File size: 1,404 Bytes
e06a3f0 7e0313c d9f2ed8 7e0313c e06a3f0 7e0313c 83311c5 f32f7c3 185bb7d 7e0313c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
pipeline_tag: text-generation
license: apache-2.0
language:
- en
tags:
- T3Q-ko-solar-sft-v3.0
- kyujinpy/KoCommercial-NoSSL
base_model: chihoonlee10/T3Q-ko-solar-dpo-v3.0
datasets:
- davidkim205/ko_common_gen
model-index:
- name: T3Q-ko-solar-sft-v3.0
results: []
---
Update @ 2024.03.25
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f22e4076fedc4fd11e978f/MoTedec_ZL8GM2MmGyAPs.png)
## T3Q-ko-solar-sft-v3.0
This model is a SFT fine-tuned version of chihoonlee10/T3Q-ko-solar-dpo-v3.0
**Model Developers** Chihoon Lee(chlee10), T3Q
## Training hyperparameters
The following hyperparameters were used during training:
```python
# ๋ฐ์ดํฐ์
๊ณผ ํ๋ จ ํ์์ ๊ด๋ จ๋ ํ์ดํผ ํ๋ผ๋ฏธํฐ
batch_size = 16
num_epochs = 1
micro_batch = 1
gradient_accumulation_steps = batch_size // micro_batch
# ํ๋ จ ๋ฐฉ๋ฒ์ ๋ํ ํ์ดํผ ํ๋ผ๋ฏธํฐ
cutoff_len = 4096
lr_scheduler = 'cosine'
warmup_ratio = 0.06 # warmup_steps = 100
learning_rate = 5e-5
optimizer = 'paged_adamw_32bit'
weight_decay = 0.01
max_grad_norm = 1.0
# LoRA config
lora_r = 16
lora_alpha = 16
lora_dropout = 0.05
lora_target_modules = ["k_proj", "v_proj","gate_proj", "down_proj", "up_proj"]
# Tokenizer์์ ๋์ค๋ input๊ฐ ์ค์ ์ต์
train_on_inputs = False
add_eos_token = False
# NEFTune params
neftune_noise_alpha = 5
```
|