import torch from datasets import load_dataset import evaluate from transformers import EfficientNetImageProcessor, EfficientNetForImageClassification, TrainingArguments, Trainer import numpy as np print("Cuda availability:", torch.cuda.is_available()) cuda = torch.device('cuda') print("cuda: ", torch.cuda.get_device_name(device=cuda)) dataset = load_dataset("chriamue/bird-species-dataset") model_name = "google/efficientnet-b2" finetuned_model_name = "chriamue/bird-species-classifier" ##### labels = dataset["train"].features["label"].names label2id, id2label = dict(), dict() for i, label in enumerate(labels): label2id[label] = str(i) id2label[str(i)] = label preprocessor = EfficientNetImageProcessor.from_pretrained(model_name) model = EfficientNetForImageClassification.from_pretrained(model_name, num_labels=len( labels), id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True) training_args = TrainingArguments( finetuned_model_name, remove_unused_columns=False, evaluation_strategy="epoch", save_strategy="epoch", learning_rate=5e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=6, weight_decay=0.01, load_best_model_at_end=True, metric_for_best_model="accuracy" ) metric = evaluate.load("accuracy") def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return metric.compute(predictions=predictions, references=labels) def transforms(examples): pixel_values = [preprocessor(image, return_tensors="pt").pixel_values.squeeze( 0) for image in examples["image"]] examples["pixel_values"] = pixel_values return examples image = dataset["train"][0]["image"] # dataset["train"] = dataset["train"].shuffle(seed=42).select(range(1500)) # dataset["validation"] = dataset["validation"].select(range(100)) # dataset["test"] = dataset["test"].select(range(100)) dataset = dataset.map(transforms, remove_columns=["image"], batched=True) trainer = Trainer( model=model, args=training_args, train_dataset=dataset["train"], eval_dataset=dataset["validation"], compute_metrics=compute_metrics, ) train_results = trainer.train(resume_from_checkpoint=False) print(trainer.evaluate()) trainer.save_model() trainer.log_metrics("train", train_results.metrics) trainer.save_metrics("train", train_results.metrics) trainer.save_state() trainer.save_model(".") dummy_input = torch.randn(1, 3, 224, 224) model = model.to('cpu') output_onnx_path = 'model.onnx' torch.onnx.export(model, dummy_input, output_onnx_path, opset_version=13) inputs = preprocessor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_label = logits.argmax(-1).item() print(labels[predicted_label])