--- language: - te license: apache-2.0 tags: - automatic-speech-recognition - openslr_SLR66 - generated_from_trainer - robust-speech-event datasets: - openslr - SLR66 metrics: - wer model-index: - name: xls-r-1B-te results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: openslr name: Open SLR args: SLR66 metrics: - type: wer value: 26.14777618364419 name: Test WER (without LM) - type: cer value: 4.932543184970369 name: Test CER (without LM) --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the OPENSLR_SLR66 - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.3119 - Wer: 0.2613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 150.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 2.9038 | 4.8 | 500 | 3.0125 | 1.0 | | 1.3777 | 9.61 | 1000 | 0.8681 | 0.8753 | | 1.1436 | 14.42 | 1500 | 0.6256 | 0.7961 | | 1.0997 | 19.23 | 2000 | 0.5244 | 0.6875 | | 1.0363 | 24.04 | 2500 | 0.4585 | 0.6276 | | 0.7996 | 28.84 | 3000 | 0.4072 | 0.5295 | | 0.825 | 33.65 | 3500 | 0.3590 | 0.5222 | | 0.8018 | 38.46 | 4000 | 0.3678 | 0.4671 | | 0.7545 | 43.27 | 4500 | 0.3474 | 0.3962 | | 0.7375 | 48.08 | 5000 | 0.3224 | 0.3869 | | 0.6198 | 52.88 | 5500 | 0.3233 | 0.3630 | | 0.6608 | 57.69 | 6000 | 0.3029 | 0.3308 | | 0.645 | 62.5 | 6500 | 0.3195 | 0.3722 | | 0.5249 | 67.31 | 7000 | 0.3004 | 0.3202 | | 0.4875 | 72.11 | 7500 | 0.2826 | 0.2992 | | 0.5171 | 76.92 | 8000 | 0.2962 | 0.2976 | | 0.4974 | 81.73 | 8500 | 0.2990 | 0.2933 | | 0.4387 | 86.54 | 9000 | 0.2834 | 0.2755 | | 0.4511 | 91.34 | 9500 | 0.2886 | 0.2787 | | 0.4112 | 96.15 | 10000 | 0.3093 | 0.2976 | | 0.4064 | 100.96 | 10500 | 0.3123 | 0.2863 | | 0.4047 | 105.77 | 11000 | 0.2968 | 0.2719 | | 0.3519 | 110.57 | 11500 | 0.3106 | 0.2832 | | 0.3719 | 115.38 | 12000 | 0.3030 | 0.2737 | | 0.3669 | 120.19 | 12500 | 0.2964 | 0.2714 | | 0.3386 | 125.0 | 13000 | 0.3101 | 0.2714 | | 0.3137 | 129.8 | 13500 | 0.3063 | 0.2710 | | 0.3008 | 134.61 | 14000 | 0.3082 | 0.2617 | | 0.301 | 139.42 | 14500 | 0.3121 | 0.2628 | | 0.3291 | 144.23 | 15000 | 0.3105 | 0.2612 | | 0.3133 | 149.04 | 15500 | 0.3114 | 0.2624 | ### Evaluation metrics | Metric | Split | LM | Value | |:------:|:------:|:-----:|:---------:| | WER | Train | No | 5.36 | | CER | Train | No | 1.11 | | WER | Test | No | 26.14 | | CER | Test | No | 4.93 | | WER | Train | Yes | | | CER | Train | Yes | | | WER | Test | Yes | | | CER | Test | Yes | | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0