christianb
commited on
initial commit
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPOMlp
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 275.75 +/- 19.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPOMlp** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPOMlp** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eb20d23d750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eb20d23d7e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eb20d23d870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eb20d23d900>", "_build": "<function ActorCriticPolicy._build at 0x7eb20d23d990>", "forward": "<function ActorCriticPolicy.forward at 0x7eb20d23da20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eb20d23dab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eb20d23db40>", "_predict": "<function ActorCriticPolicy._predict at 0x7eb20d23dbd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eb20d23dc60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eb20d23dcf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eb20d23dd80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eb20d1e9480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723478644405603363, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEaEZj7NzJc+Nyo0vm9va77++ak8SqPjvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLV5BPbfxeMAWyUTR0BjAF0lEdAm8iNtEXtSnV9lChoBkdAcdjXuVopQWgHTQ4BaAhHQJvKDCxeLNx1fZQoaAZHQHJkAi3XqaBoB0v/aAhHQJvLc3l0YCR1fZQoaAZHQHBjNZJTVDtoB00mAWgIR0CbzRm16Vt5dX2UKGgGR0ByLFRNyo4uaAdL2GgIR0Cbz3wOe8PGdX2UKGgGR0BxdK+BYmsvaAdNNQFoCEdAm9E8cp9ZzXV9lChoBkdAcCMXfZVXFWgHS/doCEdAm9KaEal1sHV9lChoBkdAc2XqJuVHF2gHS/poCEdAm9P7hJiAlXV9lChoBkdAbwl3KSxJNGgHS/5oCEdAm9aP8dgfEHV9lChoBkdAcJY/Khcqv2gHS99oCEdAm9fN4iX6ZnV9lChoBkdAcfFpnYg7o2gHTQQBaAhHQJvZRVKf4AV1fZQoaAZHQHKfaUqx1PpoB00AAWgIR0Cb2q4qPOpsdX2UKGgGR0ByH76be/HpaAdNWAFoCEdAm93KZx7zCnV9lChoBkdAcLa4KhL5AWgHTRkBaAhHQJvfXSc9W6t1fZQoaAZHQG97B6a9botoB00UAWgIR0Cb4OsfaHsUdX2UKGgGR0Bv01PHktEoaAdL+mgIR0Cb4k3PRiPRdX2UKGgGR0BxE+RzRx95aAdNAgFoCEdAm+UGbG3nZHV9lChoBkdAcYUyvcJtzmgHTRMBaAhHQJvmi9DhLoR1fZQoaAZHQHF0S3XqZ+hoB00PAWgIR0Cb6AfzSThYdX2UKGgGR0BzP01UEPlNaAdNBQFoCEdAm+qtthuwYHV9lChoBkdAcLM2OyVv/GgHS9toCEdAm+vjx5LRKHV9lChoBkdAcuAQPZqVQmgHS/NoCEdAm+1GsV+I/XV9lChoBkdAcoPM9r4332gHTRIBaAhHQJvvFvR7Z391fZQoaAZHQHLHQSBbwBpoB00wAWgIR0Cb8r+49X9zdX2UKGgGR0BwRe/mDDjzaAdNIQFoCEdAm/UMKohpxnV9lChoBkdAcEDoKlYU4GgHS/loCEdAm/b/A9FF2HV9lChoBkdATH9x2jfvW2gHS5doCEdAm/ggJLM9sHV9lChoBkdAboVNVR1ox2gHTRUBaAhHQJv6ElXzUZx1fZQoaAZHQG9v7Wd3B55oB0v6aAhHQJv8p0FKTSt1fZQoaAZHQHBK0gjhUBJoB0vpaAhHQJv9/gdfb9J1fZQoaAZHQHGTVxjriVBoB0v1aAhHQJv/X0xubZx1fZQoaAZHQHC6XvUjLSxoB00IAWgIR0CcAOcRlHz6dX2UKGgGR0Bw/rthNM4+aAdL9GgIR0CcA4L0jC53dX2UKGgGR0BxjkypJf6XaAdNHAFoCEdAnAUd8ma6SXV9lChoBkdAclVHPeHi32gHS/JoCEdAnAZ82BJ7LXV9lChoBkdAcLaWbwz+FWgHTQIBaAhHQJwH5kGzKLd1fZQoaAZHQHBYd4mkWRBoB00AAWgIR0CcCopuMuOCdX2UKGgGR0BvnBS9/SYxaAdL8mgIR0CcC+JqZc9odX2UKGgGR0ByFA9yLhrFaAdL3mgIR0CcDR1gH/tIdX2UKGgGR0BySLNiYsunaAdL/mgIR0CcDokZJkGzdX2UKGgGR0Bvj0k+otL+aAdL5WgIR0CcEQLeQ+2WdX2UKGgGR0ByIiDe0ojOaAdL+mgIR0CcEmxz7uUmdX2UKGgGR0Bwmccjqv/zaAdNAgFoCEdAnBPcCLdepnV9lChoBkdAcb8LncL0BmgHS9doCEdAnBULZBcAznV9lChoBkdAcp32Rq46O2gHTRkBaAhHQJwXzsmfGuN1fZQoaAZHQHHiaSowVTJoB00TAWgIR0CcGVSaEzwddX2UKGgGR0BxUMxTKkmAaAdL7mgIR0CcGq3kxREXdX2UKGgGR0BuReGh24d7aAdL3WgIR0CcG+MVk+X7dX2UKGgGR0Bw8GGRFI/aaAdL+mgIR0CcHm+V1Oj7dX2UKGgGR0BxAdDZ13dLaAdL2GgIR0CcH7cmBvrGdX2UKGgGR0Bqdshs67ulaAdN0AFoCEdAnCLXSro4dnV9lChoBkdAcMqQCjk+5mgHTQQBaAhHQJwktAhStNl1fZQoaAZHQG15seGO+7FoB01zAWgIR0CcKSZQYUFjdX2UKGgGR0BxgJgtvn8saAdNBQFoCEdAnCskPQOWjXV9lChoBkdAcavOB19v0mgHTQMBaAhHQJwsjqY7aIx1fZQoaAZHQCUJZntfG+9oB0u0aAhHQJwuyClJpWV1fZQoaAZHQG+VbMHKOktoB00FAWgIR0CcMEQkX1rZdX2UKGgGR0BxTv4h2W6caAdL3mgIR0CcMX6iCaqkdX2UKGgGR0ByPN5nlGPQaAdNEAFoCEdAnDL983Mpw3V9lChoBkdAcdvLmZE2HmgHS+xoCEdAnDV8C5mRNnV9lChoBkdAbmxY+Sr5qWgHS+hoCEdAnDbRKYiPhnV9lChoBkdAbhNxqfvnbWgHS+5oCEdAnDg7b5/LDHV9lChoBkdAc0K/LTx5LWgHS/BoCEdAnDmZ/G2kSHV9lChoBkdAcJoHI6r/82gHS+FoCEdAnDrY+jdpI3V9lChoBkdAaHM9HMEA52gHTeoCaAhHQJxAS1LJ0XB1fZQoaAZHQHB2DMV1wHZoB0v+aAhHQJxBsnw5NoJ1fZQoaAZHQG0cArhBJI1oB0v2aAhHQJxER4eLehx1fZQoaAZHQG7sAs9SuQpoB0vbaAhHQJxFfNzKcNJ1fZQoaAZHQG5IJBPbfxdoB0v2aAhHQJxG0U0vXbx1fZQoaAZHQG/tTjebd8BoB0vtaAhHQJxIH70nPVx1fZQoaAZHQHFPf73wkPdoB0vmaAhHQJxKlb1RLsd1fZQoaAZHQHHm0Bfa6BloB0v6aAhHQJxMFkUbkwN1fZQoaAZHQHFYKQ7tAs1oB0vsaAhHQJxNY8gZCOZ1fZQoaAZHQHDaZcgQpWpoB0vLaAhHQJxOf7m+0w91fZQoaAZHQG+vt+CsfaJoB00EAWgIR0CcT+7SiM5wdX2UKGgGR0BwBjlhgE2YaAdNCgFoCEdAnFKSdJ8OTnV9lChoBkdAc1gFPi1iOWgHTT4BaAhHQJxU+2/i5ut1fZQoaAZHQGc6yteUpuxoB03KAWgIR0CcWE28IzFddX2UKGgGR0BQuxClabF1aAdLvWgIR0CcW4m4RVZLdX2UKGgGR0Bww7ovBacJaAdNAgFoCEdAnFz6kIomX3V9lChoBkdAcU5wu/UONGgHS+JoCEdAnF49XtBv73V9lChoBkdAcKvkHD766GgHTQkBaAhHQJxfsMPSUkh1fZQoaAZHQHGswUg0TDhoB0veaAhHQJxiHj81n/V1fZQoaAZHQFUSqM3qAz5oB0vEaAhHQJxjNqHoHLR1fZQoaAZHQHOGdmg8KXxoB0vlaAhHQJxkgrEtNBZ1fZQoaAZHQG7UCDM/yG1oB00XAWgIR0CcZgkMCtA+dX2UKGgGR0BybbU9ZA6daAdL92gIR0CcaJMMqjJudX2UKGgGR0Bu4rqKP4mDaAdL92gIR0CcafQCjk+5dX2UKGgGR0Bynh53Tuv2aAdL8WgIR0Cca0pKjBVNdX2UKGgGR0BxxZoakyk9aAdL92gIR0CcbKenhsIndX2UKGgGR0ByeL3h4t6HaAdL+WgIR0CcbzhnJ1aGdX2UKGgGR0BzbkcDKYAsaAdNFAFoCEdAnHC3Y150KnV9lChoBkdAVOmXeFcps2gHS5FoCEdAnHGNz4k/r3V9lChoBkdAbtz+5OJtSGgHTREBaAhHQJxzDw+dK/V1fZQoaAZHQFGsRjjJdSloB0ucaAhHQJxz6NYKYzB1fZQoaAZHQHJqVVcUuctoB0vNaAhHQJx2PqZ+hGp1fZQoaAZHQHNz3XAdn01oB0v4aAhHQJx3r0voNd91fZQoaAZHQHIBv1UVBUtoB0vsaAhHQJx5GW5Yoy91fZQoaAZHQHMl4uCf6GhoB00HAWgIR0Cceo2fChvjdX2UKGgGR0BMJ6DGtITXaAdLjGgIR0Cce1OoYNy6dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRwK0YyJ9GimEZ2YRDAjmClwCMA2luY5SKEWkkbwthfc088Rrq/FBNp5wAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUigWm41zsAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43f6b6b63a36f6c5bcf71e156d2bb5a6f3e86f1edf296c3af6922483f645a0bc
|
3 |
+
size 147632
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7eb20d23d750>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eb20d23d7e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eb20d23d870>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eb20d23d900>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7eb20d23d990>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7eb20d23da20>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7eb20d23dab0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eb20d23db40>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7eb20d23dbd0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eb20d23dc60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eb20d23dcf0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7eb20d23dd80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7eb20d1e9480>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1000448,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1723478644405603363,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEaEZj7NzJc+Nyo0vm9va77++ak8SqPjvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLV5BPbfxeMAWyUTR0BjAF0lEdAm8iNtEXtSnV9lChoBkdAcdjXuVopQWgHTQ4BaAhHQJvKDCxeLNx1fZQoaAZHQHJkAi3XqaBoB0v/aAhHQJvLc3l0YCR1fZQoaAZHQHBjNZJTVDtoB00mAWgIR0CbzRm16Vt5dX2UKGgGR0ByLFRNyo4uaAdL2GgIR0Cbz3wOe8PGdX2UKGgGR0BxdK+BYmsvaAdNNQFoCEdAm9E8cp9ZzXV9lChoBkdAcCMXfZVXFWgHS/doCEdAm9KaEal1sHV9lChoBkdAc2XqJuVHF2gHS/poCEdAm9P7hJiAlXV9lChoBkdAbwl3KSxJNGgHS/5oCEdAm9aP8dgfEHV9lChoBkdAcJY/Khcqv2gHS99oCEdAm9fN4iX6ZnV9lChoBkdAcfFpnYg7o2gHTQQBaAhHQJvZRVKf4AV1fZQoaAZHQHKfaUqx1PpoB00AAWgIR0Cb2q4qPOpsdX2UKGgGR0ByH76be/HpaAdNWAFoCEdAm93KZx7zCnV9lChoBkdAcLa4KhL5AWgHTRkBaAhHQJvfXSc9W6t1fZQoaAZHQG97B6a9botoB00UAWgIR0Cb4OsfaHsUdX2UKGgGR0Bv01PHktEoaAdL+mgIR0Cb4k3PRiPRdX2UKGgGR0BxE+RzRx95aAdNAgFoCEdAm+UGbG3nZHV9lChoBkdAcYUyvcJtzmgHTRMBaAhHQJvmi9DhLoR1fZQoaAZHQHF0S3XqZ+hoB00PAWgIR0Cb6AfzSThYdX2UKGgGR0BzP01UEPlNaAdNBQFoCEdAm+qtthuwYHV9lChoBkdAcLM2OyVv/GgHS9toCEdAm+vjx5LRKHV9lChoBkdAcuAQPZqVQmgHS/NoCEdAm+1GsV+I/XV9lChoBkdAcoPM9r4332gHTRIBaAhHQJvvFvR7Z391fZQoaAZHQHLHQSBbwBpoB00wAWgIR0Cb8r+49X9zdX2UKGgGR0BwRe/mDDjzaAdNIQFoCEdAm/UMKohpxnV9lChoBkdAcEDoKlYU4GgHS/loCEdAm/b/A9FF2HV9lChoBkdATH9x2jfvW2gHS5doCEdAm/ggJLM9sHV9lChoBkdAboVNVR1ox2gHTRUBaAhHQJv6ElXzUZx1fZQoaAZHQG9v7Wd3B55oB0v6aAhHQJv8p0FKTSt1fZQoaAZHQHBK0gjhUBJoB0vpaAhHQJv9/gdfb9J1fZQoaAZHQHGTVxjriVBoB0v1aAhHQJv/X0xubZx1fZQoaAZHQHC6XvUjLSxoB00IAWgIR0CcAOcRlHz6dX2UKGgGR0Bw/rthNM4+aAdL9GgIR0CcA4L0jC53dX2UKGgGR0BxjkypJf6XaAdNHAFoCEdAnAUd8ma6SXV9lChoBkdAclVHPeHi32gHS/JoCEdAnAZ82BJ7LXV9lChoBkdAcLaWbwz+FWgHTQIBaAhHQJwH5kGzKLd1fZQoaAZHQHBYd4mkWRBoB00AAWgIR0CcCopuMuOCdX2UKGgGR0BvnBS9/SYxaAdL8mgIR0CcC+JqZc9odX2UKGgGR0ByFA9yLhrFaAdL3mgIR0CcDR1gH/tIdX2UKGgGR0BySLNiYsunaAdL/mgIR0CcDokZJkGzdX2UKGgGR0Bvj0k+otL+aAdL5WgIR0CcEQLeQ+2WdX2UKGgGR0ByIiDe0ojOaAdL+mgIR0CcEmxz7uUmdX2UKGgGR0Bwmccjqv/zaAdNAgFoCEdAnBPcCLdepnV9lChoBkdAcb8LncL0BmgHS9doCEdAnBULZBcAznV9lChoBkdAcp32Rq46O2gHTRkBaAhHQJwXzsmfGuN1fZQoaAZHQHHiaSowVTJoB00TAWgIR0CcGVSaEzwddX2UKGgGR0BxUMxTKkmAaAdL7mgIR0CcGq3kxREXdX2UKGgGR0BuReGh24d7aAdL3WgIR0CcG+MVk+X7dX2UKGgGR0Bw8GGRFI/aaAdL+mgIR0CcHm+V1Oj7dX2UKGgGR0BxAdDZ13dLaAdL2GgIR0CcH7cmBvrGdX2UKGgGR0Bqdshs67ulaAdN0AFoCEdAnCLXSro4dnV9lChoBkdAcMqQCjk+5mgHTQQBaAhHQJwktAhStNl1fZQoaAZHQG15seGO+7FoB01zAWgIR0CcKSZQYUFjdX2UKGgGR0BxgJgtvn8saAdNBQFoCEdAnCskPQOWjXV9lChoBkdAcavOB19v0mgHTQMBaAhHQJwsjqY7aIx1fZQoaAZHQCUJZntfG+9oB0u0aAhHQJwuyClJpWV1fZQoaAZHQG+VbMHKOktoB00FAWgIR0CcMEQkX1rZdX2UKGgGR0BxTv4h2W6caAdL3mgIR0CcMX6iCaqkdX2UKGgGR0ByPN5nlGPQaAdNEAFoCEdAnDL983Mpw3V9lChoBkdAcdvLmZE2HmgHS+xoCEdAnDV8C5mRNnV9lChoBkdAbmxY+Sr5qWgHS+hoCEdAnDbRKYiPhnV9lChoBkdAbhNxqfvnbWgHS+5oCEdAnDg7b5/LDHV9lChoBkdAc0K/LTx5LWgHS/BoCEdAnDmZ/G2kSHV9lChoBkdAcJoHI6r/82gHS+FoCEdAnDrY+jdpI3V9lChoBkdAaHM9HMEA52gHTeoCaAhHQJxAS1LJ0XB1fZQoaAZHQHB2DMV1wHZoB0v+aAhHQJxBsnw5NoJ1fZQoaAZHQG0cArhBJI1oB0v2aAhHQJxER4eLehx1fZQoaAZHQG7sAs9SuQpoB0vbaAhHQJxFfNzKcNJ1fZQoaAZHQG5IJBPbfxdoB0v2aAhHQJxG0U0vXbx1fZQoaAZHQG/tTjebd8BoB0vtaAhHQJxIH70nPVx1fZQoaAZHQHFPf73wkPdoB0vmaAhHQJxKlb1RLsd1fZQoaAZHQHHm0Bfa6BloB0v6aAhHQJxMFkUbkwN1fZQoaAZHQHFYKQ7tAs1oB0vsaAhHQJxNY8gZCOZ1fZQoaAZHQHDaZcgQpWpoB0vLaAhHQJxOf7m+0w91fZQoaAZHQG+vt+CsfaJoB00EAWgIR0CcT+7SiM5wdX2UKGgGR0BwBjlhgE2YaAdNCgFoCEdAnFKSdJ8OTnV9lChoBkdAc1gFPi1iOWgHTT4BaAhHQJxU+2/i5ut1fZQoaAZHQGc6yteUpuxoB03KAWgIR0CcWE28IzFddX2UKGgGR0BQuxClabF1aAdLvWgIR0CcW4m4RVZLdX2UKGgGR0Bww7ovBacJaAdNAgFoCEdAnFz6kIomX3V9lChoBkdAcU5wu/UONGgHS+JoCEdAnF49XtBv73V9lChoBkdAcKvkHD766GgHTQkBaAhHQJxfsMPSUkh1fZQoaAZHQHGswUg0TDhoB0veaAhHQJxiHj81n/V1fZQoaAZHQFUSqM3qAz5oB0vEaAhHQJxjNqHoHLR1fZQoaAZHQHOGdmg8KXxoB0vlaAhHQJxkgrEtNBZ1fZQoaAZHQG7UCDM/yG1oB00XAWgIR0CcZgkMCtA+dX2UKGgGR0BybbU9ZA6daAdL92gIR0CcaJMMqjJudX2UKGgGR0Bu4rqKP4mDaAdL92gIR0CcafQCjk+5dX2UKGgGR0Bynh53Tuv2aAdL8WgIR0Cca0pKjBVNdX2UKGgGR0BxxZoakyk9aAdL92gIR0CcbKenhsIndX2UKGgGR0ByeL3h4t6HaAdL+WgIR0CcbzhnJ1aGdX2UKGgGR0BzbkcDKYAsaAdNFAFoCEdAnHC3Y150KnV9lChoBkdAVOmXeFcps2gHS5FoCEdAnHGNz4k/r3V9lChoBkdAbtz+5OJtSGgHTREBaAhHQJxzDw+dK/V1fZQoaAZHQFGsRjjJdSloB0ucaAhHQJxz6NYKYzB1fZQoaAZHQHJqVVcUuctoB0vNaAhHQJx2PqZ+hGp1fZQoaAZHQHNz3XAdn01oB0v4aAhHQJx3r0voNd91fZQoaAZHQHIBv1UVBUtoB0vsaAhHQJx5GW5Yoy91fZQoaAZHQHMl4uCf6GhoB00HAWgIR0Cceo2fChvjdX2UKGgGR0BMJ6DGtITXaAdLjGgIR0Cce1OoYNy6dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 3908,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWVpQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRwK0YyJ9GimEZ2YRDAjmClwCMA2luY5SKEWkkbwthfc088Rrq/FBNp5wAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUigWm41zsAHVidWIu",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": "Generator(PCG64)"
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3a7a1b1ad4db6609df72e0ad7215d1f5b06682617ce8fa2cf95eed03f126a22
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92f160d9db56d6ac269e6764b115f7eaef311711967f2c9e2bddd51f71f9f919
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (184 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 275.75040090000005, "std_reward": 19.100764425004073, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-12T16:42:59.064386"}
|