Update README.md
Browse files
README.md
CHANGED
@@ -43,96 +43,16 @@ import torchaudio
|
|
43 |
from datasets import load_dataset
|
44 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
45 |
|
46 |
-
#This will download the files from Layele's Github to the directory FonAudio
|
47 |
-
if not os.path.isdir("./FonAudio"):
|
48 |
-
!wget https://github.com/laleye/pyFongbe/archive/master/data.zip
|
49 |
-
with zipfile.ZipFile("data.zip","r") as zip_ref:
|
50 |
-
zip_ref.extractall("./FonAudio")
|
51 |
-
|
52 |
-
with open('./FonAudio/pyFongbe-master/data/train.csv', newline='',encoding='UTF-8') as f:
|
53 |
-
reader = csv.reader(f)
|
54 |
-
data = list(reader)
|
55 |
-
train_data = [data[i] for i in range(len(data)) if i!=0]
|
56 |
-
|
57 |
-
with open('./FonAudio/pyFongbe-master/data/test.csv', newline='',encoding='UTF-8') as f:
|
58 |
-
reader = csv.reader(f)
|
59 |
-
data = list(reader)
|
60 |
-
t_data = [data[i] for i in range(len(data)) if i!=0]
|
61 |
-
|
62 |
-
|
63 |
-
#Get valid indices
|
64 |
-
random.seed(42) #this seed was used specifically to compare
|
65 |
-
# with Okwugbe model (https://arxiv.org/abs/2103.07762)
|
66 |
-
|
67 |
-
|
68 |
-
v = 1500
|
69 |
-
test_list = [i for i in range(len(t_data))]
|
70 |
-
valid_indices = random.choices(test_list, k=v)
|
71 |
-
|
72 |
-
test_data = [t_data[i] for i in range(len(t_data)) if i not in valid_indices]
|
73 |
-
valid_data = [t_data[i] for i in range(len(t_data)) if i in valid_indices]
|
74 |
-
|
75 |
-
#Final length of validation_dataset -> 1107
|
76 |
-
#Final length of test_dataset -> 1061
|
77 |
-
|
78 |
-
#Please note, the final validation size is is smaller than the
|
79 |
-
#expected (1500) because we used random.choices which could contain duplicates.
|
80 |
-
|
81 |
-
#Create JSON files
|
82 |
-
def create_json_file(d):
|
83 |
-
utterance = d[2]
|
84 |
-
wav_path =d[0]
|
85 |
-
wav_path = wav_path.replace("/home/frejus/Projects/Fongbe_ASR/pyFongbe","./FonAudio/pyFongbe-master")
|
86 |
-
return {
|
87 |
-
"path": wav_path,
|
88 |
-
"sentence": utterance
|
89 |
-
}
|
90 |
-
|
91 |
-
train_json = [create_json_file(i) for i in train_data]
|
92 |
-
test_json = [create_json_file(i) for i in test_data]
|
93 |
-
valid_json = [create_json_file(i) for i in valid_data]
|
94 |
-
|
95 |
-
#Save JSON files to your Google Drive folders
|
96 |
-
#Make folder in GDrive to store files
|
97 |
-
train_path = '/content/drive/MyDrive/fon_xlsr/train'
|
98 |
-
test_path = '/content/drive/MyDrive/fon_xlsr/test'
|
99 |
-
valid_path = '/content/drive/MyDrive/fon_xlsr/valid'
|
100 |
-
|
101 |
-
if not os.path.isdir(train_path):
|
102 |
-
print("Creating paths")
|
103 |
-
os.makedirs(train_path)
|
104 |
-
os.makedirs(test_path) #this is where we save the test files
|
105 |
-
os.makedirs(valid_path)
|
106 |
-
|
107 |
-
|
108 |
-
#for train
|
109 |
-
for i, sample in enumerate(train_json):
|
110 |
-
file_path = os.path.join(train_path,'train_fon_{}.json'.format(i))
|
111 |
-
with open(file_path, 'w') as outfile:
|
112 |
-
json.dump(sample, outfile)
|
113 |
-
|
114 |
-
#for test
|
115 |
-
for i, sample in enumerate(test_json):
|
116 |
-
file_path = os.path.join(test_path,'test_fon_{}.json'.format(i))
|
117 |
-
with open(file_path, 'w') as outfile:
|
118 |
-
json.dump(sample, outfile)
|
119 |
-
|
120 |
-
#for valid
|
121 |
-
for i, sample in enumerate(valid_json):
|
122 |
-
file_path = os.path.join(valid_path,'valid_fon_{}.json'.format(i))
|
123 |
-
with open(file_path, 'w') as outfile:
|
124 |
-
json.dump(sample, outfile)
|
125 |
-
|
126 |
|
127 |
#Load test_dataset from saved files in folder
|
128 |
from datasets import load_dataset, load_metric
|
129 |
|
130 |
#for test
|
131 |
-
for root, dirs, files in os.walk(
|
132 |
test_dataset= load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
|
133 |
|
134 |
#Remove unnecessary chars
|
135 |
-
chars_to_ignore_regex =
|
136 |
def remove_special_characters(batch):
|
137 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
|
138 |
return batch
|
@@ -176,10 +96,10 @@ from datasets import load_dataset, load_metric
|
|
176 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
177 |
import re
|
178 |
|
179 |
-
for root, dirs, files in os.walk(
|
180 |
test_dataset = load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
|
181 |
|
182 |
-
chars_to_ignore_regex =
|
183 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
|
184 |
return batch
|
185 |
|
@@ -187,7 +107,7 @@ test_dataset = test_dataset.map(remove_special_characters)
|
|
187 |
wer = load_metric("wer")
|
188 |
|
189 |
processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
|
190 |
-
model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
|
191 |
model.to("cuda")
|
192 |
|
193 |
# Preprocessing the datasets.
|
|
|
43 |
from datasets import load_dataset
|
44 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
#Load test_dataset from saved files in folder
|
48 |
from datasets import load_dataset, load_metric
|
49 |
|
50 |
#for test
|
51 |
+
for root, dirs, files in os.walk(test/):
|
52 |
test_dataset= load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
|
53 |
|
54 |
#Remove unnecessary chars
|
55 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”]'
|
56 |
def remove_special_characters(batch):
|
57 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
|
58 |
return batch
|
|
|
96 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
97 |
import re
|
98 |
|
99 |
+
for root, dirs, files in os.walk(test/):
|
100 |
test_dataset = load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
|
101 |
|
102 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”]'
|
103 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
|
104 |
return batch
|
105 |
|
|
|
107 |
wer = load_metric("wer")
|
108 |
|
109 |
processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
|
110 |
+
model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
|
111 |
model.to("cuda")
|
112 |
|
113 |
# Preprocessing the datasets.
|