--- license: mit base_model: flaubert/flaubert_base_cased tags: - generated_from_keras_callback model-index: - name: complexity_90mChildCorpora_model results: [] --- # complexity_90mChildCorpora_model This model is a fine-tuned version of [flaubert/flaubert_base_cased](https://huggingface.co/flaubert/flaubert_base_cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1001 - Validation Loss: 0.0943 - Train Accuracy: 0.9661 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 196040, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.1175 | 0.1154 | 0.9661 | 0 | | 0.1009 | 0.0963 | 0.9661 | 1 | | 0.1001 | 0.0943 | 0.9661 | 2 | ### Framework versions - Transformers 4.36.0 - TensorFlow 2.13.1 - Datasets 2.15.0 - Tokenizers 0.15.0