File size: 4,212 Bytes
29b3287 4e508cd 29b3287 4e508cd 29b3287 4e508cd 11b2beb 4e508cd 11b2beb 4e508cd 29b3287 287473e 29b3287 287473e 9de4a4e 29b3287 287473e 29b3287 287473e 29b3287 287473e 29b3287 11b2beb 29b3287 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
language:
- te
license: apache-2.0
tags:
- automatic-speech-recognition
- openslr_SLR66
- generated_from_trainer
- robust-speech-event
datasets:
- openslr
- SLR66
metrics:
- wer
model-index:
- name: xls-r-1B-te
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: openslr
name: Open SLR
args: SLR66
metrics:
- type: wer
value: 26.14777618364419
name: Test WER (without LM)
- type: cer
value: 4.932543184970369
name: Test CER (without LM)
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the OPENSLR_SLR66 - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3119
- Wer: 0.2613
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 150.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 2.9038 | 4.8 | 500 | 3.0125 | 1.0 |
| 1.3777 | 9.61 | 1000 | 0.8681 | 0.8753 |
| 1.1436 | 14.42 | 1500 | 0.6256 | 0.7961 |
| 1.0997 | 19.23 | 2000 | 0.5244 | 0.6875 |
| 1.0363 | 24.04 | 2500 | 0.4585 | 0.6276 |
| 0.7996 | 28.84 | 3000 | 0.4072 | 0.5295 |
| 0.825 | 33.65 | 3500 | 0.3590 | 0.5222 |
| 0.8018 | 38.46 | 4000 | 0.3678 | 0.4671 |
| 0.7545 | 43.27 | 4500 | 0.3474 | 0.3962 |
| 0.7375 | 48.08 | 5000 | 0.3224 | 0.3869 |
| 0.6198 | 52.88 | 5500 | 0.3233 | 0.3630 |
| 0.6608 | 57.69 | 6000 | 0.3029 | 0.3308 |
| 0.645 | 62.5 | 6500 | 0.3195 | 0.3722 |
| 0.5249 | 67.31 | 7000 | 0.3004 | 0.3202 |
| 0.4875 | 72.11 | 7500 | 0.2826 | 0.2992 |
| 0.5171 | 76.92 | 8000 | 0.2962 | 0.2976 |
| 0.4974 | 81.73 | 8500 | 0.2990 | 0.2933 |
| 0.4387 | 86.54 | 9000 | 0.2834 | 0.2755 |
| 0.4511 | 91.34 | 9500 | 0.2886 | 0.2787 |
| 0.4112 | 96.15 | 10000 | 0.3093 | 0.2976 |
| 0.4064 | 100.96 | 10500 | 0.3123 | 0.2863 |
| 0.4047 | 105.77 | 11000 | 0.2968 | 0.2719 |
| 0.3519 | 110.57 | 11500 | 0.3106 | 0.2832 |
| 0.3719 | 115.38 | 12000 | 0.3030 | 0.2737 |
| 0.3669 | 120.19 | 12500 | 0.2964 | 0.2714 |
| 0.3386 | 125.0 | 13000 | 0.3101 | 0.2714 |
| 0.3137 | 129.8 | 13500 | 0.3063 | 0.2710 |
| 0.3008 | 134.61 | 14000 | 0.3082 | 0.2617 |
| 0.301 | 139.42 | 14500 | 0.3121 | 0.2628 |
| 0.3291 | 144.23 | 15000 | 0.3105 | 0.2612 |
| 0.3133 | 149.04 | 15500 | 0.3114 | 0.2624 |
### Evaluation metrics
| Metric | Split | LM | Value |
|:------:|:------:|:-----:|:---------:|
| WER | Train | No | 5.36 |
| CER | Train | No | 1.11 |
| WER | Test | No | 26.14 |
| CER | Test | No | 4.93 |
| WER | Train | Yes | |
| CER | Train | Yes | |
| WER | Test | Yes | |
| CER | Test | Yes | |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|