chmanoj commited on
Commit
a57098a
·
1 Parent(s): 51d7925

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -3
README.md CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the OPENSLR_SLR66 - NA dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 3.5510
20
- - Wer: 1.0
21
 
22
  ## Model description
23
 
@@ -45,11 +45,33 @@ The following hyperparameters were used during training:
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
  - lr_scheduler_warmup_steps: 2000
48
- - num_epochs: 2.0
49
  - mixed_precision_training: Native AMP
50
 
51
  ### Training results
52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
 
55
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the OPENSLR_SLR66 - NA dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.2719
20
+ - Wer: 0.3419
21
 
22
  ## Model description
23
 
 
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
  - lr_scheduler_warmup_steps: 2000
48
+ - num_epochs: 100.0
49
  - mixed_precision_training: Native AMP
50
 
51
  ### Training results
52
 
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
55
+ | 3.0304 | 4.81 | 500 | 1.5676 | 1.0554 |
56
+ | 1.5263 | 9.61 | 1000 | 0.4693 | 0.8023 |
57
+ | 1.5299 | 14.42 | 1500 | 0.4368 | 0.7311 |
58
+ | 1.5063 | 19.23 | 2000 | 0.4360 | 0.7302 |
59
+ | 1.455 | 24.04 | 2500 | 0.4213 | 0.6692 |
60
+ | 1.4755 | 28.84 | 3000 | 0.4329 | 0.5943 |
61
+ | 1.352 | 33.65 | 3500 | 0.4074 | 0.5765 |
62
+ | 1.3122 | 38.46 | 4000 | 0.3866 | 0.5630 |
63
+ | 1.2799 | 43.27 | 4500 | 0.3860 | 0.5480 |
64
+ | 1.212 | 48.08 | 5000 | 0.3590 | 0.5317 |
65
+ | 1.1645 | 52.88 | 5500 | 0.3283 | 0.4757 |
66
+ | 1.0854 | 57.69 | 6000 | 0.3162 | 0.4687 |
67
+ | 1.0292 | 62.5 | 6500 | 0.3126 | 0.4416 |
68
+ | 0.9607 | 67.31 | 7000 | 0.2990 | 0.4066 |
69
+ | 0.9156 | 72.12 | 7500 | 0.2870 | 0.4009 |
70
+ | 0.8329 | 76.92 | 8000 | 0.2791 | 0.3909 |
71
+ | 0.7979 | 81.73 | 8500 | 0.2770 | 0.3670 |
72
+ | 0.7144 | 86.54 | 9000 | 0.2841 | 0.3661 |
73
+ | 0.6997 | 91.35 | 9500 | 0.2721 | 0.3485 |
74
+ | 0.6568 | 96.15 | 10000 | 0.2681 | 0.3437 |
75
 
76
 
77
  ### Framework versions