Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.34 +/- 0.18
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88b44eb7bb3bfb84eca52600c676d721b9636b116b122b0d71e6120b8984cfe3
|
3 |
+
size 108212
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fee9d381990>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fee9d388100>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 377300,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1683322493957693881,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL2Nhcmxvcy9lbnZzL3JsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxTL2hvbWUvY2FybG9zL2VudnMvcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkTSJvj8ZvD8jjS6/fGg2PnezRD4rL5I+ZjRyv67EdT9Nuhk/jDG/v/pXtz45Il69lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAxmFvkGFxz8Yaj6/1s9nPn3OQT4nO4s+B6l8v8LVhj9chxE/XejOv7Y2wj6yJ5S9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACRNIm+Pxm8PyONLr9sAvS8Yq+RPSuSmr18aDY+d7NEPisvkj7euXe5JnS7PAGcub1mNHK/rsR1P026GT8FEIm9Xm5BPGzIkDyMMb+/+le3PjkiXr3MWIG8UxvfvKH4hz2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[-0.26797917 1.4695204 -0.6818411 ]\n [ 0.17813295 0.19209085 0.2855161 ]\n [-0.94611204 0.96003234 0.600499 ]\n [-1.4936996 0.35809308 -0.05423186]]",
|
38 |
+
"desired_goal": "[[-0.25995645 1.5587541 -0.74380636]\n [ 0.22637877 0.18926425 0.27193567]\n [-0.98695415 1.0533984 0.56847167]\n [-1.6164662 0.37932366 -0.07234134]]",
|
39 |
+
"observation": "[[-2.6797917e-01 1.4695204e+00 -6.8184108e-01 -2.9786311e-02\n 7.1135297e-02 -7.5474106e-02]\n [ 1.7813295e-01 1.9209085e-01 2.8551611e-01 -2.3624997e-04\n 2.2882532e-02 -9.0629585e-02]\n [-9.4611204e-01 9.6003234e-01 6.0049897e-01 -6.6925086e-02\n 1.1806099e-02 1.7673694e-02]\n [-1.4936996e+00 3.5809308e-01 -5.4231856e-02 -1.5789412e-02\n -2.7234709e-02 6.6392191e-02]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGWnbPR+PFj4BTv09QcD1PHN93rzxX2E+iDdevcm76z0755I+xjyJvUBLXjyiHh4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.10713405 0.14703034 0.12368394]\n [ 0.0299989 -0.02715943 0.22009255]\n [-0.05425218 0.11510427 0.2869204 ]\n [-0.06701045 0.01356775 0.15441373]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.6227,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQtDRqpZ07b+UhpRSlIwBbJRLMowBdJRHQIhQCUcGTs91fZQoaAZoCWgPQwgjvhOzXozjv5SGlFKUaBVLMmgWR0CIT1YV6/qPdX2UKGgGaAloD0MIZaiKqfST7b+UhpRSlGgVSzJoFkdAiELPmPo3aXV9lChoBmgJaA9DCOfib3uCxNG/lIaUUpRoFUsyaBZHQIc9AJVsDW91fZQoaAZoCWgPQwjCUfLqHIPnv5SGlFKUaBVLMmgWR0CIU1aB7NSqdX2UKGgGaAloD0MIQpjbvdwn27+UhpRSlGgVSzJoFkdAiFKjHGS6lXV9lChoBmgJaA9DCNGWcymuKt+/lIaUUpRoFUsyaBZHQIhGHCuU2UB1fZQoaAZoCWgPQwhdUyCzs2jqv5SGlFKUaBVLMmgWR0CHQE0OVgQZdX2UKGgGaAloD0MIv/T256Ih0L+UhpRSlGgVSzJoFkdAiFaVxKg7HXV9lChoBmgJaA9DCMozL4fdd9i/lIaUUpRoFUsyaBZHQIhV4oZydWh1fZQoaAZoCWgPQwh1yM1wAz7iv5SGlFKUaBVLMmgWR0CISVvFWGRFdX2UKGgGaAloD0MIDOiFOxfG5L+UhpRSlGgVSzJoFkdAh0OMz/IbO3V9lChoBmgJaA9DCAXCTrFqENi/lIaUUpRoFUsyaBZHQIhZ7VOKwZB1fZQoaAZoCWgPQwgRVI1eDVDwv5SGlFKUaBVLMmgWR0CIWToNd7fIdX2UKGgGaAloD0MIP/1nzY8/5L+UhpRSlGgVSzJoFkdAiEyzasZHeHV9lChoBmgJaA9DCMsPXOUJhNW/lIaUUpRoFUsyaBZHQIdG5HI6r/91fZQoaAZoCWgPQwj4p1SJsrfZv5SGlFKUaBVLMmgWR0CIXSutfXwtdX2UKGgGaAloD0MIIEPHDipx4r+UhpRSlGgVSzJoFkdAiFx4u9OARXV9lChoBmgJaA9DCLHfE+tUeeS/lIaUUpRoFUsyaBZHQIhP8iB5HEx1fZQoaAZoCWgPQwif6SXGMn3kv5SGlFKUaBVLMmgWR0CHSiMsH0K7dX2UKGgGaAloD0MIKAzKNJrc5r+UhpRSlGgVSzJoFkdAiGB+cYqG13V9lChoBmgJaA9DCBh8mpMXmeC/lIaUUpRoFUsyaBZHQIhfy0jTrmh1fZQoaAZoCWgPQwjiqx3FOWrov5SGlFKUaBVLMmgWR0CIU0RfWtlqdX2UKGgGaAloD0MIwk8cQL/v3r+UhpRSlGgVSzJoFkdAh011awD/2nV9lChoBmgJaA9DCLjKEwg7xea/lIaUUpRoFUsyaBZHQIhjyTMaCMB1fZQoaAZoCWgPQwg+P4wQHm3fv5SGlFKUaBVLMmgWR0CIYxX2/SH/dX2UKGgGaAloD0MIdytLdJbZ47+UhpRSlGgVSzJoFkdAiFaPKEFnqXV9lChoBmgJaA9DCDtVvmckQtu/lIaUUpRoFUsyaBZHQIdQwDV6NVB1fZQoaAZoCWgPQwhLP+Hs1rLgv5SGlFKUaBVLMmgWR0CIZv1OCXhPdX2UKGgGaAloD0MIB0MdVrjl5L+UhpRSlGgVSzJoFkdAiGZJz1bqyHV9lChoBmgJaA9DCCCaeXJNgeS/lIaUUpRoFUsyaBZHQIhZwt8NQTF1fZQoaAZoCWgPQwgvpwTEJFzev5SGlFKUaBVLMmgWR0CHU/PWQOnVdX2UKGgGaAloD0MIVyHlJ9W+4r+UhpRSlGgVSzJoFkdAiGpKmTC+DnV9lChoBmgJaA9DCPG8VGzM69O/lIaUUpRoFUsyaBZHQIhpl3W4EwF1fZQoaAZoCWgPQwiPNSOD3EXnv5SGlFKUaBVLMmgWR0CIXRBJI1+BdX2UKGgGaAloD0MIj1a1pKMc1r+UhpRSlGgVSzJoFkdAh1dBa1TisHV9lChoBmgJaA9DCDmaIyu/DOG/lIaUUpRoFUsyaBZHQIht3hGYrrh1fZQoaAZoCWgPQwgz3IDPDyPlv5SGlFKUaBVLMmgWR0CIbSytV7x/dX2UKGgGaAloD0MIyT7IsmDi3r+UhpRSlGgVSzJoFkdAiGCl5nlGPXV9lChoBmgJaA9DCE30+SgjLuW/lIaUUpRoFUsyaBZHQIda1vl2eQN1fZQoaAZoCWgPQwj/s+bHX1rUv5SGlFKUaBVLMmgWR0CIcTJ+2E00dX2UKGgGaAloD0MIeNSYEHNJ2L+UhpRSlGgVSzJoFkdAiHB/bj94vHV9lChoBmgJaA9DCNqNPuYDAtu/lIaUUpRoFUsyaBZHQIhj+Jxeb/h1fZQoaAZoCWgPQwh+AFKbODngv5SGlFKUaBVLMmgWR0CHXimx+rlvdX2UKGgGaAloD0MI9fOmIhXG3r+UhpRSlGgVSzJoFkdAiHR6l1r6+HV9lChoBmgJaA9DCNC1L6AX7tm/lIaUUpRoFUsyaBZHQIhzx2ll9Sd1fZQoaAZoCWgPQwg8F0Z6UbvTv5SGlFKUaBVLMmgWR0CIZ0CZnctYdX2UKGgGaAloD0MIehubHam+4L+UhpRSlGgVSzJoFkdAh2FxjBl+VnV9lChoBmgJaA9DCF9f61Ij9Nq/lIaUUpRoFUsyaBZHQIh3rxb0OEx1fZQoaAZoCWgPQwgIW+z2WWXgv5SGlFKUaBVLMmgWR0CIdvvJA+pwdX2UKGgGaAloD0MI74y2Kons0L+UhpRSlGgVSzJoFkdAiGp1B+nZTXV9lChoBmgJaA9DCPZefNEeL9u/lIaUUpRoFUsyaBZHQIdkpffGdZt1fZQoaAZoCWgPQwiaJ9cUyOzOv5SGlFKUaBVLMmgWR0CIevQTEit8dX2UKGgGaAloD0MI1nQ90XXh3b+UhpRSlGgVSzJoFkdAiHpBBRhttXV9lChoBmgJaA9DCHCWkuUklNq/lIaUUpRoFUsyaBZHQIhtuiJwbVB1fZQoaAZoCWgPQwjmWx/WG7Xdv5SGlFKUaBVLMmgWR0CHZ+rxRVIadX2UKGgGaAloD0MIyaze4XZo1b+UhpRSlGgVSzJoFkdAiH5GsFMZg3V9lChoBmgJaA9DCJWAmIQL+eC/lIaUUpRoFUsyaBZHQIh9k36yjYZ1fZQoaAZoCWgPQwgwaCEBo8vJv5SGlFKUaBVLMmgWR0CIcQzBRAKOdX2UKGgGaAloD0MI7zmwHCED3r+UhpRSlGgVSzJoFkdAh2s91U2kz3V9lChoBmgJaA9DCK+V0F0SZ9i/lIaUUpRoFUsyaBZHQIiBivPkaMt1fZQoaAZoCWgPQwg5m44Abpbgv5SGlFKUaBVLMmgWR0CIgNfJFLFodX2UKGgGaAloD0MIbCQJwhVQ0r+UhpRSlGgVSzJoFkdAiHRQ40dilXV9lChoBmgJaA9DCL5qZcIv9du/lIaUUpRoFUsyaBZHQIdugfU4JeF1fZQoaAZoCWgPQwj0jH3JxgPrv5SGlFKUaBVLMmgWR0CIhM3w1BMSdX2UKGgGaAloD0MIp0HRPIBF2r+UhpRSlGgVSzJoFkdAiIQas6q82HV9lChoBmgJaA9DCAjpKXKIOOC/lIaUUpRoFUsyaBZHQIh3k87p3X91fZQoaAZoCWgPQwixogbTMHzZv5SGlFKUaBVLMmgWR0CHccTQmeDndX2UKGgGaAloD0MIFsCUgQNa37+UhpRSlGgVSzJoFkdAiIhEfT1CgXV9lChoBmgJaA9DCOtVZHRAEuO/lIaUUpRoFUsyaBZHQIiHkTakAPx1fZQoaAZoCWgPQwh33PC76Rbhv5SGlFKUaBVLMmgWR0CIewpiqhlEdX2UKGgGaAloD0MIgZICC2DK0r+UhpRSlGgVSzJoFkdAh3U7coH9nHV9lChoBmgJaA9DCLQiaqLPR92/lIaUUpRoFUsyaBZHQIiLmE25xzd1fZQoaAZoCWgPQwiphCf0+pPRv5SGlFKUaBVLMmgWR0CIiuUdJaq0dX2UKGgGaAloD0MIKGVSQxsA4L+UhpRSlGgVSzJoFkdAiH5eYc/+sHV9lChoBmgJaA9DCCPb+X5qvNq/lIaUUpRoFUsyaBZHQId4j19ORDF1fZQoaAZoCWgPQwjjcVEtIorWv5SGlFKUaBVLMmgWR0CIju2vStvGdX2UKGgGaAloD0MIlpS7z/HR3r+UhpRSlGgVSzJoFkdAiI46bvw3HnV9lChoBmgJaA9DCItSQrCq3uO/lIaUUpRoFUsyaBZHQIiBs6zVtoB1fZQoaAZoCWgPQwiKk/sdigLZv5SGlFKUaBVLMmgWR0CHe+TEBKcvdX2UKGgGaAloD0MIMdC1L6AXzL+UhpRSlGgVSzJoFkdAiJI+3QUpNXV9lChoBmgJaA9DCH4a9+Y3TNa/lIaUUpRoFUsyaBZHQIiRi9Iwudx1fZQoaAZoCWgPQwgYlGk0uRjWv5SGlFKUaBVLMmgWR0CIhQTvAoG6dX2UKGgGaAloD0MIZ2X7kLdc1L+UhpRSlGgVSzJoFkdAh381/Ue+23V9lChoBmgJaA9DCEMfLGNDN9e/lIaUUpRoFUsyaBZHQIiVicd5prV1fZQoaAZoCWgPQwhzafzCK8njv5SGlFKUaBVLMmgWR0CIlNaDf3vhdX2UKGgGaAloD0MIaW/whclU3r+UhpRSlGgVSzJoFkdAiIhP1tfoinV9lChoBmgJaA9DCIhnCTICquC/lIaUUpRoFUsyaBZHQIeCgMlTm4l1fZQoaAZoCWgPQwgrwHebN07lv5SGlFKUaBVLMmgWR0CImNT5wfhddX2UKGgGaAloD0MIVRhbCHJQyr+UhpRSlGgVSzJoFkdAiJgh3Roh6nV9lChoBmgJaA9DCJgZNsr6zdG/lIaUUpRoFUsyaBZHQIiLmuxKQJZ1fZQoaAZoCWgPQwhd+wJ64U7lv5SGlFKUaBVLMmgWR0CHhcwYcebNdX2UKGgGaAloD0MIelT83xEV3b+UhpRSlGgVSzJoFkdAiJwnjIaLoHV9lChoBmgJaA9DCGlRn+QOG+a/lIaUUpRoFUsyaBZHQIibdEE1VHZ1fZQoaAZoCWgPQwjPMLWlDvLmv5SGlFKUaBVLMmgWR0CIju1aW5YpdX2UKGgGaAloD0MI+8xZn3JMzr+UhpRSlGgVSzJoFkdAh4keWnjyWnV9lChoBmgJaA9DCMg/M4gP7Oa/lIaUUpRoFUsyaBZHQIifkgMc6vJ1fZQoaAZoCWgPQwiuRQvQtprPv5SGlFKUaBVLMmgWR0CInt7wazeGdX2UKGgGaAloD0MITpfFxObj4r+UhpRSlGgVSzJoFkdAiJJYH5aePXV9lChoBmgJaA9DCIUmiSXlbua/lIaUUpRoFUsyaBZHQIeMiTB68g91ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 18865,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3648e8037484bc5d64bab82595c2049ef0f947e8624180ceb91bed55ea6b1cc6
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1e5be5dff55dbf23328d249603b1e248d90164d34882339656761ea2c798c3a
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023
|
2 |
+
- Python: 3.10.9
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.3
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fee9d381990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fee9d388100>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 377300, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683322493957693881, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL2Nhcmxvcy9lbnZzL3JsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxTL2hvbWUvY2FybG9zL2VudnMvcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkTSJvj8ZvD8jjS6/fGg2PnezRD4rL5I+ZjRyv67EdT9Nuhk/jDG/v/pXtz45Il69lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAxmFvkGFxz8Yaj6/1s9nPn3OQT4nO4s+B6l8v8LVhj9chxE/XejOv7Y2wj6yJ5S9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACRNIm+Pxm8PyONLr9sAvS8Yq+RPSuSmr18aDY+d7NEPisvkj7euXe5JnS7PAGcub1mNHK/rsR1P026GT8FEIm9Xm5BPGzIkDyMMb+/+le3PjkiXr3MWIG8UxvfvKH4hz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.26797917 1.4695204 -0.6818411 ]\n [ 0.17813295 0.19209085 0.2855161 ]\n [-0.94611204 0.96003234 0.600499 ]\n [-1.4936996 0.35809308 -0.05423186]]", "desired_goal": "[[-0.25995645 1.5587541 -0.74380636]\n [ 0.22637877 0.18926425 0.27193567]\n [-0.98695415 1.0533984 0.56847167]\n [-1.6164662 0.37932366 -0.07234134]]", "observation": "[[-2.6797917e-01 1.4695204e+00 -6.8184108e-01 -2.9786311e-02\n 7.1135297e-02 -7.5474106e-02]\n [ 1.7813295e-01 1.9209085e-01 2.8551611e-01 -2.3624997e-04\n 2.2882532e-02 -9.0629585e-02]\n [-9.4611204e-01 9.6003234e-01 6.0049897e-01 -6.6925086e-02\n 1.1806099e-02 1.7673694e-02]\n [-1.4936996e+00 3.5809308e-01 -5.4231856e-02 -1.5789412e-02\n -2.7234709e-02 6.6392191e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGWnbPR+PFj4BTv09QcD1PHN93rzxX2E+iDdevcm76z0755I+xjyJvUBLXjyiHh4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10713405 0.14703034 0.12368394]\n [ 0.0299989 -0.02715943 0.22009255]\n [-0.05425218 0.11510427 0.2869204 ]\n [-0.06701045 0.01356775 0.15441373]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.6227, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQtDRqpZ07b+UhpRSlIwBbJRLMowBdJRHQIhQCUcGTs91fZQoaAZoCWgPQwgjvhOzXozjv5SGlFKUaBVLMmgWR0CIT1YV6/qPdX2UKGgGaAloD0MIZaiKqfST7b+UhpRSlGgVSzJoFkdAiELPmPo3aXV9lChoBmgJaA9DCOfib3uCxNG/lIaUUpRoFUsyaBZHQIc9AJVsDW91fZQoaAZoCWgPQwjCUfLqHIPnv5SGlFKUaBVLMmgWR0CIU1aB7NSqdX2UKGgGaAloD0MIQpjbvdwn27+UhpRSlGgVSzJoFkdAiFKjHGS6lXV9lChoBmgJaA9DCNGWcymuKt+/lIaUUpRoFUsyaBZHQIhGHCuU2UB1fZQoaAZoCWgPQwhdUyCzs2jqv5SGlFKUaBVLMmgWR0CHQE0OVgQZdX2UKGgGaAloD0MIv/T256Ih0L+UhpRSlGgVSzJoFkdAiFaVxKg7HXV9lChoBmgJaA9DCMozL4fdd9i/lIaUUpRoFUsyaBZHQIhV4oZydWh1fZQoaAZoCWgPQwh1yM1wAz7iv5SGlFKUaBVLMmgWR0CISVvFWGRFdX2UKGgGaAloD0MIDOiFOxfG5L+UhpRSlGgVSzJoFkdAh0OMz/IbO3V9lChoBmgJaA9DCAXCTrFqENi/lIaUUpRoFUsyaBZHQIhZ7VOKwZB1fZQoaAZoCWgPQwgRVI1eDVDwv5SGlFKUaBVLMmgWR0CIWToNd7fIdX2UKGgGaAloD0MIP/1nzY8/5L+UhpRSlGgVSzJoFkdAiEyzasZHeHV9lChoBmgJaA9DCMsPXOUJhNW/lIaUUpRoFUsyaBZHQIdG5HI6r/91fZQoaAZoCWgPQwj4p1SJsrfZv5SGlFKUaBVLMmgWR0CIXSutfXwtdX2UKGgGaAloD0MIIEPHDipx4r+UhpRSlGgVSzJoFkdAiFx4u9OARXV9lChoBmgJaA9DCLHfE+tUeeS/lIaUUpRoFUsyaBZHQIhP8iB5HEx1fZQoaAZoCWgPQwif6SXGMn3kv5SGlFKUaBVLMmgWR0CHSiMsH0K7dX2UKGgGaAloD0MIKAzKNJrc5r+UhpRSlGgVSzJoFkdAiGB+cYqG13V9lChoBmgJaA9DCBh8mpMXmeC/lIaUUpRoFUsyaBZHQIhfy0jTrmh1fZQoaAZoCWgPQwjiqx3FOWrov5SGlFKUaBVLMmgWR0CIU0RfWtlqdX2UKGgGaAloD0MIwk8cQL/v3r+UhpRSlGgVSzJoFkdAh011awD/2nV9lChoBmgJaA9DCLjKEwg7xea/lIaUUpRoFUsyaBZHQIhjyTMaCMB1fZQoaAZoCWgPQwg+P4wQHm3fv5SGlFKUaBVLMmgWR0CIYxX2/SH/dX2UKGgGaAloD0MIdytLdJbZ47+UhpRSlGgVSzJoFkdAiFaPKEFnqXV9lChoBmgJaA9DCDtVvmckQtu/lIaUUpRoFUsyaBZHQIdQwDV6NVB1fZQoaAZoCWgPQwhLP+Hs1rLgv5SGlFKUaBVLMmgWR0CIZv1OCXhPdX2UKGgGaAloD0MIB0MdVrjl5L+UhpRSlGgVSzJoFkdAiGZJz1bqyHV9lChoBmgJaA9DCCCaeXJNgeS/lIaUUpRoFUsyaBZHQIhZwt8NQTF1fZQoaAZoCWgPQwgvpwTEJFzev5SGlFKUaBVLMmgWR0CHU/PWQOnVdX2UKGgGaAloD0MIVyHlJ9W+4r+UhpRSlGgVSzJoFkdAiGpKmTC+DnV9lChoBmgJaA9DCPG8VGzM69O/lIaUUpRoFUsyaBZHQIhpl3W4EwF1fZQoaAZoCWgPQwiPNSOD3EXnv5SGlFKUaBVLMmgWR0CIXRBJI1+BdX2UKGgGaAloD0MIj1a1pKMc1r+UhpRSlGgVSzJoFkdAh1dBa1TisHV9lChoBmgJaA9DCDmaIyu/DOG/lIaUUpRoFUsyaBZHQIht3hGYrrh1fZQoaAZoCWgPQwgz3IDPDyPlv5SGlFKUaBVLMmgWR0CIbSytV7x/dX2UKGgGaAloD0MIyT7IsmDi3r+UhpRSlGgVSzJoFkdAiGCl5nlGPXV9lChoBmgJaA9DCE30+SgjLuW/lIaUUpRoFUsyaBZHQIda1vl2eQN1fZQoaAZoCWgPQwj/s+bHX1rUv5SGlFKUaBVLMmgWR0CIcTJ+2E00dX2UKGgGaAloD0MIeNSYEHNJ2L+UhpRSlGgVSzJoFkdAiHB/bj94vHV9lChoBmgJaA9DCNqNPuYDAtu/lIaUUpRoFUsyaBZHQIhj+Jxeb/h1fZQoaAZoCWgPQwh+AFKbODngv5SGlFKUaBVLMmgWR0CHXimx+rlvdX2UKGgGaAloD0MI9fOmIhXG3r+UhpRSlGgVSzJoFkdAiHR6l1r6+HV9lChoBmgJaA9DCNC1L6AX7tm/lIaUUpRoFUsyaBZHQIhzx2ll9Sd1fZQoaAZoCWgPQwg8F0Z6UbvTv5SGlFKUaBVLMmgWR0CIZ0CZnctYdX2UKGgGaAloD0MIehubHam+4L+UhpRSlGgVSzJoFkdAh2FxjBl+VnV9lChoBmgJaA9DCF9f61Ij9Nq/lIaUUpRoFUsyaBZHQIh3rxb0OEx1fZQoaAZoCWgPQwgIW+z2WWXgv5SGlFKUaBVLMmgWR0CIdvvJA+pwdX2UKGgGaAloD0MI74y2Kons0L+UhpRSlGgVSzJoFkdAiGp1B+nZTXV9lChoBmgJaA9DCPZefNEeL9u/lIaUUpRoFUsyaBZHQIdkpffGdZt1fZQoaAZoCWgPQwiaJ9cUyOzOv5SGlFKUaBVLMmgWR0CIevQTEit8dX2UKGgGaAloD0MI1nQ90XXh3b+UhpRSlGgVSzJoFkdAiHpBBRhttXV9lChoBmgJaA9DCHCWkuUklNq/lIaUUpRoFUsyaBZHQIhtuiJwbVB1fZQoaAZoCWgPQwjmWx/WG7Xdv5SGlFKUaBVLMmgWR0CHZ+rxRVIadX2UKGgGaAloD0MIyaze4XZo1b+UhpRSlGgVSzJoFkdAiH5GsFMZg3V9lChoBmgJaA9DCJWAmIQL+eC/lIaUUpRoFUsyaBZHQIh9k36yjYZ1fZQoaAZoCWgPQwgwaCEBo8vJv5SGlFKUaBVLMmgWR0CIcQzBRAKOdX2UKGgGaAloD0MI7zmwHCED3r+UhpRSlGgVSzJoFkdAh2s91U2kz3V9lChoBmgJaA9DCK+V0F0SZ9i/lIaUUpRoFUsyaBZHQIiBivPkaMt1fZQoaAZoCWgPQwg5m44Abpbgv5SGlFKUaBVLMmgWR0CIgNfJFLFodX2UKGgGaAloD0MIbCQJwhVQ0r+UhpRSlGgVSzJoFkdAiHRQ40dilXV9lChoBmgJaA9DCL5qZcIv9du/lIaUUpRoFUsyaBZHQIdugfU4JeF1fZQoaAZoCWgPQwj0jH3JxgPrv5SGlFKUaBVLMmgWR0CIhM3w1BMSdX2UKGgGaAloD0MIp0HRPIBF2r+UhpRSlGgVSzJoFkdAiIQas6q82HV9lChoBmgJaA9DCAjpKXKIOOC/lIaUUpRoFUsyaBZHQIh3k87p3X91fZQoaAZoCWgPQwixogbTMHzZv5SGlFKUaBVLMmgWR0CHccTQmeDndX2UKGgGaAloD0MIFsCUgQNa37+UhpRSlGgVSzJoFkdAiIhEfT1CgXV9lChoBmgJaA9DCOtVZHRAEuO/lIaUUpRoFUsyaBZHQIiHkTakAPx1fZQoaAZoCWgPQwh33PC76Rbhv5SGlFKUaBVLMmgWR0CIewpiqhlEdX2UKGgGaAloD0MIgZICC2DK0r+UhpRSlGgVSzJoFkdAh3U7coH9nHV9lChoBmgJaA9DCLQiaqLPR92/lIaUUpRoFUsyaBZHQIiLmE25xzd1fZQoaAZoCWgPQwiphCf0+pPRv5SGlFKUaBVLMmgWR0CIiuUdJaq0dX2UKGgGaAloD0MIKGVSQxsA4L+UhpRSlGgVSzJoFkdAiH5eYc/+sHV9lChoBmgJaA9DCCPb+X5qvNq/lIaUUpRoFUsyaBZHQId4j19ORDF1fZQoaAZoCWgPQwjjcVEtIorWv5SGlFKUaBVLMmgWR0CIju2vStvGdX2UKGgGaAloD0MIlpS7z/HR3r+UhpRSlGgVSzJoFkdAiI46bvw3HnV9lChoBmgJaA9DCItSQrCq3uO/lIaUUpRoFUsyaBZHQIiBs6zVtoB1fZQoaAZoCWgPQwiKk/sdigLZv5SGlFKUaBVLMmgWR0CHe+TEBKcvdX2UKGgGaAloD0MIMdC1L6AXzL+UhpRSlGgVSzJoFkdAiJI+3QUpNXV9lChoBmgJaA9DCH4a9+Y3TNa/lIaUUpRoFUsyaBZHQIiRi9Iwudx1fZQoaAZoCWgPQwgYlGk0uRjWv5SGlFKUaBVLMmgWR0CIhQTvAoG6dX2UKGgGaAloD0MIZ2X7kLdc1L+UhpRSlGgVSzJoFkdAh381/Ue+23V9lChoBmgJaA9DCEMfLGNDN9e/lIaUUpRoFUsyaBZHQIiVicd5prV1fZQoaAZoCWgPQwhzafzCK8njv5SGlFKUaBVLMmgWR0CIlNaDf3vhdX2UKGgGaAloD0MIaW/whclU3r+UhpRSlGgVSzJoFkdAiIhP1tfoinV9lChoBmgJaA9DCIhnCTICquC/lIaUUpRoFUsyaBZHQIeCgMlTm4l1fZQoaAZoCWgPQwgrwHebN07lv5SGlFKUaBVLMmgWR0CImNT5wfhddX2UKGgGaAloD0MIVRhbCHJQyr+UhpRSlGgVSzJoFkdAiJgh3Roh6nV9lChoBmgJaA9DCJgZNsr6zdG/lIaUUpRoFUsyaBZHQIiLmuxKQJZ1fZQoaAZoCWgPQwhd+wJ64U7lv5SGlFKUaBVLMmgWR0CHhcwYcebNdX2UKGgGaAloD0MIelT83xEV3b+UhpRSlGgVSzJoFkdAiJwnjIaLoHV9lChoBmgJaA9DCGlRn+QOG+a/lIaUUpRoFUsyaBZHQIibdEE1VHZ1fZQoaAZoCWgPQwjPMLWlDvLmv5SGlFKUaBVLMmgWR0CIju1aW5YpdX2UKGgGaAloD0MI+8xZn3JMzr+UhpRSlGgVSzJoFkdAh4keWnjyWnV9lChoBmgJaA9DCMg/M4gP7Oa/lIaUUpRoFUsyaBZHQIifkgMc6vJ1fZQoaAZoCWgPQwiuRQvQtprPv5SGlFKUaBVLMmgWR0CInt7wazeGdX2UKGgGaAloD0MITpfFxObj4r+UhpRSlGgVSzJoFkdAiJJYH5aePXV9lChoBmgJaA9DCIUmiSXlbua/lIaUUpRoFUsyaBZHQIeMiTB68g91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 18865, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.10.9", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (263 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.337712547526462, "std_reward": 0.18308502059453333, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-05T18:56:30.572368"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10d12dc3960a23f5946714fe8d2179bb5ef265920b7180b052e12b812df4b463
|
3 |
+
size 2470
|