learning_rate": 1.5684592907048925e-05, + "loss": 0.0, + "step": 342 + }, + { + "epoch": 0.66, + "learning_rate": 1.5658924227986415e-05, + "loss": 0.0, + "step": 343 + }, + { + "epoch": 0.66, + "learning_rate": 1.563320058063622e-05, + "loss": 0.0, + "step": 344 + }, + { + "epoch": 0.66, + "learning_rate": 1.560742221486648e-05, + "loss": 0.0, + "step": 345 + }, + { + "epoch": 0.67, + "learning_rate": 1.5581589381076843e-05, + "loss": 0.0, + "step": 346 + }, + { + "epoch": 0.67, + "learning_rate": 1.5555702330196024e-05, + "loss": 0.0, + "step": 347 + }, + { + "epoch": 0.67, + "learning_rate": 1.5529761313679396e-05, + "loss": 0.0, + "step": 348 + }, + { + "epoch": 0.67, + "learning_rate": 1.5503766583506522e-05, + "loss": 0.0, + "step": 349 + }, + { + "epoch": 0.67, + "learning_rate": 1.5477718392178716e-05, + "loss": 0.0, + "step": 350 + }, + { + "epoch": 0.68, + "learning_rate": 1.545161699271659e-05, + "loss": 0.0, + "step": 351 + }, + { + "epoch": 0.68, + "learning_rate": 1.5425462638657597e-05, + "loss": 0.0, + "step": 352 + }, + { + "epoch": 0.68, + "learning_rate": 1.5399255584053568e-05, + "loss": 0.0, + "step": 353 + }, + { + "epoch": 0.68, + "learning_rate": 1.5372996083468242e-05, + "loss": 0.0, + "step": 354 + }, + { + "epoch": 0.68, + "learning_rate": 1.5346684391974792e-05, + "loss": 0.0, + "step": 355 + }, + { + "epoch": 0.68, + "learning_rate": 1.5320320765153367e-05, + "loss": 0.0, + "step": 356 + }, + { + "epoch": 0.69, + "learning_rate": 1.529390545908857e-05, + "loss": 0.0, + "step": 357 + }, + { + "epoch": 0.69, + "learning_rate": 1.526743873036701e-05, + "loss": 0.0, + "step": 358 + }, + { + "epoch": 0.69, + "learning_rate": 1.5240920836074777e-05, + "loss": 0.0, + "step": 359 + }, + { + "epoch": 0.69, + "learning_rate": 1.5214352033794981e-05, + "loss": 0.0, + "step": 360 + }, + { + "epoch": 0.69, + "learning_rate": 1.5187732581605217e-05, + "loss": 0.0, + "step": 361 + }, + { + "epoch": 0.7, + "learning_rate": 1.5161062738075068e-05, + "loss": 0.0, + "step": 362 + }, + { + "epoch": 0.7, + "learning_rate": 1.5134342762263606e-05, + "loss": 0.0, + "step": 363 + }, + { + "epoch": 0.7, + "learning_rate": 1.5107572913716859e-05, + "loss": 0.0, + "step": 364 + }, + { + "epoch": 0.7, + "learning_rate": 1.5080753452465296e-05, + "loss": 0.0, + "step": 365 + }, + { + "epoch": 0.7, + "learning_rate": 1.505388463902131e-05, + "loss": 0.0, + "step": 366 + }, + { + "epoch": 0.71, + "learning_rate": 1.502696673437667e-05, + "loss": 0.0, + "step": 367 + }, + { + "epoch": 0.71, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0, + "step": 368 + }, + { + "epoch": 0.71, + "learning_rate": 1.4972984697834238e-05, + "loss": 0.0, + "step": 369 + }, + { + "epoch": 0.71, + "learning_rate": 1.4945921090294076e-05, + "loss": 0.0, + "step": 370 + }, + { + "epoch": 0.71, + "learning_rate": 1.4918809440263435e-05, + "loss": 0.0, + "step": 371 + }, + { + "epoch": 0.72, + "learning_rate": 1.4891650011092896e-05, + "loss": 0.0, + "step": 372 + }, + { + "epoch": 0.72, + "learning_rate": 1.486444306659714e-05, + "loss": 0.0, + "step": 373 + }, + { + "epoch": 0.72, + "learning_rate": 1.4837188871052399e-05, + "loss": 0.0, + "step": 374 + }, + { + "epoch": 0.72, + "learning_rate": 1.4809887689193878e-05, + "loss": 0.0, + "step": 375 + }, + { + "epoch": 0.72, + "learning_rate": 1.4782539786213184e-05, + "loss": 0.0, + "step": 376 + }, + { + "epoch": 0.72, + "learning_rate": 1.4755145427755755e-05, + "loss": 0.0, + "step": 377 + }, + { + "epoch": 0.73, + "learning_rate": 1.4727704879918272e-05, + "loss": 0.0, + "step": 378 + }, + { + "epoch": 0.73, + "learning_rate": 1.4700218409246087e-05, + "loss": 0.0, + "step": 379 + }, + { + "epoch": 0.73, + "learning_rate": 1.4672686282730622e-05, + "loss": 0.0, + "step": 380 + }, + { + "epoch": 0.73, + "learning_rate": 1.4645108767806778e-05, + "loss": 0.0, + "step": 381 + }, + { + "epoch": 0.73, + "learning_rate": 1.4617486132350343e-05, + "loss": 0.0, + "step": 382 + }, + { + "epoch": 0.74, + "learning_rate": 1.4589818644675378e-05, + "loss": 0.0, + "step": 383 + }, + { + "epoch": 0.74, + "learning_rate": 1.4562106573531632e-05, + "loss": 0.0, + "step": 384 + }, + { + "epoch": 0.74, + "learning_rate": 1.4534350188101905e-05, + "loss": 0.0, + "step": 385 + }, + { + "epoch": 0.74, + "learning_rate": 1.4506549757999456e-05, + "loss": 0.0, + "step": 386 + }, + { + "epoch": 0.74, + "learning_rate": 1.4478705553265363e-05, + "loss": 0.0, + "step": 387 + }, + { + "epoch": 0.75, + "learning_rate": 1.4450817844365924e-05, + "loss": 0.0, + "step": 388 + }, + { + "epoch": 0.75, + "learning_rate": 1.4422886902190014e-05, + "loss": 0.0, + "step": 389 + }, + { + "epoch": 0.75, + "learning_rate": 1.4394912998046451e-05, + "loss": 0.0, + "step": 390 + }, + { + "epoch": 0.75, + "learning_rate": 1.436689640366137e-05, + "loss": 0.0, + "step": 391 + }, + { + "epoch": 0.75, + "learning_rate": 1.4338837391175582e-05, + "loss": 0.0, + "step": 392 + }, + { + "epoch": 0.76, + "learning_rate": 1.4310736233141926e-05, + "loss": 0.0, + "step": 393 + }, + { + "epoch": 0.76, + "learning_rate": 1.4282593202522627e-05, + "loss": 0.0, + "step": 394 + }, + { + "epoch": 0.76, + "learning_rate": 1.4254408572686642e-05, + "loss": 0.0, + "step": 395 + }, + { + "epoch": 0.76, + "learning_rate": 1.4226182617406996e-05, + "loss": 0.0, + "step": 396 + }, + { + "epoch": 0.76, + "learning_rate": 1.4197915610858143e-05, + "loss": 0.0, + "step": 397 + }, + { + "epoch": 0.77, + "learning_rate": 1.4169607827613284e-05, + "loss": 0.0, + "step": 398 + }, + { + "epoch": 0.77, + "learning_rate": 1.4141259542641706e-05, + "loss": 0.0, + "step": 399 + }, + { + "epoch": 0.77, + "learning_rate": 1.4112871031306118e-05, + "loss": 0.0, + "step": 400 + }, + { + "epoch": 0.77, + "learning_rate": 1.4084442569359964e-05, + "loss": 0.0, + "step": 401 + }, + { + "epoch": 0.77, + "learning_rate": 1.4055974432944753e-05, + "loss": 0.0, + "step": 402 + }, + { + "epoch": 0.78, + "learning_rate": 1.4027466898587375e-05, + "loss": 0.0, + "step": 403 + }, + { + "epoch": 0.78, + "learning_rate": 1.3998920243197408e-05, + "loss": 0.0, + "step": 404 + }, + { + "epoch": 0.78, + "learning_rate": 1.3970334744064451e-05, + "loss": 0.0, + "step": 405 + }, + { + "epoch": 0.78, + "learning_rate": 1.3941710678855396e-05, + "loss": 0.0, + "step": 406 + }, + { + "epoch": 0.78, + "learning_rate": 1.391304832561175e-05, + "loss": 0.0, + "step": 407 + }, + { + "epoch": 0.78, + "learning_rate": 1.3884347962746949e-05, + "loss": 0.0, + "step": 408 + }, + { + "epoch": 0.79, + "learning_rate": 1.3855609869043618e-05, + "loss": 0.0, + "step": 409 + }, + { + "epoch": 0.79, + "learning_rate": 1.3826834323650899e-05, + "loss": 0.0, + "step": 410 + }, + { + "epoch": 0.79, + "learning_rate": 1.3798021606081713e-05, + "loss": 0.0, + "step": 411 + }, + { + "epoch": 0.79, + "learning_rate": 1.3769171996210053e-05, + "loss": 0.0, + "step": 412 + }, + { + "epoch": 0.79, + "learning_rate": 1.3740285774268282e-05, + "loss": 0.0, + "step": 413 + }, + { + "epoch": 0.8, + "learning_rate": 1.371136322084438e-05, + "loss": 0.0, + "step": 414 + }, + { + "epoch": 0.8, + "learning_rate": 1.3682404616879246e-05, + "loss": 0.0, + "step": 415 + }, + { + "epoch": 0.8, + "learning_rate": 1.3653410243663953e-05, + "loss": 0.0, + "step": 416 + }, + { + "epoch": 0.8, + "learning_rate": 1.3624380382837017e-05, + "loss": 0.0, + "step": 417 + }, + { + "epoch": 0.8, + "learning_rate": 1.3595315316381676e-05, + "loss": 0.0, + "step": 418 + }, + { + "epoch": 0.81, + "learning_rate": 1.3566215326623131e-05, + "loss": 0.0, + "step": 419 + }, + { + "epoch": 0.81, + "learning_rate": 1.3537080696225815e-05, + "loss": 0.0, + "step": 420 + }, + { + "epoch": 0.81, + "learning_rate": 1.3507911708190646e-05, + "loss": 0.0, + "step": 421 + }, + { + "epoch": 0.81, + "learning_rate": 1.3478708645852272e-05, + "loss": 0.0, + "step": 422 + }, + { + "epoch": 0.81, + "learning_rate": 1.3449471792876333e-05, + "loss": 0.0, + "step": 423 + }, + { + "epoch": 0.82, + "learning_rate": 1.342020143325669e-05, + "loss": 0.0, + "step": 424 + }, + { + "epoch": 0.82, + "learning_rate": 1.3390897851312667e-05, + "loss": 0.0, + "step": 425 + }, + { + "epoch": 0.82, + "learning_rate": 1.336156133168631e-05, + "loss": 0.0, + "step": 426 + }, + { + "epoch": 0.82, + "learning_rate": 1.3332192159339595e-05, + "loss": 0.0, + "step": 427 + }, + { + "epoch": 0.82, + "learning_rate": 1.3302790619551673e-05, + "loss": 0.0, + "step": 428 + }, + { + "epoch": 0.82, + "learning_rate": 1.3273356997916106e-05, + "loss": 0.0, + "step": 429 + }, + { + "epoch": 0.83, + "learning_rate": 1.3243891580338074e-05, + "loss": 0.0, + "step": 430 + }, + { + "epoch": 0.83, + "learning_rate": 1.3214394653031616e-05, + "loss": 0.0, + "step": 431 + }, + { + "epoch": 0.83, + "learning_rate": 1.3184866502516846e-05, + "loss": 0.0, + "step": 432 + }, + { + "epoch": 0.83, + "learning_rate": 1.3155307415617156e-05, + "loss": 0.0, + "step": 433 + }, + { + "epoch": 0.83, + "learning_rate": 1.3125717679456447e-05, + "loss": 0.0, + "step": 434 + }, + { + "epoch": 0.84, + "learning_rate": 1.309609758145633e-05, + "loss": 0.0, + "step": 435 + }, + { + "epoch": 0.84, + "learning_rate": 1.3066447409333345e-05, + "loss": 0.0, + "step": 436 + }, + { + "epoch": 0.84, + "learning_rate": 1.3036767451096148e-05, + "loss": 0.0, + "step": 437 + }, + { + "epoch": 0.84, + "learning_rate": 1.300705799504273e-05, + "loss": 0.0, + "step": 438 + }, + { + "epoch": 0.84, + "learning_rate": 1.2977319329757616e-05, + "loss": 0.0, + "step": 439 + }, + { + "epoch": 0.85, + "learning_rate": 1.2947551744109044e-05, + "loss": 0.0, + "step": 440 + }, + { + "epoch": 0.85, + "learning_rate": 1.2917755527246179e-05, + "loss": 0.0, + "step": 441 + }, + { + "epoch": 0.85, + "learning_rate": 1.28879309685963e-05, + "loss": 0.0, + "step": 442 + }, + { + "epoch": 0.85, + "learning_rate": 1.2858078357861979e-05, + "loss": 0.0, + "step": 443 + }, + { + "epoch": 0.85, + "learning_rate": 1.2828197985018276e-05, + "loss": 0.0, + "step": 444 + }, + { + "epoch": 0.86, + "learning_rate": 1.2798290140309924e-05, + "loss": 0.0, + "step": 445 + }, + { + "epoch": 0.86, + "learning_rate": 1.2768355114248493e-05, + "loss": 0.0, + "step": 446 + }, + { + "epoch": 0.86, + "learning_rate": 1.2738393197609602e-05, + "loss": 0.0, + "step": 447 + }, + { + "epoch": 0.86, + "learning_rate": 1.2708404681430054e-05, + "loss": 0.0, + "step": 448 + }, + { + "epoch": 0.86, + "learning_rate": 1.2678389857005033e-05, + "loss": 0.0, + "step": 449 + }, + { + "epoch": 0.87, + "learning_rate": 1.2648349015885272e-05, + "loss": 0.0, + "step": 450 + }, + { + "epoch": 0.87, + "learning_rate": 1.2618282449874221e-05, + "loss": 0.0, + "step": 451 + }, + { + "epoch": 0.87, + "learning_rate": 1.2588190451025209e-05, + "loss": 0.0, + "step": 452 + }, + { + "epoch": 0.87, + "learning_rate": 1.2558073311638604e-05, + "loss": 0.0, + "step": 453 + }, + { + "epoch": 0.87, + "learning_rate": 1.2527931324258975e-05, + "loss": 0.0, + "step": 454 + }, + { + "epoch": 0.88, + "learning_rate": 1.249776478167227e-05, + "loss": 0.0, + "step": 455 + }, + { + "epoch": 0.88, + "learning_rate": 1.2467573976902936e-05, + "loss": 0.0, + "step": 456 + }, + { + "epoch": 0.88, + "learning_rate": 1.2437359203211109e-05, + "loss": 0.0, + "step": 457 + }, + { + "epoch": 0.88, + "learning_rate": 1.2407120754089733e-05, + "loss": 0.0, + "step": 458 + }, + { + "epoch": 0.88, + "learning_rate": 1.2376858923261732e-05, + "loss": 0.0, + "step": 459 + }, + { + "epoch": 0.88, + "learning_rate": 1.2346574004677154e-05, + "loss": 0.0, + "step": 460 + }, + { + "epoch": 0.89, + "learning_rate": 1.2316266292510305e-05, + "loss": 0.0, + "step": 461 + }, + { + "epoch": 0.89, + "learning_rate": 1.2285936081156897e-05, + "loss": 0.0, + "step": 462 + }, + { + "epoch": 0.89, + "learning_rate": 1.2255583665231196e-05, + "loss": 0.0, + "step": 463 + }, + { + "epoch": 0.89, + "learning_rate": 1.2225209339563144e-05, + "loss": 0.0, + "step": 464 + }, + { + "epoch": 0.89, + "learning_rate": 1.2194813399195518e-05, + "loss": 0.0, + "step": 465 + }, + { + "epoch": 0.9, + "learning_rate": 1.2164396139381029e-05, + "loss": 0.0, + "step": 466 + }, + { + "epoch": 0.9, + "learning_rate": 1.2133957855579501e-05, + "loss": 0.0, + "step": 467 + }, + { + "epoch": 0.9, + "learning_rate": 1.210349884345496e-05, + "loss": 0.0, + "step": 468 + }, + { + "epoch": 0.9, + "learning_rate": 1.2073019398872778e-05, + "loss": 0.0, + "step": 469 + }, + { + "epoch": 0.9, + "learning_rate": 1.2042519817896805e-05, + "loss": 0.0, + "step": 470 + }, + { + "epoch": 0.91, + "learning_rate": 1.2012000396786485e-05, + "loss": 0.0, + "step": 471 + }, + { + "epoch": 0.91, + "learning_rate": 1.1981461431993978e-05, + "loss": 0.0, + "step": 472 + }, + { + "epoch": 0.91, + "learning_rate": 1.1950903220161286e-05, + "loss": 0.0, + "step": 473 + }, + { + "epoch": 0.91, + "learning_rate": 1.1920326058117364e-05, + "loss": 0.0, + "step": 474 + }, + { + "epoch": 0.91, + "learning_rate": 1.1889730242875243e-05, + "loss": 0.0, + "step": 475 + }, + { + "epoch": 0.92, + "learning_rate": 1.1859116071629148e-05, + "loss": 0.0, + "step": 476 + }, + { + "epoch": 0.92, + "learning_rate": 1.1828483841751597e-05, + "loss": 0.0, + "step": 477 + }, + { + "epoch": 0.92, + "learning_rate": 1.1797833850790527e-05, + "loss": 0.0, + "step": 478 + }, + { + "epoch": 0.92, + "learning_rate": 1.1767166396466404e-05, + "loss": 0.0, + "step": 479 + }, + { + "epoch": 0.92, + "learning_rate": 1.1736481776669307e-05, + "loss": 0.0, + "step": 480 + }, + { + "epoch": 0.93, + "learning_rate": 1.1705780289456069e-05, + "loss": 0.0, + "step": 481 + }, + { + "epoch": 0.93, + "learning_rate": 1.1675062233047365e-05, + "loss": 0.0, + "step": 482 + }, + { + "epoch": 0.93, + "learning_rate": 1.1644327905824808e-05, + "loss": 0.0, + "step": 483 + }, + { + "epoch": 0.93, + "learning_rate": 1.1613577606328068e-05, + "loss": 0.0, + "step": 484 + }, + { + "epoch": 0.93, + "learning_rate": 1.1582811633251949e-05, + "loss": 0.0, + "step": 485 + }, + { + "epoch": 0.93, + "learning_rate": 1.1552030285443516e-05, + "loss": 0.0, + "step": 486 + }, + { + "epoch": 0.94, + "learning_rate": 1.1521233861899168e-05, + "loss": 0.0, + "step": 487 + }, + { + "epoch": 0.94, + "learning_rate": 1.1490422661761744e-05, + "loss": 0.0, + "step": 488 + }, + { + "epoch": 0.94, + "learning_rate": 1.1459596984317622e-05, + "loss": 0.0, + "step": 489 + }, + { + "epoch": 0.94, + "learning_rate": 1.1428757128993801e-05, + "loss": 0.0, + "step": 490 + }, + { + "epoch": 0.94, + "learning_rate": 1.1397903395354996e-05, + "loss": 0.0, + "step": 491 + }, + { + "epoch": 0.95, + "learning_rate": 1.1367036083100735e-05, + "loss": 0.0, + "step": 492 + }, + { + "epoch": 0.95, + "learning_rate": 1.1336155492062439e-05, + "loss": 0.0, + "step": 493 + }, + { + "epoch": 0.95, + "learning_rate": 1.130526192220052e-05, + "loss": 0.0, + "step": 494 + }, + { + "epoch": 0.95, + "learning_rate": 1.1274355673601446e-05, + "loss": 0.0, + "step": 495 + }, + { + "epoch": 0.95, + "learning_rate": 1.1243437046474854e-05, + "loss": 0.0, + "step": 496 + }, + { + "epoch": 0.96, + "learning_rate": 1.1212506341150615e-05, + "loss": 0.0, + "step": 497 + }, + { + "epoch": 0.96, + "learning_rate": 1.118156385807593e-05, + "loss": 0.0, + "step": 498 + }, + { + "epoch": 0.96, + "learning_rate": 1.1150609897812387e-05, + "loss": 0.0, + "step": 499 + }, + { + "epoch": 0.96, + "learning_rate": 1.1119644761033079e-05, + "loss": 0.0, + "step": 500 + }, + { + "epoch": 0.96, + "learning_rate": 1.1088668748519646e-05, + "loss": 0.0, + "step": 501 + }, + { + "epoch": 0.97, + "learning_rate": 1.105768216115938e-05, + "loss": 0.0, + "step": 502 + }, + { + "epoch": 0.97, + "learning_rate": 1.1026685299942286e-05, + "loss": 0.0, + "step": 503 + }, + { + "epoch": 0.97, + "learning_rate": 1.0995678465958168e-05, + "loss": 0.0, + "step": 504 + }, + { + "epoch": 0.97, + "learning_rate": 1.0964661960393703e-05, + "loss": 0.0, + "step": 505 + }, + { + "epoch": 0.97, + "learning_rate": 1.0933636084529507e-05, + "loss": 0.0, + "step": 506 + }, + { + "epoch": 0.97, + "learning_rate": 1.0902601139737225e-05, + "loss": 0.0, + "step": 507 + }, + { + "epoch": 0.98, + "learning_rate": 1.0871557427476585e-05, + "loss": 0.0, + "step": 508 + }, + { + "epoch": 0.98, + "learning_rate": 1.0840505249292477e-05, + "loss": 0.0, + "step": 509 + }, + { + "epoch": 0.98, + "learning_rate": 1.0809444906812034e-05, + "loss": 0.0, + "step": 510 + }, + { + "epoch": 0.98, + "learning_rate": 1.0778376701741688e-05, + "loss": 0.0, + "step": 511 + }, + { + "epoch": 0.98, + "learning_rate": 1.0747300935864245e-05, + "loss": 0.0, + "step": 512 + }, + { + "epoch": 0.99, + "learning_rate": 1.0716217911035952e-05, + "loss": 0.0, + "step": 513 + }, + { + "epoch": 0.99, + "learning_rate": 1.0685127929183567e-05, + "loss": 0.0, + "step": 514 + }, + { + "epoch": 0.99, + "learning_rate": 1.0654031292301432e-05, + "loss": 0.0, + "step": 515 + }, + { + "epoch": 0.99, + "learning_rate": 1.0622928302448523e-05, + "loss": 0.0, + "step": 516 + }, + { + "epoch": 0.99, + "learning_rate": 1.0591819261745528e-05, + "loss": 0.0, + "step": 517 + }, + { + "epoch": 1.0, + "learning_rate": 1.0560704472371919e-05, + "loss": 0.0, + "step": 518 + }, + { + "epoch": 1.0, + "learning_rate": 1.0529584236562995e-05, + "loss": 0.0, + "step": 519 + }, + { + "epoch": 1.0, + "learning_rate": 1.0498458856606972e-05, + "loss": 0.0, + "step": 520 + }, + { + "epoch": 1.0, + "learning_rate": 1.0467328634842024e-05, + "loss": 0.0, + "step": 521 + }, + { + "epoch": 1.0, + "learning_rate": 1.0436193873653362e-05, + "loss": 0.0, + "step": 522 + }, + { + "epoch": 1.01, + "learning_rate": 1.0405054875470287e-05, + "loss": 0.0, + "step": 523 + }, + { + "epoch": 1.01, + "learning_rate": 1.037391194276326e-05, + "loss": 0.0, + "step": 524 + }, + { + "epoch": 1.01, + "learning_rate": 1.0342765378040953e-05, + "loss": 0.0, + "step": 525 + }, + { + "epoch": 1.01, + "learning_rate": 1.0311615483847333e-05, + "loss": 0.0, + "step": 526 + }, + { + "epoch": 1.01, + "learning_rate": 1.028046256275869e-05, + "loss": 0.0, + "step": 527 + }, + { + "epoch": 1.02, + "learning_rate": 1.0249306917380731e-05, + "loss": 0.0, + "step": 528 + }, + { + "epoch": 1.02, + "learning_rate": 1.0218148850345613e-05, + "loss": 0.0, + "step": 529 + }, + { + "epoch": 1.02, + "learning_rate": 1.0186988664309023e-05, + "loss": 0.0, + "step": 530 + }, + { + "epoch": 1.02, + "learning_rate": 1.0155826661947232e-05, + "loss": 0.0, + "step": 531 + }, + { + "epoch": 1.02, + "learning_rate": 1.0124663145954152e-05, + "loss": 0.0, + "step": 532 + }, + { + "epoch": 1.02, + "learning_rate": 1.0093498419038394e-05, + "loss": 0.0, + "step": 533 + }, + { + "epoch": 1.03, + "learning_rate": 1.0062332783920337e-05, + "loss": 0.0, + "step": 534 + }, + { + "epoch": 1.03, + "learning_rate": 1.0031166543329179e-05, + "loss": 0.0, + "step": 535 + }, + { + "epoch": 1.03, + "learning_rate": 1e-05, + "loss": 0.0, + "step": 536 + }, + { + "epoch": 1.03, + "learning_rate": 9.968833456670824e-06, + "loss": 0.0, + "step": 537 + }, + { + "epoch": 1.03, + "learning_rate": 9.937667216079665e-06, + "loss": 0.0, + "step": 538 + }, + { + "epoch": 1.04, + "learning_rate": 9.90650158096161e-06, + "loss": 0.0, + "step": 539 + }, + { + "epoch": 1.04, + "learning_rate": 9.87533685404585e-06, + "loss": 0.0, + "step": 540 + }, + { + "epoch": 1.04, + "learning_rate": 9.844173338052771e-06, + "loss": 0.0, + "step": 541 + }, + { + "epoch": 1.04, + "learning_rate": 9.81301133569098e-06, + "loss": 0.0, + "step": 542 + }, + { + "epoch": 1.04, + "learning_rate": 9.78185114965439e-06, + "loss": 0.0, + "step": 543 + }, + { + "epoch": 1.05, + "learning_rate": 9.750693082619274e-06, + "loss": 0.0, + "step": 544 + }, + { + "epoch": 1.05, + "learning_rate": 9.719537437241311e-06, + "loss": 0.0, + "step": 545 + }, + { + "epoch": 1.05, + "learning_rate": 9.68838451615267e-06, + "loss": 0.0, + "step": 546 + }, + { + "epoch": 1.05, + "learning_rate": 9.65723462195905e-06, + "loss": 0.0, + "step": 547 + }, + { + "epoch": 1.05, + "learning_rate": 9.626088057236745e-06, + "loss": 0.0, + "step": 548 + }, + { + "epoch": 1.06, + "learning_rate": 9.594945124529718e-06, + "loss": 0.0, + "step": 549 + }, + { + "epoch": 1.06, + "learning_rate": 9.563806126346643e-06, + "loss": 0.0, + "step": 550 + }, + { + "epoch": 1.06, + "learning_rate": 9.532671365157979e-06, + "loss": 0.0, + "step": 551 + }, + { + "epoch": 1.06, + "learning_rate": 9.501541143393028e-06, + "loss": 0.0, + "step": 552 + }, + { + "epoch": 1.06, + "learning_rate": 9.470415763437003e-06, + "loss": 0.0, + "step": 553 + }, + { + "epoch": 1.07, + "learning_rate": 9.439295527628083e-06, + "loss": 0.0, + "step": 554 + }, + { + "epoch": 1.07, + "learning_rate": 9.408180738254472e-06, + "loss": 0.0, + "step": 555 + }, + { + "epoch": 1.07, + "learning_rate": 9.377071697551479e-06, + "loss": 0.0, + "step": 556 + }, + { + "epoch": 1.07, + "learning_rate": 9.34596870769857e-06, + "loss": 0.0, + "step": 557 + }, + { + "epoch": 1.07, + "learning_rate": 9.314872070816435e-06, + "loss": 0.0, + "step": 558 + }, + { + "epoch": 1.07, + "learning_rate": 9.28378208896405e-06, + "loss": 0.0, + "step": 559 + }, + { + "epoch": 1.08, + "learning_rate": 9.252699064135759e-06, + "loss": 0.0, + "step": 560 + }, + { + "epoch": 1.08, + "learning_rate": 9.221623298258315e-06, + "loss": 0.0, + "step": 561 + }, + { + "epoch": 1.08, + "learning_rate": 9.190555093187968e-06, + "loss": 0.0, + "step": 562 + }, + { + "epoch": 1.08, + "learning_rate": 9.159494750707527e-06, + "loss": 0.0, + "step": 563 + }, + { + "epoch": 1.08, + "learning_rate": 9.128442572523418e-06, + "loss": 0.0, + "step": 564 + }, + { + "epoch": 1.09, + "learning_rate": 9.097398860262777e-06, + "loss": 0.0, + "step": 565 + }, + { + "epoch": 1.09, + "learning_rate": 9.066363915470494e-06, + "loss": 0.0, + "step": 566 + }, + { + "epoch": 1.09, + "learning_rate": 9.0353380396063e-06, + "loss": 0.0, + "step": 567 + }, + { + "epoch": 1.09, + "learning_rate": 9.004321534041836e-06, + "loss": 0.0, + "step": 568 + }, + { + "epoch": 1.09, + "learning_rate": 8.973314700057717e-06, + "loss": 0.0, + "step": 569 + }, + { + "epoch": 1.1, + "learning_rate": 8.942317838840625e-06, + "loss": 0.0, + "step": 570 + }, + { + "epoch": 1.1, + "learning_rate": 8.911331251480357e-06, + "loss": 0.0, + "step": 571 + }, + { + "epoch": 1.1, + "learning_rate": 8.880355238966923e-06, + "loss": 0.0, + "step": 572 + }, + { + "epoch": 1.1, + "learning_rate": 8.849390102187615e-06, + "loss": 0.0, + "step": 573 + }, + { + "epoch": 1.1, + "learning_rate": 8.818436141924072e-06, + "loss": 0.0, + "step": 574 + }, + { + "epoch": 1.11, + "learning_rate": 8.787493658849387e-06, + "loss": 0.0, + "step": 575 + }, + { + "epoch": 1.11, + "learning_rate": 8.756562953525151e-06, + "loss": 0.0, + "step": 576 + }, + { + "epoch": 1.11, + "learning_rate": 8.72564432639856e-06, + "loss": 0.0, + "step": 577 + }, + { + "epoch": 1.11, + "learning_rate": 8.694738077799487e-06, + "loss": 0.0, + "step": 578 + }, + { + "epoch": 1.11, + "learning_rate": 8.663844507937563e-06, + "loss": 0.0, + "step": 579 + }, + { + "epoch": 1.12, + "learning_rate": 8.632963916899268e-06, + "loss": 0.0, + "step": 580 + }, + { + "epoch": 1.12, + "learning_rate": 8.602096604645009e-06, + "loss": 0.0, + "step": 581 + }, + { + "epoch": 1.12, + "learning_rate": 8.571242871006202e-06, + "loss": 0.0, + "step": 582 + }, + { + "epoch": 1.12, + "learning_rate": 8.540403015682382e-06, + "loss": 0.0, + "step": 583 + }, + { + "epoch": 1.12, + "learning_rate": 8.509577338238255e-06, + "loss": 0.0, + "step": 584 + }, + { + "epoch": 1.12, + "learning_rate": 8.478766138100834e-06, + "loss": 0.0, + "step": 585 + }, + { + "epoch": 1.13, + "learning_rate": 8.447969714556484e-06, + "loss": 0.0, + "step": 586 + }, + { + "epoch": 1.13, + "learning_rate": 8.417188366748051e-06, + "loss": 0.0, + "step": 587 + }, + { + "epoch": 1.13, + "learning_rate": 8.386422393671934e-06, + "loss": 0.0, + "step": 588 + }, + { + "epoch": 1.13, + "learning_rate": 8.355672094175192e-06, + "loss": 0.0, + "step": 589 + }, + { + "epoch": 1.13, + "learning_rate": 8.324937766952638e-06, + "loss": 0.0, + "step": 590 + }, + { + "epoch": 1.14, + "learning_rate": 8.294219710543931e-06, + "loss": 0.0, + "step": 591 + }, + { + "epoch": 1.14, + "learning_rate": 8.263518223330698e-06, + "loss": 0.0, + "step": 592 + }, + { + "epoch": 1.14, + "learning_rate": 8.232833603533601e-06, + "loss": 0.0, + "step": 593 + }, + { + "epoch": 1.14, + "learning_rate": 8.202166149209475e-06, + "loss": 0.0, + "step": 594 + }, + { + "epoch": 1.14, + "learning_rate": 8.171516158248406e-06, + "loss": 0.0, + "step": 595 + }, + { + "epoch": 1.15, + "learning_rate": 8.140883928370855e-06, + "loss": 0.0, + "step": 596 + }, + { + "epoch": 1.15, + "learning_rate": 8.11026975712476e-06, + "loss": 0.0, + "step": 597 + }, + { + "epoch": 1.15, + "learning_rate": 8.079673941882639e-06, + "loss": 0.0, + "step": 598 + }, + { + "epoch": 1.15, + "learning_rate": 8.04909677983872e-06, + "loss": 0.0, + "step": 599 + }, + { + "epoch": 1.15, + "learning_rate": 8.018538568006027e-06, + "loss": 0.0, + "step": 600 + }, + { + "epoch": 1.16, + "learning_rate": 7.987999603213518e-06, + "loss": 0.0, + "step": 601 + }, + { + "epoch": 1.16, + "learning_rate": 7.957480182103198e-06, + "loss": 0.0, + "step": 602 + }, + { + "epoch": 1.16, + "learning_rate": 7.926980601127225e-06, + "loss": 0.0, + "step": 603 + }, + { + "epoch": 1.16, + "learning_rate": 7.896501156545044e-06, + "loss": 0.0, + "step": 604 + }, + { + "epoch": 1.16, + "learning_rate": 7.866042144420502e-06, + "loss": 0.0, + "step": 605 + }, + { + "epoch": 1.17, + "learning_rate": 7.835603860618973e-06, + "loss": 0.0, + "step": 606 + }, + { + "epoch": 1.17, + "learning_rate": 7.805186600804489e-06, + "loss": 0.0, + "step": 607 + }, + { + "epoch": 1.17, + "learning_rate": 7.774790660436857e-06, + "loss": 0.0, + "step": 608 + }, + { + "epoch": 1.17, + "learning_rate": 7.744416334768809e-06, + "loss": 0.0, + "step": 609 + }, + { + "epoch": 1.17, + "learning_rate": 7.714063918843106e-06, + "loss": 0.0, + "step": 610 + }, + { + "epoch": 1.18, + "learning_rate": 7.6837337074897e-06, + "loss": 0.0, + "step": 611 + }, + { + "epoch": 1.18, + "learning_rate": 7.653425995322852e-06, + "loss": 0.0, + "step": 612 + }, + { + "epoch": 1.18, + "learning_rate": 7.623141076738271e-06, + "loss": 0.0, + "step": 613 + }, + { + "epoch": 1.18, + "learning_rate": 7.592879245910273e-06, + "loss": 0.0, + "step": 614 + }, + { + "epoch": 1.18, + "learning_rate": 7.562640796788893e-06, + "loss": 0.0, + "step": 615 + }, + { + "epoch": 1.18, + "learning_rate": 7.532426023097063e-06, + "loss": 0.0, + "step": 616 + }, + { + "epoch": 1.19, + "learning_rate": 7.50223521832773e-06, + "loss": 0.0, + "step": 617 + }, + { + "epoch": 1.19, + "learning_rate": 7.472068675741024e-06, + "loss": 0.0, + "step": 618 + }, + { + "epoch": 1.19, + "learning_rate": 7.4419266883614e-06, + "loss": 0.0, + "step": 619 + }, + { + "epoch": 1.19, + "learning_rate": 7.411809548974792e-06, + "loss": 0.0, + "step": 620 + }, + { + "epoch": 1.19, + "learning_rate": 7.38171755012578e-06, + "loss": 0.0, + "step": 621 + }, + { + "epoch": 1.2, + "learning_rate": 7.3516509841147276e-06, + "loss": 0.0, + "step": 622 + }, + { + "epoch": 1.2, + "learning_rate": 7.321610142994971e-06, + "loss": 0.0, + "step": 623 + }, + { + "epoch": 1.2, + "learning_rate": 7.291595318569951e-06, + "loss": 0.0, + "step": 624 + }, + { + "epoch": 1.2, + "learning_rate": 7.2616068023904e-06, + "loss": 0.0, + "step": 625 + }, + { + "epoch": 1.2, + "learning_rate": 7.2316448857515076e-06, + "loss": 0.0, + "step": 626 + }, + { + "epoch": 1.21, + "learning_rate": 7.201709859690081e-06, + "loss": 0.0, + "step": 627 + }, + { + "epoch": 1.21, + "learning_rate": 7.171802014981726e-06, + "loss": 0.0, + "step": 628 + }, + { + "epoch": 1.21, + "learning_rate": 7.141921642138025e-06, + "loss": 0.0, + "step": 629 + }, + { + "epoch": 1.21, + "learning_rate": 7.112069031403704e-06, + "loss": 0.0, + "step": 630 + }, + { + "epoch": 1.21, + "learning_rate": 7.082244472753823e-06, + "loss": 0.0, + "step": 631 + }, + { + "epoch": 1.22, + "learning_rate": 7.052448255890958e-06, + "loss": 0.0, + "step": 632 + }, + { + "epoch": 1.22, + "learning_rate": 7.022680670242387e-06, + "loss": 0.0, + "step": 633 + }, + { + "epoch": 1.22, + "learning_rate": 6.992942004957271e-06, + "loss": 0.0, + "step": 634 + }, + { + "epoch": 1.22, + "learning_rate": 6.963232548903853e-06, + "loss": 0.0, + "step": 635 + }, + { + "epoch": 1.22, + "learning_rate": 6.933552590666659e-06, + "loss": 0.0, + "step": 636 + }, + { + "epoch": 1.23, + "learning_rate": 6.903902418543671e-06, + "loss": 0.0, + "step": 637 + }, + { + "epoch": 1.23, + "learning_rate": 6.874282320543557e-06, + "loss": 0.0, + "step": 638 + }, + { + "epoch": 1.23, + "learning_rate": 6.844692584382848e-06, + "loss": 0.0, + "step": 639 + }, + { + "epoch": 1.23, + "learning_rate": 6.815133497483157e-06, + "loss": 0.0, + "step": 640 + }, + { + "epoch": 1.23, + "learning_rate": 6.785605346968387e-06, + "loss": 0.0, + "step": 641 + }, + { + "epoch": 1.23, + "learning_rate": 6.7561084196619306e-06, + "loss": 0.0, + "step": 642 + }, + { + "epoch": 1.24, + "learning_rate": 6.7266430020839e-06, + "loss": 0.0, + "step": 643 + }, + { + "epoch": 1.24, + "learning_rate": 6.697209380448333e-06, + "loss": 0.0, + "step": 644 + }, + { + "epoch": 1.24, + "learning_rate": 6.66780784066041e-06, + "loss": 0.0, + "step": 645 + }, + { + "epoch": 1.24, + "learning_rate": 6.638438668313695e-06, + "loss": 0.0, + "step": 646 + }, + { + "epoch": 1.24, + "learning_rate": 6.609102148687333e-06, + "loss": 0.0, + "step": 647 + }, + { + "epoch": 1.25, + "learning_rate": 6.579798566743314e-06, + "loss": 0.0, + "step": 648 + }, + { + "epoch": 1.25, + "learning_rate": 6.550528207123667e-06, + "loss": 0.0, + "step": 649 + }, + { + "epoch": 1.25, + "learning_rate": 6.521291354147727e-06, + "loss": 0.0, + "step": 650 + }, + { + "epoch": 1.25, + "learning_rate": 6.492088291809355e-06, + "loss": 0.0, + "step": 651 + }, + { + "epoch": 1.25, + "learning_rate": 6.462919303774186e-06, + "loss": 0.0, + "step": 652 + }, + { + "epoch": 1.26, + "learning_rate": 6.43378467337687e-06, + "loss": 0.0, + "step": 653 + }, + { + "epoch": 1.26, + "learning_rate": 6.404684683618325e-06, + "loss": 0.0, + "step": 654 + }, + { + "epoch": 1.26, + "learning_rate": 6.375619617162985e-06, + "loss": 0.0, + "step": 655 + }, + { + "epoch": 1.26, + "learning_rate": 6.34658975633605e-06, + "loss": 0.0, + "step": 656 + }, + { + "epoch": 1.26, + "learning_rate": 6.317595383120756e-06, + "loss": 0.0, + "step": 657 + }, + { + "epoch": 1.27, + "learning_rate": 6.288636779155621e-06, + "loss": 0.0, + "step": 658 + }, + { + "epoch": 1.27, + "learning_rate": 6.2597142257317185e-06, + "loss": 0.0, + "step": 659 + }, + { + "epoch": 1.27, + "learning_rate": 6.230828003789949e-06, + "loss": 0.0, + "step": 660 + }, + { + "epoch": 1.27, + "learning_rate": 6.201978393918291e-06, + "loss": 0.0, + "step": 661 + }, + { + "epoch": 1.27, + "learning_rate": 6.173165676349103e-06, + "loss": 0.0, + "step": 662 + }, + { + "epoch": 1.27, + "learning_rate": 6.144390130956384e-06, + "loss": 0.0, + "step": 663 + }, + { + "epoch": 1.28, + "learning_rate": 6.115652037253054e-06, + "loss": 0.0, + "step": 664 + }, + { + "epoch": 1.28, + "learning_rate": 6.086951674388252e-06, + "loss": 0.0, + "step": 665 + }, + { + "epoch": 1.28, + "learning_rate": 6.058289321144608e-06, + "loss": 0.0, + "step": 666 + }, + { + "epoch": 1.28, + "learning_rate": 6.02966525593555e-06, + "loss": 0.0, + "step": 667 + }, + { + "epoch": 1.28, + "learning_rate": 6.001079756802592e-06, + "loss": 0.0, + "step": 668 + }, + { + "epoch": 1.29, + "learning_rate": 5.97253310141263e-06, + "loss": 0.0, + "step": 669 + }, + { + "epoch": 1.29, + "learning_rate": 5.944025567055251e-06, + "loss": 0.0, + "step": 670 + }, + { + "epoch": 1.29, + "learning_rate": 5.91555743064004e-06, + "loss": 0.0, + "step": 671 + }, + { + "epoch": 1.29, + "learning_rate": 5.887128968693887e-06, + "loss": 0.0, + "step": 672 + }, + { + "epoch": 1.29, + "learning_rate": 5.858740457358298e-06, + "loss": 0.0, + "step": 673 + }, + { + "epoch": 1.3, + "learning_rate": 5.830392172386723e-06, + "loss": 0.0, + "step": 674 + }, + { + "epoch": 1.3, + "learning_rate": 5.802084389141862e-06, + "loss": 0.0, + "step": 675 + }, + { + "epoch": 1.3, + "learning_rate": 5.773817382593008e-06, + "loss": 0.0, + "step": 676 + }, + { + "epoch": 1.3, + "learning_rate": 5.745591427313365e-06, + "loss": 0.0, + "step": 677 + }, + { + "epoch": 1.3, + "learning_rate": 5.717406797477371e-06, + "loss": 0.0, + "step": 678 + }, + { + "epoch": 1.31, + "learning_rate": 5.689263766858072e-06, + "loss": 0.0, + "step": 679 + }, + { + "epoch": 1.31, + "learning_rate": 5.66116260882442e-06, + "loss": 0.0, + "step": 680 + }, + { + "epoch": 1.31, + "learning_rate": 5.633103596338631e-06, + "loss": 0.0, + "step": 681 + }, + { + "epoch": 1.31, + "learning_rate": 5.6050870019535496e-06, + "loss": 0.0, + "step": 682 + }, + { + "epoch": 1.31, + "learning_rate": 5.5771130978099896e-06, + "loss": 0.0, + "step": 683 + }, + { + "epoch": 1.32, + "learning_rate": 5.549182155634076e-06, + "loss": 0.0, + "step": 684 + }, + { + "epoch": 1.32, + "learning_rate": 5.521294446734637e-06, + "loss": 0.0, + "step": 685 + }, + { + "epoch": 1.32, + "learning_rate": 5.493450242000546e-06, + "loss": 0.0, + "step": 686 + }, + { + "epoch": 1.32, + "learning_rate": 5.465649811898098e-06, + "loss": 0.0, + "step": 687 + }, + { + "epoch": 1.32, + "learning_rate": 5.43789342646837e-06, + "loss": 0.0, + "step": 688 + }, + { + "epoch": 1.32, + "learning_rate": 5.410181355324622e-06, + "loss": 0.0, + "step": 689 + }, + { + "epoch": 1.33, + "learning_rate": 5.382513867649663e-06, + "loss": 0.0, + "step": 690 + }, + { + "epoch": 1.33, + "learning_rate": 5.354891232193225e-06, + "loss": 0.0, + "step": 691 + }, + { + "epoch": 1.33, + "learning_rate": 5.32731371726938e-06, + "loss": 0.0, + "step": 692 + }, + { + "epoch": 1.33, + "learning_rate": 5.299781590753916e-06, + "loss": 0.0, + "step": 693 + }, + { + "epoch": 1.33, + "learning_rate": 5.2722951200817315e-06, + "loss": 0.0, + "step": 694 + }, + { + "epoch": 1.34, + "learning_rate": 5.244854572244249e-06, + "loss": 0.0, + "step": 695 + }, + { + "epoch": 1.34, + "learning_rate": 5.217460213786822e-06, + "loss": 0.0, + "step": 696 + }, + { + "epoch": 1.34, + "learning_rate": 5.190112310806126e-06, + "loss": 0.0, + "step": 697 + }, + { + "epoch": 1.34, + "learning_rate": 5.1628111289476025e-06, + "loss": 0.0, + "step": 698 + }, + { + "epoch": 1.34, + "learning_rate": 5.135556933402862e-06, + "loss": 0.0, + "step": 699 + }, + { + "epoch": 1.35, + "learning_rate": 5.108349988907111e-06, + "loss": 0.0, + "step": 700 + }, + { + "epoch": 1.35, + "learning_rate": 5.081190559736569e-06, + "loss": 0.0, + "step": 701 + }, + { + "epoch": 1.35, + "learning_rate": 5.054078909705926e-06, + "loss": 0.0, + "step": 702 + }, + { + "epoch": 1.35, + "learning_rate": 5.027015302165768e-06, + "loss": 0.0, + "step": 703 + }, + { + "epoch": 1.35, + "learning_rate": 5.000000000000003e-06, + "loss": 0.0, + "step": 704 + }, + { + "epoch": 1.36, + "learning_rate": 4.973033265623333e-06, + "loss": 0.0, + "step": 705 + }, + { + "epoch": 1.36, + "learning_rate": 4.946115360978696e-06, + "loss": 0.0, + "step": 706 + }, + { + "epoch": 1.36, + "learning_rate": 4.919246547534709e-06, + "loss": 0.0, + "step": 707 + }, + { + "epoch": 1.36, + "learning_rate": 4.892427086283147e-06, + "loss": 0.0, + "step": 708 + }, + { + "epoch": 1.36, + "learning_rate": 4.865657237736397e-06, + "loss": 0.0, + "step": 709 + }, + { + "epoch": 1.37, + "learning_rate": 4.838937261924933e-06, + "loss": 0.0, + "step": 710 + }, + { + "epoch": 1.37, + "learning_rate": 4.812267418394784e-06, + "loss": 0.0, + "step": 711 + }, + { + "epoch": 1.37, + "learning_rate": 4.78564796620502e-06, + "loss": 0.0, + "step": 712 + }, + { + "epoch": 1.37, + "learning_rate": 4.759079163925223e-06, + "loss": 0.0, + "step": 713 + }, + { + "epoch": 1.37, + "learning_rate": 4.732561269632992e-06, + "loss": 0.0, + "step": 714 + }, + { + "epoch": 1.38, + "learning_rate": 4.706094540911429e-06, + "loss": 0.0, + "step": 715 + }, + { + "epoch": 1.38, + "learning_rate": 4.679679234846636e-06, + "loss": 0.0, + "step": 716 + }, + { + "epoch": 1.38, + "learning_rate": 4.6533156080252076e-06, + "loss": 0.0, + "step": 717 + }, + { + "epoch": 1.38, + "learning_rate": 4.627003916531761e-06, + "loss": 0.0, + "step": 718 + }, + { + "epoch": 1.38, + "learning_rate": 4.600744415946438e-06, + "loss": 0.0, + "step": 719 + }, + { + "epoch": 1.38, + "learning_rate": 4.5745373613424075e-06, + "loss": 0.0, + "step": 720 + }, + { + "epoch": 1.39, + "learning_rate": 4.548383007283412e-06, + "loss": 0.0, + "step": 721 + }, + { + "epoch": 1.39, + "learning_rate": 4.522281607821288e-06, + "loss": 0.0, + "step": 722 + }, + { + "epoch": 1.39, + "learning_rate": 4.496233416493481e-06, + "loss": 0.0, + "step": 723 + }, + { + "epoch": 1.39, + "learning_rate": 4.470238686320606e-06, + "loss": 0.0, + "step": 724 + }, + { + "epoch": 1.39, + "learning_rate": 4.444297669803981e-06, + "loss": 0.0, + "step": 725 + }, + { + "epoch": 1.4, + "learning_rate": 4.418410618923163e-06, + "loss": 0.0, + "step": 726 + }, + { + "epoch": 1.4, + "learning_rate": 4.392577785133521e-06, + "loss": 0.0, + "step": 727 + }, + { + "epoch": 1.4, + "learning_rate": 4.3667994193637794e-06, + "loss": 0.0, + "step": 728 + }, + { + "epoch": 1.4, + "learning_rate": 4.3410757720135886e-06, + "loss": 0.0, + "step": 729 + }, + { + "epoch": 1.4, + "learning_rate": 4.315407092951078e-06, + "loss": 0.0, + "step": 730 + }, + { + "epoch": 1.41, + "learning_rate": 4.289793631510449e-06, + "loss": 0.0, + "step": 731 + }, + { + "epoch": 1.41, + "learning_rate": 4.264235636489542e-06, + "loss": 0.0, + "step": 732 + }, + { + "epoch": 1.41, + "learning_rate": 4.238733356147414e-06, + "loss": 0.0, + "step": 733 + }, + { + "epoch": 1.41, + "learning_rate": 4.213287038201943e-06, + "loss": 0.0, + "step": 734 + }, + { + "epoch": 1.41, + "learning_rate": 4.187896929827414e-06, + "loss": 0.0, + "step": 735 + }, + { + "epoch": 1.42, + "learning_rate": 4.162563277652104e-06, + "loss": 0.0, + "step": 736 + }, + { + "epoch": 1.42, + "learning_rate": 4.137286327755913e-06, + "loss": 0.0, + "step": 737 + }, + { + "epoch": 1.42, + "learning_rate": 4.112066325667954e-06, + "loss": 0.0, + "step": 738 + }, + { + "epoch": 1.42, + "learning_rate": 4.086903516364179e-06, + "loss": 0.0, + "step": 739 + }, + { + "epoch": 1.42, + "learning_rate": 4.061798144264986e-06, + "loss": 0.0, + "step": 740 + }, + { + "epoch": 1.43, + "learning_rate": 4.03675045323286e-06, + "loss": 0.0, + "step": 741 + }, + { + "epoch": 1.43, + "learning_rate": 4.0117606865699975e-06, + "loss": 0.0, + "step": 742 + }, + { + "epoch": 1.43, + "learning_rate": 3.986829087015941e-06, + "loss": 0.0, + "step": 743 + }, + { + "epoch": 1.43, + "learning_rate": 3.961955896745224e-06, + "loss": 0.0, + "step": 744 + }, + { + "epoch": 1.43, + "learning_rate": 3.937141357365023e-06, + "loss": 0.0, + "step": 745 + }, + { + "epoch": 1.43, + "learning_rate": 3.912385709912794e-06, + "loss": 0.0, + "step": 746 + }, + { + "epoch": 1.44, + "learning_rate": 3.887689194853951e-06, + "loss": 0.0, + "step": 747 + }, + { + "epoch": 1.44, + "learning_rate": 3.8630520520795275e-06, + "loss": 0.0, + "step": 748 + }, + { + "epoch": 1.44, + "learning_rate": 3.838474520903825e-06, + "loss": 0.0, + "step": 749 + }, + { + "epoch": 1.44, + "learning_rate": 3.8139568400621184e-06, + "loss": 0.0, + "step": 750 + }, + { + "epoch": 1.44, + "learning_rate": 3.7894992477083226e-06, + "loss": 0.0, + "step": 751 + }, + { + "epoch": 1.45, + "learning_rate": 3.7651019814126656e-06, + "loss": 0.0, + "step": 752 + }, + { + "epoch": 1.45, + "learning_rate": 3.7407652781594094e-06, + "loss": 0.0, + "step": 753 + }, + { + "epoch": 1.45, + "learning_rate": 3.7164893743445274e-06, + "loss": 0.0, + "step": 754 + }, + { + "epoch": 1.45, + "learning_rate": 3.692274505773419e-06, + "loss": 0.0, + "step": 755 + }, + { + "epoch": 1.45, + "learning_rate": 3.6681209076586035e-06, + "loss": 0.0, + "step": 756 + }, + { + "epoch": 1.46, + "learning_rate": 3.644028814617454e-06, + "loss": 0.0, + "step": 757 + }, + { + "epoch": 1.46, + "learning_rate": 3.619998460669916e-06, + "loss": 0.0, + "step": 758 + }, + { + "epoch": 1.46, + "learning_rate": 3.5960300792362124e-06, + "loss": 0.0, + "step": 759 + }, + { + "epoch": 1.46, + "learning_rate": 3.5721239031346067e-06, + "loss": 0.0, + "step": 760 + }, + { + "epoch": 1.46, + "learning_rate": 3.5482801645791266e-06, + "loss": 0.0, + "step": 761 + }, + { + "epoch": 1.47, + "learning_rate": 3.5244990951772972e-06, + "loss": 0.0, + "step": 762 + }, + { + "epoch": 1.47, + "learning_rate": 3.5007809259279146e-06, + "loss": 0.0, + "step": 763 + }, + { + "epoch": 1.47, + "learning_rate": 3.4771258872187917e-06, + "loss": 0.0, + "step": 764 + }, + { + "epoch": 1.47, + "learning_rate": 3.453534208824507e-06, + "loss": 0.0, + "step": 765 + }, + { + "epoch": 1.47, + "learning_rate": 3.4300061199041967e-06, + "loss": 0.0, + "step": 766 + }, + { + "epoch": 1.48, + "learning_rate": 3.4065418489993118e-06, + "loss": 0.0, + "step": 767 + }, + { + "epoch": 1.48, + "learning_rate": 3.3831416240314085e-06, + "loss": 0.0, + "step": 768 + }, + { + "epoch": 1.48, + "learning_rate": 3.3598056722999185e-06, + "loss": 0.0, + "step": 769 + }, + { + "epoch": 1.48, + "learning_rate": 3.3365342204799613e-06, + "loss": 0.0, + "step": 770 + }, + { + "epoch": 1.48, + "learning_rate": 3.3133274946201333e-06, + "loss": 0.0, + "step": 771 + }, + { + "epoch": 1.48, + "learning_rate": 3.290185720140301e-06, + "loss": 0.0, + "step": 772 + }, + { + "epoch": 1.49, + "learning_rate": 3.267109121829428e-06, + "loss": 0.0, + "step": 773 + }, + { + "epoch": 1.49, + "learning_rate": 3.2440979238433977e-06, + "loss": 0.0, + "step": 774 + }, + { + "epoch": 1.49, + "learning_rate": 3.221152349702802e-06, + "loss": 0.0, + "step": 775 + }, + { + "epoch": 1.49, + "learning_rate": 3.1982726222908046e-06, + "loss": 0.0, + "step": 776 + }, + { + "epoch": 1.49, + "learning_rate": 3.1754589638509647e-06, + "loss": 0.0, + "step": 777 + }, + { + "epoch": 1.5, + "learning_rate": 3.152711595985065e-06, + "loss": 0.0, + "step": 778 + }, + { + "epoch": 1.5, + "learning_rate": 3.1300307396509833e-06, + "loss": 0.0, + "step": 779 + }, + { + "epoch": 1.5, + "learning_rate": 3.10741661516053e-06, + "loss": 0.0, + "step": 780 + }, + { + "epoch": 1.5, + "learning_rate": 3.0848694421773075e-06, + "loss": 0.0, + "step": 781 + }, + { + "epoch": 1.5, + "learning_rate": 3.0623894397145837e-06, + "loss": 0.0, + "step": 782 + }, + { + "epoch": 1.51, + "learning_rate": 3.0399768261331664e-06, + "loss": 0.0, + "step": 783 + }, + { + "epoch": 1.51, + "learning_rate": 3.017631819139273e-06, + "loss": 0.0, + "step": 784 + }, + { + "epoch": 1.51, + "learning_rate": 2.995354635782417e-06, + "loss": 0.0, + "step": 785 + }, + { + "epoch": 1.51, + "learning_rate": 2.9731454924533086e-06, + "loss": 0.0, + "step": 786 + }, + { + "epoch": 1.51, + "learning_rate": 2.95100460488175e-06, + "loss": 0.0, + "step": 787 + }, + { + "epoch": 1.52, + "learning_rate": 2.9289321881345257e-06, + "loss": 0.0, + "step": 788 + }, + { + "epoch": 1.52, + "learning_rate": 2.906928456613336e-06, + "loss": 0.0, + "step": 789 + }, + { + "epoch": 1.52, + "learning_rate": 2.884993624052701e-06, + "loss": 0.0, + "step": 790 + }, + { + "epoch": 1.52, + "learning_rate": 2.8631279035178796e-06, + "loss": 0.0, + "step": 791 + }, + { + "epoch": 1.52, + "learning_rate": 2.8413315074028157e-06, + "loss": 0.0, + "step": 792 + }, + { + "epoch": 1.52, + "learning_rate": 2.819604647428067e-06, + "loss": 0.0, + "step": 793 + }, + { + "epoch": 1.53, + "learning_rate": 2.7979475346387363e-06, + "loss": 0.0, + "step": 794 + }, + { + "epoch": 1.53, + "learning_rate": 2.776360379402445e-06, + "loss": 0.0, + "step": 795 + }, + { + "epoch": 1.53, + "learning_rate": 2.7548433914072736e-06, + "loss": 0.0, + "step": 796 + }, + { + "epoch": 1.53, + "learning_rate": 2.7333967796597317e-06, + "loss": 0.0, + "step": 797 + }, + { + "epoch": 1.53, + "learning_rate": 2.712020752482717e-06, + "loss": 0.0, + "step": 798 + }, + { + "epoch": 1.54, + "learning_rate": 2.690715517513508e-06, + "loss": 0.0, + "step": 799 + }, + { + "epoch": 1.54, + "learning_rate": 2.669481281701739e-06, + "loss": 0.0, + "step": 800 + }, + { + "epoch": 1.54, + "learning_rate": 2.6483182513073835e-06, + "loss": 0.0, + "step": 801 + }, + { + "epoch": 1.54, + "learning_rate": 2.6272266318987606e-06, + "loss": 0.0, + "step": 802 + }, + { + "epoch": 1.54, + "learning_rate": 2.6062066283505404e-06, + "loss": 0.0, + "step": 803 + }, + { + "epoch": 1.55, + "learning_rate": 2.5852584448417327e-06, + "loss": 0.0, + "step": 804 + }, + { + "epoch": 1.55, + "learning_rate": 2.564382284853738e-06, + "loss": 0.0, + "step": 805 + }, + { + "epoch": 1.55, + "learning_rate": 2.5435783511683444e-06, + "loss": 0.0, + "step": 806 + }, + { + "epoch": 1.55, + "learning_rate": 2.5228468458657585e-06, + "loss": 0.0, + "step": 807 + }, + { + "epoch": 1.55, + "learning_rate": 2.502187970322657e-06, + "loss": 0.0, + "step": 808 + }, + { + "epoch": 1.56, + "learning_rate": 2.4816019252102274e-06, + "loss": 0.0, + "step": 809 + }, + { + "epoch": 1.56, + "learning_rate": 2.461088910492202e-06, + "loss": 0.0, + "step": 810 + }, + { + "epoch": 1.56, + "learning_rate": 2.440649125422937e-06, + "loss": 0.0, + "step": 811 + }, + { + "epoch": 1.56, + "learning_rate": 2.420282768545469e-06, + "loss": 0.0, + "step": 812 + }, + { + "epoch": 1.56, + "learning_rate": 2.3999900376895844e-06, + "loss": 0.0, + "step": 813 + }, + { + "epoch": 1.57, + "learning_rate": 2.3797711299698924e-06, + "loss": 0.0, + "step": 814 + }, + { + "epoch": 1.57, + "learning_rate": 2.3596262417839256e-06, + "loss": 0.0, + "step": 815 + }, + { + "epoch": 1.57, + "learning_rate": 2.339555568810221e-06, + "loss": 0.0, + "step": 816 + }, + { + "epoch": 1.57, + "learning_rate": 2.319559306006417e-06, + "loss": 0.0, + "step": 817 + }, + { + "epoch": 1.57, + "learning_rate": 2.2996376476073724e-06, + "loss": 0.0, + "step": 818 + }, + { + "epoch": 1.57, + "learning_rate": 2.2797907871232673e-06, + "loss": 0.0, + "step": 819 + }, + { + "epoch": 1.58, + "learning_rate": 2.2600189173377263e-06, + "loss": 0.0, + "step": 820 + }, + { + "epoch": 1.58, + "learning_rate": 2.240322230305951e-06, + "loss": 0.0, + "step": 821 + }, + { + "epoch": 1.58, + "learning_rate": 2.2207009173528528e-06, + "loss": 0.0, + "step": 822 + }, + { + "epoch": 1.58, + "learning_rate": 2.201155169071184e-06, + "loss": 0.0, + "step": 823 + }, + { + "epoch": 1.58, + "learning_rate": 2.1816851753197023e-06, + "loss": 0.0, + "step": 824 + }, + { + "epoch": 1.59, + "learning_rate": 2.1622911252213195e-06, + "loss": 0.0, + "step": 825 + }, + { + "epoch": 1.59, + "learning_rate": 2.1429732071612653e-06, + "loss": 0.0, + "step": 826 + }, + { + "epoch": 1.59, + "learning_rate": 2.1237316087852465e-06, + "loss": 0.0, + "step": 827 + }, + { + "epoch": 1.59, + "learning_rate": 2.104566516997647e-06, + "loss": 0.0, + "step": 828 + }, + { + "epoch": 1.59, + "learning_rate": 2.0854781179596937e-06, + "loss": 0.0, + "step": 829 + }, + { + "epoch": 1.6, + "learning_rate": 2.0664665970876496e-06, + "loss": 0.0, + "step": 830 + }, + { + "epoch": 1.6, + "learning_rate": 2.0475321390510262e-06, + "loss": 0.0, + "step": 831 + }, + { + "epoch": 1.6, + "learning_rate": 2.0286749277707783e-06, + "loss": 0.0, + "step": 832 + }, + { + "epoch": 1.6, + "learning_rate": 2.009895146417512e-06, + "loss": 0.0, + "step": 833 + }, + { + "epoch": 1.6, + "learning_rate": 1.9911929774097216e-06, + "loss": 0.0, + "step": 834 + }, + { + "epoch": 1.61, + "learning_rate": 1.9725686024120093e-06, + "loss": 0.0, + "step": 835 + }, + { + "epoch": 1.61, + "learning_rate": 1.9540222023333165e-06, + "loss": 0.0, + "step": 836 + }, + { + "epoch": 1.61, + "learning_rate": 1.9355539573251737e-06, + "loss": 0.0, + "step": 837 + }, + { + "epoch": 1.61, + "learning_rate": 1.9171640467799478e-06, + "loss": 0.0, + "step": 838 + }, + { + "epoch": 1.61, + "learning_rate": 1.8988526493290948e-06, + "loss": 0.0, + "step": 839 + }, + { + "epoch": 1.62, + "learning_rate": 1.880619942841435e-06, + "loss": 0.0, + "step": 840 + }, + { + "epoch": 1.62, + "learning_rate": 1.8624661044214154e-06, + "loss": 0.0, + "step": 841 + }, + { + "epoch": 1.62, + "learning_rate": 1.8443913104073984e-06, + "loss": 0.0, + "step": 842 + }, + { + "epoch": 1.62, + "learning_rate": 1.826395736369937e-06, + "loss": 0.0, + "step": 843 + }, + { + "epoch": 1.62, + "learning_rate": 1.808479557110081e-06, + "loss": 0.0, + "step": 844 + }, + { + "epoch": 1.62, + "learning_rate": 1.7906429466576768e-06, + "loss": 0.0, + "step": 845 + }, + { + "epoch": 1.63, + "learning_rate": 1.7728860782696666e-06, + "loss": 0.0, + "step": 846 + }, + { + "epoch": 1.63, + "learning_rate": 1.7552091244284197e-06, + "loss": 0.0, + "step": 847 + }, + { + "epoch": 1.63, + "learning_rate": 1.7376122568400533e-06, + "loss": 0.0, + "step": 848 + }, + { + "epoch": 1.63, + "learning_rate": 1.7200956464327512e-06, + "loss": 0.0, + "step": 849 + }, + { + "epoch": 1.63, + "learning_rate": 1.7026594633551252e-06, + "loss": 0.0, + "step": 850 + }, + { + "epoch": 1.64, + "learning_rate": 1.6853038769745466e-06, + "loss": 0.0, + "step": 851 + }, + { + "epoch": 1.64, + "learning_rate": 1.6680290558755119e-06, + "loss": 0.0, + "step": 852 + }, + { + "epoch": 1.64, + "learning_rate": 1.6508351678579882e-06, + "loss": 0.0, + "step": 853 + }, + { + "epoch": 1.64, + "learning_rate": 1.6337223799358025e-06, + "loss": 0.0, + "step": 854 + }, + { + "epoch": 1.64, + "learning_rate": 1.6166908583350138e-06, + "loss": 0.0, + "step": 855 + }, + { + "epoch": 1.65, + "learning_rate": 1.599740768492286e-06, + "loss": 0.0, + "step": 856 + }, + { + "epoch": 1.65, + "learning_rate": 1.582872275053301e-06, + "loss": 0.0, + "step": 857 + }, + { + "epoch": 1.65, + "learning_rate": 1.566085541871145e-06, + "loss": 0.0, + "step": 858 + }, + { + "epoch": 1.65, + "learning_rate": 1.5493807320047183e-06, + "loss": 0.0, + "step": 859 + }, + { + "epoch": 1.65, + "learning_rate": 1.5327580077171589e-06, + "loss": 0.0, + "step": 860 + }, + { + "epoch": 1.66, + "learning_rate": 1.5162175304742633e-06, + "loss": 0.0, + "step": 861 + }, + { + "epoch": 1.66, + "learning_rate": 1.499759460942909e-06, + "loss": 0.0, + "step": 862 + }, + { + "epoch": 1.66, + "learning_rate": 1.4833839589895072e-06, + "loss": 0.0, + "step": 863 + }, + { + "epoch": 1.66, + "learning_rate": 1.467091183678444e-06, + "loss": 0.0, + "step": 864 + }, + { + "epoch": 1.66, + "learning_rate": 1.4508812932705364e-06, + "loss": 0.0, + "step": 865 + }, + { + "epoch": 1.67, + "learning_rate": 1.4347544452214869e-06, + "loss": 0.0, + "step": 866 + }, + { + "epoch": 1.67, + "learning_rate": 1.4187107961803704e-06, + "loss": 0.0, + "step": 867 + }, + { + "epoch": 1.67, + "learning_rate": 1.4027505019880972e-06, + "loss": 0.0, + "step": 868 + }, + { + "epoch": 1.67, + "learning_rate": 1.3868737176759105e-06, + "loss": 0.0, + "step": 869 + }, + { + "epoch": 1.67, + "learning_rate": 1.3710805974638697e-06, + "loss": 0.0, + "step": 870 + }, + { + "epoch": 1.68, + "learning_rate": 1.3553712947593655e-06, + "loss": 0.0, + "step": 871 + }, + { + "epoch": 1.68, + "learning_rate": 1.339745962155613e-06, + "loss": 0.0, + "step": 872 + }, + { + "epoch": 1.68, + "learning_rate": 1.324204751430186e-06, + "loss": 0.0, + "step": 873 + }, + { + "epoch": 1.68, + "learning_rate": 1.3087478135435361e-06, + "loss": 0.0, + "step": 874 + }, + { + "epoch": 1.68, + "learning_rate": 1.293375298637518e-06, + "loss": 0.0, + "step": 875 + }, + { + "epoch": 1.68, + "learning_rate": 1.278087356033947e-06, + "loss": 0.0, + "step": 876 + }, + { + "epoch": 1.69, + "learning_rate": 1.2628841342331389e-06, + "loss": 0.0, + "step": 877 + }, + { + "epoch": 1.69, + "learning_rate": 1.2477657809124632e-06, + "loss": 0.0, + "step": 878 + }, + { + "epoch": 1.69, + "learning_rate": 1.2327324429249232e-06, + "loss": 0.0, + "step": 879 + }, + { + "epoch": 1.69, + "learning_rate": 1.2177842662977136e-06, + "loss": 0.0, + "step": 880 + }, + { + "epoch": 1.69, + "learning_rate": 1.2029213962308172e-06, + "loss": 0.0, + "step": 881 + }, + { + "epoch": 1.7, + "learning_rate": 1.188143977095576e-06, + "loss": 0.0, + "step": 882 + }, + { + "epoch": 1.7, + "learning_rate": 1.1734521524333087e-06, + "loss": 0.0, + "step": 883 + }, + { + "epoch": 1.7, + "learning_rate": 1.1588460649539036e-06, + "loss": 0.0, + "step": 884 + }, + { + "epoch": 1.7, + "learning_rate": 1.1443258565344329e-06, + "loss": 0.0, + "step": 885 + }, + { + "epoch": 1.7, + "learning_rate": 1.129891668217783e-06, + "loss": 0.0, + "step": 886 + }, + { + "epoch": 1.71, + "learning_rate": 1.1155436402112785e-06, + "loss": 0.0, + "step": 887 + }, + { + "epoch": 1.71, + "learning_rate": 1.1012819118853147e-06, + "loss": 0.0, + "step": 888 + }, + { + "epoch": 1.71, + "learning_rate": 1.0871066217720173e-06, + "loss": 0.0, + "step": 889 + }, + { + "epoch": 1.71, + "learning_rate": 1.073017907563887e-06, + "loss": 0.0, + "step": 890 + }, + { + "epoch": 1.71, + "learning_rate": 1.0590159061124606e-06, + "loss": 0.0, + "step": 891 + }, + { + "epoch": 1.72, + "learning_rate": 1.0451007534269908e-06, + "loss": 0.0, + "step": 892 + }, + { + "epoch": 1.72, + "learning_rate": 1.0312725846731174e-06, + "loss": 0.0, + "step": 893 + }, + { + "epoch": 1.72, + "learning_rate": 1.0175315341715598e-06, + "loss": 0.0, + "step": 894 + }, + { + "epoch": 1.72, + "learning_rate": 1.003877735396801e-06, + "loss": 0.0, + "step": 895 + }, + { + "epoch": 1.72, + "learning_rate": 9.903113209758098e-07, + "loss": 0.0, + "step": 896 + }, + { + "epoch": 1.73, + "learning_rate": 9.768324226867353e-07, + "loss": 0.0, + "step": 897 + }, + { + "epoch": 1.73, + "learning_rate": 9.634411714576353e-07, + "loss": 0.0, + "step": 898 + }, + { + "epoch": 1.73, + "learning_rate": 9.501376973651999e-07, + "loss": 0.0, + "step": 899 + }, + { + "epoch": 1.73, + "learning_rate": 9.369221296335007e-07, + "loss": 0.0, + "step": 900 + } + ], + "logging_steps": 1.0, + "max_steps": 1040, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 100, + "total_flos": 4.4903984085231206e+17, + "train_batch_size": 16, + "trial_name": null, + "trial_params": null +} diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/training_args.bin b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..2ca4d892afdd453b26723a9aa94e432cb44cc953 --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:63da3a2d0bf1dde543b68e123590fcd7c42f45ec7eb68e86c6eadd439321f902 +size 6264 diff --git a/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/zero_to_fp32.py b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..c98caae31534368be22b67fc4ae906836c992a8d --- /dev/null +++ b/llava-v1.6-mistral-7b-unk-vqa-v1.0/checkpoint-900/zero_to_fp32.py @@ -0,0 +1,587 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: python zero_to_fp32.py . pytorch_model.bin + +import argparse +import torch +import glob +import math +import os +import re +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + + total_files = len(files) + state_dicts = [] + for f in files: + state_dict = torch.load(f, map_location=device) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + if zero_stage <= 2: + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + elif zero_stage == 3: + # if there is more than one param group, there will be multiple flattened tensors - one + # flattened tensor per group - for simplicity merge them into a single tensor + # + # XXX: could make the script more memory efficient for when there are multiple groups - it + # will require matching the sub-lists of param_shapes for each param group flattened tensor + + fp32_flat_groups = [ + torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) + ] + + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = fp32_flat_groups[0].numel() * world_size + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + for name, shape in param_shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # XXX: memory usage doubles here + state_dict[name] = torch.cat( + tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), + 0).narrow(0, 0, unpartitioned_numel).view(shape) + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + + Returns: + - pytorch ``state_dict`` + + Note: this approach may not work if your application doesn't have sufficient free CPU memory and + you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + """ + + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + print(f"Saving fp32 state dict to {output_file}") + torch.save(state_dict, output_file) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument( + "output_file", + type=str, + help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)