Update README.md
Browse files
README.md
CHANGED
@@ -2,14 +2,18 @@ language: fon
|
|
2 |
|
3 |
datasets:
|
4 |
- [Fon Dataset](https://github.com/laleye/pyFongbe/tree/master/data)
|
|
|
5 |
metrics:
|
6 |
- wer
|
|
|
7 |
tags:
|
8 |
- audio
|
9 |
- automatic-speech-recognition
|
10 |
- speech
|
11 |
- xlsr-fine-tuning-week
|
|
|
12 |
license: apache-2.0
|
|
|
13 |
model-index:
|
14 |
- name: Fon XLSR Wav2Vec2 Large 53
|
15 |
results:
|
@@ -131,7 +135,7 @@ for root, dirs, files in os.walk(test_path):
|
|
131 |
test_dataset= load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
|
132 |
|
133 |
#Remove unnecessary chars
|
134 |
-
chars_to_ignore_regex = '[
|
135 |
def remove_special_characters(batch):
|
136 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
|
137 |
return batch
|
@@ -147,15 +151,15 @@ model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
|
|
147 |
# Preprocessing the datasets.
|
148 |
# We need to read the audio files as arrays
|
149 |
def speech_file_to_array_fn(batch):
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
|
154 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
155 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
156 |
|
157 |
with torch.no_grad():
|
158 |
-
|
159 |
|
160 |
predicted_ids = torch.argmax(logits, dim=-1)
|
161 |
|
@@ -178,7 +182,7 @@ import re
|
|
178 |
for root, dirs, files in os.walk(test_path):
|
179 |
test_dataset = load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
|
180 |
|
181 |
-
chars_to_ignore_regex = '[
|
182 |
def remove_special_characters(batch):
|
183 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
|
184 |
return batch
|
|
|
2 |
|
3 |
datasets:
|
4 |
- [Fon Dataset](https://github.com/laleye/pyFongbe/tree/master/data)
|
5 |
+
|
6 |
metrics:
|
7 |
- wer
|
8 |
+
|
9 |
tags:
|
10 |
- audio
|
11 |
- automatic-speech-recognition
|
12 |
- speech
|
13 |
- xlsr-fine-tuning-week
|
14 |
+
|
15 |
license: apache-2.0
|
16 |
+
|
17 |
model-index:
|
18 |
- name: Fon XLSR Wav2Vec2 Large 53
|
19 |
results:
|
|
|
135 |
test_dataset= load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
|
136 |
|
137 |
#Remove unnecessary chars
|
138 |
+
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\‘\\\\”\\\\�]'
|
139 |
def remove_special_characters(batch):
|
140 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
|
141 |
return batch
|
|
|
151 |
# Preprocessing the datasets.
|
152 |
# We need to read the audio files as arrays
|
153 |
def speech_file_to_array_fn(batch):
|
154 |
+
\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
155 |
+
\\tbatch["speech"]=speech_array.squeeze().numpy()
|
156 |
+
\\treturn batch
|
157 |
|
158 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
159 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
160 |
|
161 |
with torch.no_grad():
|
162 |
+
\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
163 |
|
164 |
predicted_ids = torch.argmax(logits, dim=-1)
|
165 |
|
|
|
182 |
for root, dirs, files in os.walk(test_path):
|
183 |
test_dataset = load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
|
184 |
|
185 |
+
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\‘\\\\”\\\\�]'
|
186 |
def remove_special_characters(batch):
|
187 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
|
188 |
return batch
|