chribark commited on
Commit
f5b8bf8
·
verified ·
1 Parent(s): eb48c5f

End of training

Browse files
README.md CHANGED
@@ -1,199 +1,360 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: other
3
+ base_model: nvidia/segformer-b3-finetuned-ade-512-512
4
+ tags:
5
+ - vision
6
+ - image-segmentation
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: segformer-b3-finetuned-UAVid
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # segformer-b3-finetuned-UAVid
17
+
18
+ This model is a fine-tuned version of [nvidia/segformer-b3-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b3-finetuned-ade-512-512) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - eval_loss: 0.2144
21
+ - eval_mean_iou: 0.6573
22
+ - eval_mean_accuracy: 0.7194
23
+ - eval_overall_accuracy: 0.9282
24
+ - eval_accuracy_wall: nan
25
+ - eval_accuracy_building: 0.9548
26
+ - eval_accuracy_sky: nan
27
+ - eval_accuracy_floor: nan
28
+ - eval_accuracy_tree: 0.9445
29
+ - eval_accuracy_ceiling: nan
30
+ - eval_accuracy_road: 0.8933
31
+ - eval_accuracy_bed : nan
32
+ - eval_accuracy_windowpane: nan
33
+ - eval_accuracy_grass: nan
34
+ - eval_accuracy_cabinet: nan
35
+ - eval_accuracy_sidewalk: nan
36
+ - eval_accuracy_person: 0.0612
37
+ - eval_accuracy_earth: nan
38
+ - eval_accuracy_door: nan
39
+ - eval_accuracy_table: nan
40
+ - eval_accuracy_mountain: nan
41
+ - eval_accuracy_plant: nan
42
+ - eval_accuracy_curtain: nan
43
+ - eval_accuracy_chair: nan
44
+ - eval_accuracy_car: 0.7429
45
+ - eval_accuracy_water: nan
46
+ - eval_accuracy_painting: nan
47
+ - eval_accuracy_sofa: nan
48
+ - eval_accuracy_shelf: nan
49
+ - eval_accuracy_house: nan
50
+ - eval_accuracy_sea: nan
51
+ - eval_accuracy_mirror: nan
52
+ - eval_accuracy_rug: nan
53
+ - eval_accuracy_field: nan
54
+ - eval_accuracy_armchair: nan
55
+ - eval_accuracy_seat: nan
56
+ - eval_accuracy_fence: nan
57
+ - eval_accuracy_desk: nan
58
+ - eval_accuracy_rock: nan
59
+ - eval_accuracy_wardrobe: nan
60
+ - eval_accuracy_lamp: nan
61
+ - eval_accuracy_bathtub: nan
62
+ - eval_accuracy_railing: nan
63
+ - eval_accuracy_cushion: nan
64
+ - eval_accuracy_base: nan
65
+ - eval_accuracy_box: nan
66
+ - eval_accuracy_column: nan
67
+ - eval_accuracy_signboard: nan
68
+ - eval_accuracy_chest of drawers: nan
69
+ - eval_accuracy_counter: nan
70
+ - eval_accuracy_sand: nan
71
+ - eval_accuracy_sink: nan
72
+ - eval_accuracy_skyscraper: nan
73
+ - eval_accuracy_fireplace: nan
74
+ - eval_accuracy_refrigerator: nan
75
+ - eval_accuracy_grandstand: nan
76
+ - eval_accuracy_path: nan
77
+ - eval_accuracy_stairs: nan
78
+ - eval_accuracy_runway: nan
79
+ - eval_accuracy_case: nan
80
+ - eval_accuracy_pool table: nan
81
+ - eval_accuracy_pillow: nan
82
+ - eval_accuracy_screen door: nan
83
+ - eval_accuracy_stairway: nan
84
+ - eval_accuracy_river: nan
85
+ - eval_accuracy_bridge: nan
86
+ - eval_accuracy_bookcase: nan
87
+ - eval_accuracy_blind: nan
88
+ - eval_accuracy_coffee table: nan
89
+ - eval_accuracy_toilet: nan
90
+ - eval_accuracy_flower: nan
91
+ - eval_accuracy_book: nan
92
+ - eval_accuracy_hill: nan
93
+ - eval_accuracy_bench: nan
94
+ - eval_accuracy_countertop: nan
95
+ - eval_accuracy_stove: nan
96
+ - eval_accuracy_palm: nan
97
+ - eval_accuracy_kitchen island: nan
98
+ - eval_accuracy_computer: nan
99
+ - eval_accuracy_swivel chair: nan
100
+ - eval_accuracy_boat: nan
101
+ - eval_accuracy_bar: nan
102
+ - eval_accuracy_arcade machine: nan
103
+ - eval_accuracy_hovel: nan
104
+ - eval_accuracy_bus: nan
105
+ - eval_accuracy_towel: nan
106
+ - eval_accuracy_light: nan
107
+ - eval_accuracy_truck: nan
108
+ - eval_accuracy_tower: nan
109
+ - eval_accuracy_chandelier: nan
110
+ - eval_accuracy_awning: nan
111
+ - eval_accuracy_streetlight: nan
112
+ - eval_accuracy_booth: nan
113
+ - eval_accuracy_television receiver: nan
114
+ - eval_accuracy_airplane: nan
115
+ - eval_accuracy_dirt track: nan
116
+ - eval_accuracy_apparel: nan
117
+ - eval_accuracy_pole: nan
118
+ - eval_accuracy_land: nan
119
+ - eval_accuracy_bannister: nan
120
+ - eval_accuracy_escalator: nan
121
+ - eval_accuracy_ottoman: nan
122
+ - eval_accuracy_bottle: nan
123
+ - eval_accuracy_buffet: nan
124
+ - eval_accuracy_poster: nan
125
+ - eval_accuracy_stage: nan
126
+ - eval_accuracy_van: nan
127
+ - eval_accuracy_ship: nan
128
+ - eval_accuracy_fountain: nan
129
+ - eval_accuracy_conveyer belt: nan
130
+ - eval_accuracy_canopy: nan
131
+ - eval_accuracy_washer: nan
132
+ - eval_accuracy_plaything: nan
133
+ - eval_accuracy_swimming pool: nan
134
+ - eval_accuracy_stool: nan
135
+ - eval_accuracy_barrel: nan
136
+ - eval_accuracy_basket: nan
137
+ - eval_accuracy_waterfall: nan
138
+ - eval_accuracy_tent: nan
139
+ - eval_accuracy_bag: nan
140
+ - eval_accuracy_minibike: nan
141
+ - eval_accuracy_cradle: nan
142
+ - eval_accuracy_oven: nan
143
+ - eval_accuracy_ball: nan
144
+ - eval_accuracy_food: nan
145
+ - eval_accuracy_step: nan
146
+ - eval_accuracy_tank: nan
147
+ - eval_accuracy_trade name: nan
148
+ - eval_accuracy_microwave: nan
149
+ - eval_accuracy_pot: nan
150
+ - eval_accuracy_animal: nan
151
+ - eval_accuracy_bicycle: nan
152
+ - eval_accuracy_lake: nan
153
+ - eval_accuracy_dishwasher: nan
154
+ - eval_accuracy_screen: nan
155
+ - eval_accuracy_blanket: nan
156
+ - eval_accuracy_sculpture: nan
157
+ - eval_accuracy_hood: nan
158
+ - eval_accuracy_sconce: nan
159
+ - eval_accuracy_vase: nan
160
+ - eval_accuracy_traffic light: nan
161
+ - eval_accuracy_tray: nan
162
+ - eval_accuracy_ashcan: nan
163
+ - eval_accuracy_fan: nan
164
+ - eval_accuracy_pier: nan
165
+ - eval_accuracy_crt screen: nan
166
+ - eval_accuracy_plate: nan
167
+ - eval_accuracy_monitor: nan
168
+ - eval_accuracy_bulletin board: nan
169
+ - eval_accuracy_shower: nan
170
+ - eval_accuracy_radiator: nan
171
+ - eval_accuracy_glass: nan
172
+ - eval_accuracy_clock: nan
173
+ - eval_accuracy_flag: nan
174
+ - eval_iou_wall: nan
175
+ - eval_iou_building: 0.9011
176
+ - eval_iou_sky: nan
177
+ - eval_iou_floor: nan
178
+ - eval_iou_tree: 0.8984
179
+ - eval_iou_ceiling: nan
180
+ - eval_iou_road: 0.8076
181
+ - eval_iou_bed : nan
182
+ - eval_iou_windowpane: nan
183
+ - eval_iou_grass: nan
184
+ - eval_iou_cabinet: nan
185
+ - eval_iou_sidewalk: nan
186
+ - eval_iou_person: 0.0573
187
+ - eval_iou_earth: nan
188
+ - eval_iou_door: nan
189
+ - eval_iou_table: nan
190
+ - eval_iou_mountain: nan
191
+ - eval_iou_plant: nan
192
+ - eval_iou_curtain: nan
193
+ - eval_iou_chair: nan
194
+ - eval_iou_car: 0.6221
195
+ - eval_iou_water: nan
196
+ - eval_iou_painting: nan
197
+ - eval_iou_sofa: nan
198
+ - eval_iou_shelf: nan
199
+ - eval_iou_house: nan
200
+ - eval_iou_sea: nan
201
+ - eval_iou_mirror: nan
202
+ - eval_iou_rug: nan
203
+ - eval_iou_field: nan
204
+ - eval_iou_armchair: nan
205
+ - eval_iou_seat: nan
206
+ - eval_iou_fence: nan
207
+ - eval_iou_desk: nan
208
+ - eval_iou_rock: nan
209
+ - eval_iou_wardrobe: nan
210
+ - eval_iou_lamp: nan
211
+ - eval_iou_bathtub: nan
212
+ - eval_iou_railing: nan
213
+ - eval_iou_cushion: nan
214
+ - eval_iou_base: nan
215
+ - eval_iou_box: nan
216
+ - eval_iou_column: nan
217
+ - eval_iou_signboard: nan
218
+ - eval_iou_chest of drawers: nan
219
+ - eval_iou_counter: nan
220
+ - eval_iou_sand: nan
221
+ - eval_iou_sink: nan
222
+ - eval_iou_skyscraper: nan
223
+ - eval_iou_fireplace: nan
224
+ - eval_iou_refrigerator: nan
225
+ - eval_iou_grandstand: nan
226
+ - eval_iou_path: nan
227
+ - eval_iou_stairs: nan
228
+ - eval_iou_runway: nan
229
+ - eval_iou_case: nan
230
+ - eval_iou_pool table: nan
231
+ - eval_iou_pillow: nan
232
+ - eval_iou_screen door: nan
233
+ - eval_iou_stairway: nan
234
+ - eval_iou_river: nan
235
+ - eval_iou_bridge: nan
236
+ - eval_iou_bookcase: nan
237
+ - eval_iou_blind: nan
238
+ - eval_iou_coffee table: nan
239
+ - eval_iou_toilet: nan
240
+ - eval_iou_flower: nan
241
+ - eval_iou_book: nan
242
+ - eval_iou_hill: nan
243
+ - eval_iou_bench: nan
244
+ - eval_iou_countertop: nan
245
+ - eval_iou_stove: nan
246
+ - eval_iou_palm: nan
247
+ - eval_iou_kitchen island: nan
248
+ - eval_iou_computer: nan
249
+ - eval_iou_swivel chair: nan
250
+ - eval_iou_boat: nan
251
+ - eval_iou_bar: nan
252
+ - eval_iou_arcade machine: nan
253
+ - eval_iou_hovel: nan
254
+ - eval_iou_bus: nan
255
+ - eval_iou_towel: nan
256
+ - eval_iou_light: nan
257
+ - eval_iou_truck: nan
258
+ - eval_iou_tower: nan
259
+ - eval_iou_chandelier: nan
260
+ - eval_iou_awning: nan
261
+ - eval_iou_streetlight: nan
262
+ - eval_iou_booth: nan
263
+ - eval_iou_television receiver: nan
264
+ - eval_iou_airplane: nan
265
+ - eval_iou_dirt track: nan
266
+ - eval_iou_apparel: nan
267
+ - eval_iou_pole: nan
268
+ - eval_iou_land: nan
269
+ - eval_iou_bannister: nan
270
+ - eval_iou_escalator: nan
271
+ - eval_iou_ottoman: nan
272
+ - eval_iou_bottle: nan
273
+ - eval_iou_buffet: nan
274
+ - eval_iou_poster: nan
275
+ - eval_iou_stage: nan
276
+ - eval_iou_van: nan
277
+ - eval_iou_ship: nan
278
+ - eval_iou_fountain: nan
279
+ - eval_iou_conveyer belt: nan
280
+ - eval_iou_canopy: nan
281
+ - eval_iou_washer: nan
282
+ - eval_iou_plaything: nan
283
+ - eval_iou_swimming pool: nan
284
+ - eval_iou_stool: nan
285
+ - eval_iou_barrel: nan
286
+ - eval_iou_basket: nan
287
+ - eval_iou_waterfall: nan
288
+ - eval_iou_tent: nan
289
+ - eval_iou_bag: nan
290
+ - eval_iou_minibike: nan
291
+ - eval_iou_cradle: nan
292
+ - eval_iou_oven: nan
293
+ - eval_iou_ball: nan
294
+ - eval_iou_food: nan
295
+ - eval_iou_step: nan
296
+ - eval_iou_tank: nan
297
+ - eval_iou_trade name: nan
298
+ - eval_iou_microwave: nan
299
+ - eval_iou_pot: nan
300
+ - eval_iou_animal: nan
301
+ - eval_iou_bicycle: nan
302
+ - eval_iou_lake: nan
303
+ - eval_iou_dishwasher: nan
304
+ - eval_iou_screen: nan
305
+ - eval_iou_blanket: nan
306
+ - eval_iou_sculpture: nan
307
+ - eval_iou_hood: nan
308
+ - eval_iou_sconce: nan
309
+ - eval_iou_vase: nan
310
+ - eval_iou_traffic light: nan
311
+ - eval_iou_tray: nan
312
+ - eval_iou_ashcan: nan
313
+ - eval_iou_fan: nan
314
+ - eval_iou_pier: nan
315
+ - eval_iou_crt screen: nan
316
+ - eval_iou_plate: nan
317
+ - eval_iou_monitor: nan
318
+ - eval_iou_bulletin board: nan
319
+ - eval_iou_shower: nan
320
+ - eval_iou_radiator: nan
321
+ - eval_iou_glass: nan
322
+ - eval_iou_clock: nan
323
+ - eval_iou_flag: nan
324
+ - eval_runtime: 35.0873
325
+ - eval_samples_per_second: 1.14
326
+ - eval_steps_per_second: 0.57
327
+ - epoch: 20.25
328
+ - step: 1620
329
+
330
+ ## Model description
331
+
332
+ More information needed
333
+
334
+ ## Intended uses & limitations
335
+
336
+ More information needed
337
+
338
+ ## Training and evaluation data
339
+
340
+ More information needed
341
+
342
+ ## Training procedure
343
+
344
+ ### Training hyperparameters
345
+
346
+ The following hyperparameters were used during training:
347
+ - learning_rate: 6e-05
348
+ - train_batch_size: 2
349
+ - eval_batch_size: 2
350
+ - seed: 42
351
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
352
+ - lr_scheduler_type: linear
353
+ - num_epochs: 50
354
+
355
+ ### Framework versions
356
+
357
+ - Transformers 4.40.1
358
+ - Pytorch 2.2.1+cu121
359
+ - Datasets 2.19.0
360
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/segformer-b3-finetuned-ade-512-512",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 768,
9
+ "depths": [
10
+ 3,
11
+ 4,
12
+ 18,
13
+ 3
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "wall",
32
+ "1": "building",
33
+ "2": "sky",
34
+ "3": "floor",
35
+ "4": "tree",
36
+ "5": "ceiling",
37
+ "6": "road",
38
+ "7": "bed ",
39
+ "8": "windowpane",
40
+ "9": "grass",
41
+ "10": "cabinet",
42
+ "11": "sidewalk",
43
+ "12": "person",
44
+ "13": "earth",
45
+ "14": "door",
46
+ "15": "table",
47
+ "16": "mountain",
48
+ "17": "plant",
49
+ "18": "curtain",
50
+ "19": "chair",
51
+ "20": "car",
52
+ "21": "water",
53
+ "22": "painting",
54
+ "23": "sofa",
55
+ "24": "shelf",
56
+ "25": "house",
57
+ "26": "sea",
58
+ "27": "mirror",
59
+ "28": "rug",
60
+ "29": "field",
61
+ "30": "armchair",
62
+ "31": "seat",
63
+ "32": "fence",
64
+ "33": "desk",
65
+ "34": "rock",
66
+ "35": "wardrobe",
67
+ "36": "lamp",
68
+ "37": "bathtub",
69
+ "38": "railing",
70
+ "39": "cushion",
71
+ "40": "base",
72
+ "41": "box",
73
+ "42": "column",
74
+ "43": "signboard",
75
+ "44": "chest of drawers",
76
+ "45": "counter",
77
+ "46": "sand",
78
+ "47": "sink",
79
+ "48": "skyscraper",
80
+ "49": "fireplace",
81
+ "50": "refrigerator",
82
+ "51": "grandstand",
83
+ "52": "path",
84
+ "53": "stairs",
85
+ "54": "runway",
86
+ "55": "case",
87
+ "56": "pool table",
88
+ "57": "pillow",
89
+ "58": "screen door",
90
+ "59": "stairway",
91
+ "60": "river",
92
+ "61": "bridge",
93
+ "62": "bookcase",
94
+ "63": "blind",
95
+ "64": "coffee table",
96
+ "65": "toilet",
97
+ "66": "flower",
98
+ "67": "book",
99
+ "68": "hill",
100
+ "69": "bench",
101
+ "70": "countertop",
102
+ "71": "stove",
103
+ "72": "palm",
104
+ "73": "kitchen island",
105
+ "74": "computer",
106
+ "75": "swivel chair",
107
+ "76": "boat",
108
+ "77": "bar",
109
+ "78": "arcade machine",
110
+ "79": "hovel",
111
+ "80": "bus",
112
+ "81": "towel",
113
+ "82": "light",
114
+ "83": "truck",
115
+ "84": "tower",
116
+ "85": "chandelier",
117
+ "86": "awning",
118
+ "87": "streetlight",
119
+ "88": "booth",
120
+ "89": "television receiver",
121
+ "90": "airplane",
122
+ "91": "dirt track",
123
+ "92": "apparel",
124
+ "93": "pole",
125
+ "94": "land",
126
+ "95": "bannister",
127
+ "96": "escalator",
128
+ "97": "ottoman",
129
+ "98": "bottle",
130
+ "99": "buffet",
131
+ "100": "poster",
132
+ "101": "stage",
133
+ "102": "van",
134
+ "103": "ship",
135
+ "104": "fountain",
136
+ "105": "conveyer belt",
137
+ "106": "canopy",
138
+ "107": "washer",
139
+ "108": "plaything",
140
+ "109": "swimming pool",
141
+ "110": "stool",
142
+ "111": "barrel",
143
+ "112": "basket",
144
+ "113": "waterfall",
145
+ "114": "tent",
146
+ "115": "bag",
147
+ "116": "minibike",
148
+ "117": "cradle",
149
+ "118": "oven",
150
+ "119": "ball",
151
+ "120": "food",
152
+ "121": "step",
153
+ "122": "tank",
154
+ "123": "trade name",
155
+ "124": "microwave",
156
+ "125": "pot",
157
+ "126": "animal",
158
+ "127": "bicycle",
159
+ "128": "lake",
160
+ "129": "dishwasher",
161
+ "130": "screen",
162
+ "131": "blanket",
163
+ "132": "sculpture",
164
+ "133": "hood",
165
+ "134": "sconce",
166
+ "135": "vase",
167
+ "136": "traffic light",
168
+ "137": "tray",
169
+ "138": "ashcan",
170
+ "139": "fan",
171
+ "140": "pier",
172
+ "141": "crt screen",
173
+ "142": "plate",
174
+ "143": "monitor",
175
+ "144": "bulletin board",
176
+ "145": "shower",
177
+ "146": "radiator",
178
+ "147": "glass",
179
+ "148": "clock",
180
+ "149": "flag"
181
+ },
182
+ "image_size": 224,
183
+ "initializer_range": 0.02,
184
+ "label2id": {
185
+ "airplane": 90,
186
+ "animal": 126,
187
+ "apparel": 92,
188
+ "arcade machine": 78,
189
+ "armchair": 30,
190
+ "ashcan": 138,
191
+ "awning": 86,
192
+ "bag": 115,
193
+ "ball": 119,
194
+ "bannister": 95,
195
+ "bar": 77,
196
+ "barrel": 111,
197
+ "base": 40,
198
+ "basket": 112,
199
+ "bathtub": 37,
200
+ "bed ": 7,
201
+ "bench": 69,
202
+ "bicycle": 127,
203
+ "blanket": 131,
204
+ "blind": 63,
205
+ "boat": 76,
206
+ "book": 67,
207
+ "bookcase": 62,
208
+ "booth": 88,
209
+ "bottle": 98,
210
+ "box": 41,
211
+ "bridge": 61,
212
+ "buffet": 99,
213
+ "building": 1,
214
+ "bulletin board": 144,
215
+ "bus": 80,
216
+ "cabinet": 10,
217
+ "canopy": 106,
218
+ "car": 20,
219
+ "case": 55,
220
+ "ceiling": 5,
221
+ "chair": 19,
222
+ "chandelier": 85,
223
+ "chest of drawers": 44,
224
+ "clock": 148,
225
+ "coffee table": 64,
226
+ "column": 42,
227
+ "computer": 74,
228
+ "conveyer belt": 105,
229
+ "counter": 45,
230
+ "countertop": 70,
231
+ "cradle": 117,
232
+ "crt screen": 141,
233
+ "curtain": 18,
234
+ "cushion": 39,
235
+ "desk": 33,
236
+ "dirt track": 91,
237
+ "dishwasher": 129,
238
+ "door": 14,
239
+ "earth": 13,
240
+ "escalator": 96,
241
+ "fan": 139,
242
+ "fence": 32,
243
+ "field": 29,
244
+ "fireplace": 49,
245
+ "flag": 149,
246
+ "floor": 3,
247
+ "flower": 66,
248
+ "food": 120,
249
+ "fountain": 104,
250
+ "glass": 147,
251
+ "grandstand": 51,
252
+ "grass": 9,
253
+ "hill": 68,
254
+ "hood": 133,
255
+ "house": 25,
256
+ "hovel": 79,
257
+ "kitchen island": 73,
258
+ "lake": 128,
259
+ "lamp": 36,
260
+ "land": 94,
261
+ "light": 82,
262
+ "microwave": 124,
263
+ "minibike": 116,
264
+ "mirror": 27,
265
+ "monitor": 143,
266
+ "mountain": 16,
267
+ "ottoman": 97,
268
+ "oven": 118,
269
+ "painting": 22,
270
+ "palm": 72,
271
+ "path": 52,
272
+ "person": 12,
273
+ "pier": 140,
274
+ "pillow": 57,
275
+ "plant": 17,
276
+ "plate": 142,
277
+ "plaything": 108,
278
+ "pole": 93,
279
+ "pool table": 56,
280
+ "poster": 100,
281
+ "pot": 125,
282
+ "radiator": 146,
283
+ "railing": 38,
284
+ "refrigerator": 50,
285
+ "river": 60,
286
+ "road": 6,
287
+ "rock": 34,
288
+ "rug": 28,
289
+ "runway": 54,
290
+ "sand": 46,
291
+ "sconce": 134,
292
+ "screen": 130,
293
+ "screen door": 58,
294
+ "sculpture": 132,
295
+ "sea": 26,
296
+ "seat": 31,
297
+ "shelf": 24,
298
+ "ship": 103,
299
+ "shower": 145,
300
+ "sidewalk": 11,
301
+ "signboard": 43,
302
+ "sink": 47,
303
+ "sky": 2,
304
+ "skyscraper": 48,
305
+ "sofa": 23,
306
+ "stage": 101,
307
+ "stairs": 53,
308
+ "stairway": 59,
309
+ "step": 121,
310
+ "stool": 110,
311
+ "stove": 71,
312
+ "streetlight": 87,
313
+ "swimming pool": 109,
314
+ "swivel chair": 75,
315
+ "table": 15,
316
+ "tank": 122,
317
+ "television receiver": 89,
318
+ "tent": 114,
319
+ "toilet": 65,
320
+ "towel": 81,
321
+ "tower": 84,
322
+ "trade name": 123,
323
+ "traffic light": 136,
324
+ "tray": 137,
325
+ "tree": 4,
326
+ "truck": 83,
327
+ "van": 102,
328
+ "vase": 135,
329
+ "wall": 0,
330
+ "wardrobe": 35,
331
+ "washer": 107,
332
+ "water": 21,
333
+ "waterfall": 113,
334
+ "windowpane": 8
335
+ },
336
+ "layer_norm_eps": 1e-06,
337
+ "mlp_ratios": [
338
+ 4,
339
+ 4,
340
+ 4,
341
+ 4
342
+ ],
343
+ "model_type": "segformer",
344
+ "num_attention_heads": [
345
+ 1,
346
+ 2,
347
+ 5,
348
+ 8
349
+ ],
350
+ "num_channels": 3,
351
+ "num_encoder_blocks": 4,
352
+ "patch_sizes": [
353
+ 7,
354
+ 3,
355
+ 3,
356
+ 3
357
+ ],
358
+ "reshape_last_stage": true,
359
+ "semantic_loss_ignore_index": 255,
360
+ "sr_ratios": [
361
+ 8,
362
+ 4,
363
+ 2,
364
+ 1
365
+ ],
366
+ "strides": [
367
+ 4,
368
+ 2,
369
+ 2,
370
+ 2
371
+ ],
372
+ "torch_dtype": "float32",
373
+ "transformers_version": "4.40.1"
374
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7aa333b36104979cc44a0448f98a74d9896af757651d2f0bd8d2f0fa3b24fc38
3
+ size 189435040
runs/May03_08-15-19_94ad4646a348/events.out.tfevents.1714724328.94ad4646a348.170.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e5138803bf3717ccb8e361e733c2c308c40b64c7888d672dedbfa230bf8a341
3
+ size 1774883
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e35a6bafb6e15dde5d3f7071a53cf059267aa409e7356220bd47692daaecccdf
3
+ size 5048