File size: 7,532 Bytes
509522b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
language: fon
datasets:
- [Fon Dataset](https://github.com/laleye/pyFongbe/tree/master/data)
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Fon XLSR Wav2Vec2 Large 53
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: fon
type: fon_dataset
args: fon
metrics:
- name: Test WER
type: wer
value: 14.97
---
# Wav2Vec2-Large-XLSR-53-Fon
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on [Fon](https://en.wikipedia.org/wiki/Fon_language) using the [Fon Dataset](https://github.com/laleye/pyFongbe/tree/master/data).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import json
import random
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
#This will download the files from Layele's Github to the directory FonAudio
if not os.path.isdir("./FonAudio"):
!wget https://github.com/laleye/pyFongbe/archive/master/data.zip
with zipfile.ZipFile("data.zip","r") as zip_ref:
zip_ref.extractall("./FonAudio")
with open('./FonAudio/pyFongbe-master/data/train.csv', newline='',encoding='UTF-8') as f:
reader = csv.reader(f)
data = list(reader)
train_data = [data[i] for i in range(len(data)) if i!=0]
with open('./FonAudio/pyFongbe-master/data/test.csv', newline='',encoding='UTF-8') as f:
reader = csv.reader(f)
data = list(reader)
t_data = [data[i] for i in range(len(data)) if i!=0]
#Get valid indices
random.seed(42) #this seed was used specifically to compare with Okwugbe model
v = 1500 #200 samples for valid. Change as you want
test_list = [i for i in range(len(t_data))]
valid_indices = random.choices(test_list, k=v)
test_data = [t_data[i] for i in range(len(t_data)) if i not in valid_indices]
valid_data = [t_data[i] for i in range(len(t_data)) if i in valid_indices]
#Length of validation_dataset -> 1107
#Length of test_dataset -> 1061
#Please note, the final validation size is is smaller than the expected (1500) because we used random.choices which could contain duplicates.
#Create JSON files
def create_json_file(d):
utterance = d[2]
wav_path =d[0]
wav_path = wav_path.replace("/home/frejus/Projects/Fongbe_ASR/pyFongbe","./FonAudio/pyFongbe-master")
return {
"path": wav_path,
"sentence": utterance
}
train_json = [create_json_file(i) for i in train_data]
test_json = [create_json_file(i) for i in test_data]
valid_json = [create_json_file(i) for i in valid_data]
#Save JSON files to your Google Drive folders
#Make folder in GDrive to store files
train_path = '/content/drive/MyDrive/fon_xlsr/train'
test_path = '/content/drive/MyDrive/fon_xlsr/test'
valid_path = '/content/drive/MyDrive/fon_xlsr/valid'
if not os.path.isdir(train_path):
print("Creating paths")
os.makedirs(train_path)
os.makedirs(test_path) #this is where we save the test files
os.makedirs(valid_path)
#for train
for i, sample in enumerate(train_json):
file_path = os.path.join(train_path,'train_fon_{}.json'.format(i))
with open(file_path, 'w') as outfile:
json.dump(sample, outfile)
#for test
for i, sample in enumerate(test_json):
file_path = os.path.join(test_path,'test_fon_{}.json'.format(i))
with open(file_path, 'w') as outfile:
json.dump(sample, outfile)
#for valid
for i, sample in enumerate(valid_json):
file_path = os.path.join(valid_path,'valid_fon_{}.json'.format(i))
with open(file_path, 'w') as outfile:
json.dump(sample, outfile)
#Load test_dataset from saved files in folder
from datasets import load_dataset, load_metric
#for test
for root, dirs, files in os.walk(test_path):
test_dataset= load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
#Remove unnecessary chars
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
def remove_special_characters(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
return batch
test_dataset = test_dataset.map(remove_special_characters)
processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
#No need for resampling because audio dataset already at 16kHz
#resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"]=speech_array.squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on our unique Fon test data.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
for root, dirs, files in os.walk(test_path):
test_dataset = load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
def remove_special_characters(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
return batch
test_dataset = test_dataset.map(remove_special_characters)
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") #use checkpoint-12400 to get our WER test results
model.to("cuda")
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = speech_array[0].numpy()
batch["sampling_rate"] = sampling_rate
batch["target_text"] = batch["sentence"]
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
#Evaluation on test dataset
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 14.97 %
## Training
The [Fon dataset](https://github.com/laleye/pyFongbe/tree/master/data) was split into `train`(8235 samples), `validation`(1107 samples), and `test`(1061 samples).
The script used for training can be found [here](https://colab.research.google.com/drive/11l6qhJCYnPTG1TQZ8f3EvKB9z12TQi4g?usp=sharing)
|