Remove extra files
Browse files- Add_LM_to_model.ipynb +0 -397
- openslr_SLR66_te_test_eval_results.txt +0 -2
Add_LM_to_model.ipynb
DELETED
@@ -1,397 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 1,
|
6 |
-
"id": "d23f1f27-fbf4-4fe5-a7b4-17815b23f283",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"from transformers import AutoProcessor"
|
11 |
-
]
|
12 |
-
},
|
13 |
-
{
|
14 |
-
"cell_type": "code",
|
15 |
-
"execution_count": 2,
|
16 |
-
"id": "cdefcb5e-0824-49ef-be73-8788cbb4e2a9",
|
17 |
-
"metadata": {},
|
18 |
-
"outputs": [],
|
19 |
-
"source": [
|
20 |
-
"processor = AutoProcessor.from_pretrained(\"chmanoj/xls-r-300m-te\")"
|
21 |
-
]
|
22 |
-
},
|
23 |
-
{
|
24 |
-
"cell_type": "code",
|
25 |
-
"execution_count": 3,
|
26 |
-
"id": "ef78538d-ca83-4cd3-824d-1b7928f5bc4e",
|
27 |
-
"metadata": {},
|
28 |
-
"outputs": [],
|
29 |
-
"source": [
|
30 |
-
"vocab_dict = processor.tokenizer.get_vocab()\n",
|
31 |
-
"sorted_vocab_dict = {k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])}"
|
32 |
-
]
|
33 |
-
},
|
34 |
-
{
|
35 |
-
"cell_type": "code",
|
36 |
-
"execution_count": 4,
|
37 |
-
"id": "cd355539-6dfb-4978-82a3-905c0236c6c3",
|
38 |
-
"metadata": {},
|
39 |
-
"outputs": [],
|
40 |
-
"source": [
|
41 |
-
"from pyctcdecode import build_ctcdecoder"
|
42 |
-
]
|
43 |
-
},
|
44 |
-
{
|
45 |
-
"cell_type": "code",
|
46 |
-
"execution_count": 9,
|
47 |
-
"id": "34429a23-a3e5-40ca-be4e-186bf12e1ff4",
|
48 |
-
"metadata": {},
|
49 |
-
"outputs": [],
|
50 |
-
"source": [
|
51 |
-
"# !which python\n",
|
52 |
-
"\n",
|
53 |
-
"# !pip install https://github.com/kpu/kenlm/archive/master.zip"
|
54 |
-
]
|
55 |
-
},
|
56 |
-
{
|
57 |
-
"cell_type": "code",
|
58 |
-
"execution_count": 5,
|
59 |
-
"id": "21f4fb99-1c19-4a0a-9ac0-90dd38645585",
|
60 |
-
"metadata": {},
|
61 |
-
"outputs": [
|
62 |
-
{
|
63 |
-
"name": "stderr",
|
64 |
-
"output_type": "stream",
|
65 |
-
"text": [
|
66 |
-
"Loading the LM will be faster if you build a binary file.\n",
|
67 |
-
"Reading /mnt/c/Projects/Speech/xls-R-finetuning/xls-r-300m-te/3gram_correct.arpa\n",
|
68 |
-
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
69 |
-
"****************************************************************************************************\n",
|
70 |
-
"Found entries of length > 1 in alphabet. This is unusual unless style is BPE, but the alphabet was not recognized as BPE type. Is this correct?\n",
|
71 |
-
"Unigrams and labels don't seem to agree.\n"
|
72 |
-
]
|
73 |
-
}
|
74 |
-
],
|
75 |
-
"source": [
|
76 |
-
"decoder = build_ctcdecoder(\n",
|
77 |
-
" labels=list(sorted_vocab_dict.keys()),\n",
|
78 |
-
" kenlm_model_path=\"3gram_correct.arpa\",\n",
|
79 |
-
")"
|
80 |
-
]
|
81 |
-
},
|
82 |
-
{
|
83 |
-
"cell_type": "code",
|
84 |
-
"execution_count": 6,
|
85 |
-
"id": "f892aada-710c-4bc2-a11f-c9a35c00870a",
|
86 |
-
"metadata": {},
|
87 |
-
"outputs": [],
|
88 |
-
"source": [
|
89 |
-
"from transformers import Wav2Vec2ProcessorWithLM\n",
|
90 |
-
"\n",
|
91 |
-
"processor_with_lm = Wav2Vec2ProcessorWithLM(\n",
|
92 |
-
" feature_extractor=processor.feature_extractor,\n",
|
93 |
-
" tokenizer=processor.tokenizer,\n",
|
94 |
-
" decoder=decoder\n",
|
95 |
-
")"
|
96 |
-
]
|
97 |
-
},
|
98 |
-
{
|
99 |
-
"cell_type": "code",
|
100 |
-
"execution_count": 7,
|
101 |
-
"id": "5e29f7f7-e116-4c65-9c14-ae7e871390bb",
|
102 |
-
"metadata": {},
|
103 |
-
"outputs": [
|
104 |
-
{
|
105 |
-
"data": {
|
106 |
-
"text/plain": [
|
107 |
-
"'/mnt/c/Projects/Speech/xls-R-finetuning/xls-r-300m-te'"
|
108 |
-
]
|
109 |
-
},
|
110 |
-
"execution_count": 7,
|
111 |
-
"metadata": {},
|
112 |
-
"output_type": "execute_result"
|
113 |
-
}
|
114 |
-
],
|
115 |
-
"source": [
|
116 |
-
"import os\n",
|
117 |
-
"os.getcwd()"
|
118 |
-
]
|
119 |
-
},
|
120 |
-
{
|
121 |
-
"cell_type": "code",
|
122 |
-
"execution_count": 8,
|
123 |
-
"id": "6f5775eb-aece-41fc-a1eb-8bf6f9b8f429",
|
124 |
-
"metadata": {},
|
125 |
-
"outputs": [],
|
126 |
-
"source": [
|
127 |
-
"processor_with_lm.save_pretrained(os.getcwd())"
|
128 |
-
]
|
129 |
-
},
|
130 |
-
{
|
131 |
-
"cell_type": "code",
|
132 |
-
"execution_count": null,
|
133 |
-
"id": "0e7e4d6f-01d0-4a24-9980-a6583fb6d048",
|
134 |
-
"metadata": {},
|
135 |
-
"outputs": [],
|
136 |
-
"source": []
|
137 |
-
},
|
138 |
-
{
|
139 |
-
"cell_type": "code",
|
140 |
-
"execution_count": 10,
|
141 |
-
"id": "c5ea011b-9412-484a-b798-15fb6e338a99",
|
142 |
-
"metadata": {},
|
143 |
-
"outputs": [
|
144 |
-
{
|
145 |
-
"name": "stdout",
|
146 |
-
"output_type": "stream",
|
147 |
-
"text": [
|
148 |
-
"Reading language_model/3gram_correct.arpa\n",
|
149 |
-
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
150 |
-
"****************************************************************************************************\n",
|
151 |
-
"SUCCESS\n"
|
152 |
-
]
|
153 |
-
}
|
154 |
-
],
|
155 |
-
"source": [
|
156 |
-
"!../kenlm/build/bin/build_binary language_model/3gram_correct.arpa language_model/3gram.bin"
|
157 |
-
]
|
158 |
-
},
|
159 |
-
{
|
160 |
-
"cell_type": "code",
|
161 |
-
"execution_count": null,
|
162 |
-
"id": "70c2709b-0b5c-440f-ae9f-11f8045e8fed",
|
163 |
-
"metadata": {},
|
164 |
-
"outputs": [],
|
165 |
-
"source": []
|
166 |
-
},
|
167 |
-
{
|
168 |
-
"cell_type": "code",
|
169 |
-
"execution_count": 11,
|
170 |
-
"id": "c5db962f-15f1-4b65-87e3-81e1af14e32e",
|
171 |
-
"metadata": {},
|
172 |
-
"outputs": [],
|
173 |
-
"source": [
|
174 |
-
"from huggingface_hub import Repository"
|
175 |
-
]
|
176 |
-
},
|
177 |
-
{
|
178 |
-
"cell_type": "code",
|
179 |
-
"execution_count": 15,
|
180 |
-
"id": "d3801f28-cdb5-40cd-b1b9-5a00f8f24720",
|
181 |
-
"metadata": {},
|
182 |
-
"outputs": [],
|
183 |
-
"source": [
|
184 |
-
"repo = Repository(local_dir=\".\")"
|
185 |
-
]
|
186 |
-
},
|
187 |
-
{
|
188 |
-
"cell_type": "code",
|
189 |
-
"execution_count": null,
|
190 |
-
"id": "c6421313-5d36-45ce-8300-3988985e7239",
|
191 |
-
"metadata": {},
|
192 |
-
"outputs": [],
|
193 |
-
"source": []
|
194 |
-
},
|
195 |
-
{
|
196 |
-
"cell_type": "code",
|
197 |
-
"execution_count": 16,
|
198 |
-
"id": "7dcfe5d2-063f-4b34-9fdd-5f025ef9f699",
|
199 |
-
"metadata": {},
|
200 |
-
"outputs": [
|
201 |
-
{
|
202 |
-
"data": {
|
203 |
-
"application/vnd.jupyter.widget-view+json": {
|
204 |
-
"model_id": "19e7f1d4c0ab43b6b006cb848879273d",
|
205 |
-
"version_major": 2,
|
206 |
-
"version_minor": 0
|
207 |
-
},
|
208 |
-
"text/plain": [
|
209 |
-
"Upload file language_model/3gram.bin: 0%| | 32.0k/771M [00:00<?, ?B/s]"
|
210 |
-
]
|
211 |
-
},
|
212 |
-
"metadata": {},
|
213 |
-
"output_type": "display_data"
|
214 |
-
},
|
215 |
-
{
|
216 |
-
"data": {
|
217 |
-
"application/vnd.jupyter.widget-view+json": {
|
218 |
-
"model_id": "476ee7adfe4f49729541086d12535504",
|
219 |
-
"version_major": 2,
|
220 |
-
"version_minor": 0
|
221 |
-
},
|
222 |
-
"text/plain": [
|
223 |
-
"Upload file language_model/unigrams.txt: 0%| | 32.0k/39.0M [00:00<?, ?B/s]"
|
224 |
-
]
|
225 |
-
},
|
226 |
-
"metadata": {},
|
227 |
-
"output_type": "display_data"
|
228 |
-
},
|
229 |
-
{
|
230 |
-
"name": "stderr",
|
231 |
-
"output_type": "stream",
|
232 |
-
"text": [
|
233 |
-
"To https://huggingface.co/chmanoj/xls-r-300m-te\n",
|
234 |
-
" aa77a85..dbca3b5 main -> main\n",
|
235 |
-
"\n"
|
236 |
-
]
|
237 |
-
},
|
238 |
-
{
|
239 |
-
"data": {
|
240 |
-
"text/plain": [
|
241 |
-
"'https://huggingface.co/chmanoj/xls-r-300m-te/commit/dbca3b5d87436c5615b2460922b94a15a878c713'"
|
242 |
-
]
|
243 |
-
},
|
244 |
-
"execution_count": 16,
|
245 |
-
"metadata": {},
|
246 |
-
"output_type": "execute_result"
|
247 |
-
}
|
248 |
-
],
|
249 |
-
"source": [
|
250 |
-
"repo.push_to_hub(commit_message=\"Upload lm-boosted decoder\")"
|
251 |
-
]
|
252 |
-
},
|
253 |
-
{
|
254 |
-
"cell_type": "code",
|
255 |
-
"execution_count": null,
|
256 |
-
"id": "c3fa2899-59f9-458b-8a23-4da3936a18a1",
|
257 |
-
"metadata": {},
|
258 |
-
"outputs": [],
|
259 |
-
"source": []
|
260 |
-
},
|
261 |
-
{
|
262 |
-
"cell_type": "markdown",
|
263 |
-
"id": "c71ab8cb-8732-4d40-aa77-503421ac717c",
|
264 |
-
"metadata": {},
|
265 |
-
"source": [
|
266 |
-
"## Evaluation"
|
267 |
-
]
|
268 |
-
},
|
269 |
-
{
|
270 |
-
"cell_type": "code",
|
271 |
-
"execution_count": null,
|
272 |
-
"id": "738524cc-28fb-4bb3-aec5-10d1e33bae45",
|
273 |
-
"metadata": {},
|
274 |
-
"outputs": [],
|
275 |
-
"source": []
|
276 |
-
},
|
277 |
-
{
|
278 |
-
"cell_type": "code",
|
279 |
-
"execution_count": null,
|
280 |
-
"id": "99c4aac1-9fe8-4ff5-a0a2-fbe59d6ad2d2",
|
281 |
-
"metadata": {},
|
282 |
-
"outputs": [],
|
283 |
-
"source": [
|
284 |
-
"#!python eval.py --model_id=\"chmanoj/xls-r-300m-te\" --dataset=\"openslr_SLR66\" --config=\"te\" --split=\"test\" --log_outputs"
|
285 |
-
]
|
286 |
-
},
|
287 |
-
{
|
288 |
-
"cell_type": "code",
|
289 |
-
"execution_count": null,
|
290 |
-
"id": "c012e9c8-cc46-48d5-a05c-99c136591c9f",
|
291 |
-
"metadata": {},
|
292 |
-
"outputs": [],
|
293 |
-
"source": []
|
294 |
-
},
|
295 |
-
{
|
296 |
-
"cell_type": "code",
|
297 |
-
"execution_count": 10,
|
298 |
-
"id": "47d37b88-cc8e-4d17-b070-4ad1cd66dae8",
|
299 |
-
"metadata": {},
|
300 |
-
"outputs": [],
|
301 |
-
"source": [
|
302 |
-
"from huggingface_hub.repocard import metadata_load"
|
303 |
-
]
|
304 |
-
},
|
305 |
-
{
|
306 |
-
"cell_type": "code",
|
307 |
-
"execution_count": 18,
|
308 |
-
"id": "a56f846c-fa92-48d5-873e-3788748dd9e8",
|
309 |
-
"metadata": {},
|
310 |
-
"outputs": [],
|
311 |
-
"source": [
|
312 |
-
"x = metadata_load('README.md')"
|
313 |
-
]
|
314 |
-
},
|
315 |
-
{
|
316 |
-
"cell_type": "code",
|
317 |
-
"execution_count": 19,
|
318 |
-
"id": "69d92b93-3a67-4be8-9b9b-ade6322718ae",
|
319 |
-
"metadata": {},
|
320 |
-
"outputs": [
|
321 |
-
{
|
322 |
-
"data": {
|
323 |
-
"text/plain": [
|
324 |
-
"{'language': ['te'],\n",
|
325 |
-
" 'license': 'apache-2.0',\n",
|
326 |
-
" 'tags': ['automatic-speech-recognition',\n",
|
327 |
-
" 'openslr_SLR66',\n",
|
328 |
-
" 'generated_from_trainer',\n",
|
329 |
-
" 'robust-speech-event'],\n",
|
330 |
-
" 'datasets': ['openslr', 'SLR66'],\n",
|
331 |
-
" 'metrics': ['wer'],\n",
|
332 |
-
" 'model-index': [{'name': 'xls-r-300m-te',\n",
|
333 |
-
" 'results': [{'task': {'type': 'automatic-speech-recognition',\n",
|
334 |
-
" 'name': 'Speech Recognition'},\n",
|
335 |
-
" 'dataset': {'type': 'openslr', 'name': 'Open SLR', 'args': 'SLR66'},\n",
|
336 |
-
" 'metrics': [{'type': 'wer',\n",
|
337 |
-
" 'value': 24.695121951219512,\n",
|
338 |
-
" 'name': 'Test WER'},\n",
|
339 |
-
" {'type': 'cer', 'value': 4.861934182322532, 'name': 'Test CER'}]}]}]}"
|
340 |
-
]
|
341 |
-
},
|
342 |
-
"execution_count": 19,
|
343 |
-
"metadata": {},
|
344 |
-
"output_type": "execute_result"
|
345 |
-
}
|
346 |
-
],
|
347 |
-
"source": [
|
348 |
-
"x"
|
349 |
-
]
|
350 |
-
},
|
351 |
-
{
|
352 |
-
"cell_type": "code",
|
353 |
-
"execution_count": null,
|
354 |
-
"id": "06957371-efbe-4175-9a3e-4b3c6c6ff255",
|
355 |
-
"metadata": {},
|
356 |
-
"outputs": [],
|
357 |
-
"source": []
|
358 |
-
},
|
359 |
-
{
|
360 |
-
"cell_type": "code",
|
361 |
-
"execution_count": null,
|
362 |
-
"id": "b6e6034e-5962-4504-a8a3-9f144d92d37a",
|
363 |
-
"metadata": {},
|
364 |
-
"outputs": [],
|
365 |
-
"source": []
|
366 |
-
},
|
367 |
-
{
|
368 |
-
"cell_type": "code",
|
369 |
-
"execution_count": null,
|
370 |
-
"id": "ba10bc4c-5fb3-4da7-a7d0-8b51205262de",
|
371 |
-
"metadata": {},
|
372 |
-
"outputs": [],
|
373 |
-
"source": []
|
374 |
-
}
|
375 |
-
],
|
376 |
-
"metadata": {
|
377 |
-
"kernelspec": {
|
378 |
-
"display_name": "Python 3 (ipykernel)",
|
379 |
-
"language": "python",
|
380 |
-
"name": "python3"
|
381 |
-
},
|
382 |
-
"language_info": {
|
383 |
-
"codemirror_mode": {
|
384 |
-
"name": "ipython",
|
385 |
-
"version": 3
|
386 |
-
},
|
387 |
-
"file_extension": ".py",
|
388 |
-
"mimetype": "text/x-python",
|
389 |
-
"name": "python",
|
390 |
-
"nbconvert_exporter": "python",
|
391 |
-
"pygments_lexer": "ipython3",
|
392 |
-
"version": "3.7.10"
|
393 |
-
}
|
394 |
-
},
|
395 |
-
"nbformat": 4,
|
396 |
-
"nbformat_minor": 5
|
397 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
openslr_SLR66_te_test_eval_results.txt
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
WER: 0.24695121951219512
|
2 |
-
CER: 0.04861934182322532
|
|
|
|
|
|