File size: 4,423 Bytes
29b3287
09da099
4e508cd
29b3287
 
 
 
 
4e508cd
09da099
4e508cd
 
 
 
 
29b3287
4e508cd
 
09da099
4e508cd
 
 
 
 
 
 
09da099
 
 
 
 
 
 
 
 
 
 
 
29b3287
 
 
 
 
 
 
 
 
287473e
 
29b3287
f9f40b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29b3287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287473e
9de4a4e
29b3287
 
287473e
 
29b3287
 
287473e
 
29b3287
 
 
 
287473e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29b3287
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
language:
- te
license: apache-2.0
tags:
- automatic-speech-recognition
- openslr_SLR66
- generated_from_trainer
- robust-speech-event
- hf-asr-leaderboard
datasets:
- openslr
- SLR66
metrics:
- wer
model-index:
- name: xls-r-1B-te
  results:
  - task:
      type: automatic-speech-recognition
      name: Speech Recognition
    dataset:
      type: openslr
      name: Open SLR
      args: SLR66
    metrics:
    - type: wer
      value: 20.624
      name: Test WER
    - type: cer
      value: 3.979
      name: Test CER
    - type: wer
      value: 26.14777618364419
      name: Test WER (without LM)
    - type: cer
      value: 4.932543184970369
      name: Test CER (without LM)
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the OPENSLR_SLR66 - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3119
- Wer: 0.2613


### Evaluation metrics

| Metric | Split  | Decode with LM | Value     |
|:------:|:------:|:--------------:|:---------:|
| WER    | Train  | No             | 5.36      |
| CER    | Train  | No             | 1.11      |
| WER    | Test   | No             | 26.14     |
| CER    | Test   | No             | 4.93      |
| WER    | Train  | Yes            | 5.04      |
| CER    | Train  | Yes            | 1.07      |
| WER    | Test   | Yes            | 20.69     |
| CER    | Test   | Yes            | 3.986     |


## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 150.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Wer    |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 2.9038        | 4.8    | 500   | 3.0125          | 1.0    |
| 1.3777        | 9.61   | 1000  | 0.8681          | 0.8753 |
| 1.1436        | 14.42  | 1500  | 0.6256          | 0.7961 |
| 1.0997        | 19.23  | 2000  | 0.5244          | 0.6875 |
| 1.0363        | 24.04  | 2500  | 0.4585          | 0.6276 |
| 0.7996        | 28.84  | 3000  | 0.4072          | 0.5295 |
| 0.825         | 33.65  | 3500  | 0.3590          | 0.5222 |
| 0.8018        | 38.46  | 4000  | 0.3678          | 0.4671 |
| 0.7545        | 43.27  | 4500  | 0.3474          | 0.3962 |
| 0.7375        | 48.08  | 5000  | 0.3224          | 0.3869 |
| 0.6198        | 52.88  | 5500  | 0.3233          | 0.3630 |
| 0.6608        | 57.69  | 6000  | 0.3029          | 0.3308 |
| 0.645         | 62.5   | 6500  | 0.3195          | 0.3722 |
| 0.5249        | 67.31  | 7000  | 0.3004          | 0.3202 |
| 0.4875        | 72.11  | 7500  | 0.2826          | 0.2992 |
| 0.5171        | 76.92  | 8000  | 0.2962          | 0.2976 |
| 0.4974        | 81.73  | 8500  | 0.2990          | 0.2933 |
| 0.4387        | 86.54  | 9000  | 0.2834          | 0.2755 |
| 0.4511        | 91.34  | 9500  | 0.2886          | 0.2787 |
| 0.4112        | 96.15  | 10000 | 0.3093          | 0.2976 |
| 0.4064        | 100.96 | 10500 | 0.3123          | 0.2863 |
| 0.4047        | 105.77 | 11000 | 0.2968          | 0.2719 |
| 0.3519        | 110.57 | 11500 | 0.3106          | 0.2832 |
| 0.3719        | 115.38 | 12000 | 0.3030          | 0.2737 |
| 0.3669        | 120.19 | 12500 | 0.2964          | 0.2714 |
| 0.3386        | 125.0  | 13000 | 0.3101          | 0.2714 |
| 0.3137        | 129.8  | 13500 | 0.3063          | 0.2710 |
| 0.3008        | 134.61 | 14000 | 0.3082          | 0.2617 |
| 0.301         | 139.42 | 14500 | 0.3121          | 0.2628 |
| 0.3291        | 144.23 | 15000 | 0.3105          | 0.2612 |
| 0.3133        | 149.04 | 15500 | 0.3114          | 0.2624 |


### Framework versions

- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0