chrlie commited on
Commit
4781cd4
·
1 Parent(s): 9338f22

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 256.76 +/- 18.79
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7caa22ffa320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7caa22ffa3b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7caa22ffa440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7caa22ffa4d0>", "_build": "<function ActorCriticPolicy._build at 0x7caa22ffa560>", "forward": "<function ActorCriticPolicy.forward at 0x7caa22ffa5f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7caa22ffa680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7caa22ffa710>", "_predict": "<function ActorCriticPolicy._predict at 0x7caa22ffa7a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7caa22ffa830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7caa22ffa8c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7caa22ffa950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7caa22f9ef40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697626114938205806, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr517xIJ5C6a3SZOEn/OrY0DY2626OvtwAAgD8AAIA/MwHSvDhlsT9A5Pu+sjqNvi39GTwQz1u9AAAAAAAAAABqFlO+RBQtP/Mu+T3cRNO+0K0KvrdgED4AAAAAAAAAAGDxpr6mc28/x7AEPcdHyL5Ag9q+FzMqPgAAAAAAAAAAZpEvPXswoLqFzAg3ZwMXMhbgArt01R62AACAPwAAgD9mRyE9bKbJu3FUrzvtO4U8yrIhvVAlYj0AAIA/AACAP+bxPD1Bz8S8Yss7u7nkGD1U5S6+Yz3mPQAAgD8AAIA/M1Q9PRwWDD/I1BE925CcvgpKpz2FAho9AAAAAAAAAABAaKM9y9BzP9ZJfD1Ke8m+tNDaPPsGEr4AAAAAAAAAACA9dz7bbTY/TZOvvcX5sL4Q+EQ+tQ1OvQAAAAAAAAAAs2/GPeTp9j2O4+W9YdpFvuWHRz1Fe8q7AAAAAAAAAAAmuRS++PD5PoU/Qz7rZZa+H2YJPYwDxj0AAAAAAAAAAPPDLD7jjsw++G1pvjHKZL4qBhS8WoEVPQAAAAAAAAAA5oQpvXsOobr43SqzqlMCsDQQ0riLV84zAACAPwAAgD/NAZq9TJ7UPkavtD2cjYC+w2wsvRoFhzsAAAAAAAAAAA1opb1t32E/o5CDO6qx0r7koi+9j2kcPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEfQZOzpouMAWyUTRcBjAF0lEdAnp4VDjR2KXV9lChoBkdAS4Tdk8Rtg2gHS85oCEdAnp5dvn8sMHV9lChoBkdAbYoLE1l5GGgHTSgBaAhHQJ6e4DxLCep1fZQoaAZHQHGTb08NhE1oB00RAWgIR0Cen2MCLdeqdX2UKGgGR0BKZI1tO2y+aAdL12gIR0Cen5df9gnddX2UKGgGR0Bt65I1+AmRaAdNMgFoCEdAnqDCX6ZYxXV9lChoBkdAbPXd3Sro4mgHTS0BaAhHQJ6hlNFjNIN1fZQoaAZHQFN+v5P/JeVoB00GAWgIR0Ceol9Wp6yCdX2UKGgGR0Bx3la2WpqAaAdL/mgIR0Ceo+QHRkVfdX2UKGgGR0ByFI7hegL7aAdNPgFoCEdAnqPweJYT03V9lChoBkdAcXiYqG1x82gHTRABaAhHQJ6kow22oeh1fZQoaAZHQHECp1zQu29oB00XAWgIR0CepZrB0p3HdX2UKGgGR0ByHGpBHCoCaAdNMgFoCEdAnqWZsKsuF3V9lChoBkdAb9IvllsguGgHTTYBaAhHQJ6mj4dp7C11fZQoaAZHQG1gnR1HOKRoB00TAWgIR0CeptNRWLgodX2UKGgGR0BuqR5JK8L8aAdNJAFoCEdAnqc1zMibD3V9lChoBkdAccvf/3nIQ2gHTRABaAhHQJ6nWfthNM51fZQoaAZHQHBeDhDPWx1oB00dAWgIR0Cep2ezlcQidX2UKGgGR0BvFBHd43WGaAdNBgFoCEdAnqhdRWLgoHV9lChoBkdAb/6HyEtdzGgHTR8BaAhHQJ6pnctXgcd1fZQoaAZHQG+mg1m8M/hoB01YAWgIR0CeqrUdaMaTdX2UKGgGR0BuNEuJ1q33aAdNLAFoCEdAnqvp1Ng0CXV9lChoBkdAbp4irT6SDGgHTTkBaAhHQJ6t9ddE9dN1fZQoaAZHQHKmUGJN0vJoB0v2aAhHQJ6uZ53Tuv51fZQoaAZHQHCA68cuJ1toB00sAWgIR0CersbcoH9ndX2UKGgGR0ByJTv+fh/BaAdL9WgIR0CerwMOPNmldX2UKGgGR0BQLv16E8JVaAdLxmgIR0CesQ3M6ij+dX2UKGgGR0ByRbA9FF2FaAdNDQFoCEdAnrEpudf9gnV9lChoBkdAcawEBKcurmgHTTMBaAhHQJ6xTZ6D5CZ1fZQoaAZHQHGxTfWMCLdoB00lAWgIR0Ceskd92HLzdX2UKGgGR0BwnuZjQRf4aAdNBwFoCEdAnrLNeUpuuXV9lChoBkdAbNORV6u4gGgHTSMBaAhHQJ6zNEBsANp1fZQoaAZHQHDy1lCkXUJoB005AWgIR0CetP6NEPUbdX2UKGgGR0BzBQGbCrLhaAdNSQFoCEdAnrYAOz6acHV9lChoBkdAcPD4REnb7GgHTVkBaAhHQJ62JQ40dil1fZQoaAZHQHEa+IInjQ1oB00aAWgIR0Cet/+r2g3+dX2UKGgGR0BxO3+sHSncaAdNPQFoCEdAnrhDa9K28nV9lChoBkdAcg/ujh1klWgHTQMBaAhHQJ64TSqlxfh1fZQoaAZHQE89ddmg8KZoB0vUaAhHQJ65Avi97F91fZQoaAZHQFG52qkuYhNoB0vqaAhHQJ65gYZVGTd1fZQoaAZHQHBJOCPIXCVoB0v2aAhHQJ65oF8ohIR1fZQoaAZHQCLMmOU+s5poB0vPaAhHQJ66KIqLCN11fZQoaAZHQFDXCTUy57RoB0vNaAhHQJ66u9oN/fB1fZQoaAZHQHEYLU1AJLNoB01GAWgIR0CezFQ0XP7fdX2UKGgGR0BxUA5QxesxaAdNKwFoCEdAns3JlrdnCnV9lChoBkdAcyvz1bqyGGgHTT0BaAhHQJ7OKeCkGiZ1fZQoaAZHQG4/DDbah6BoB00RAWgIR0CezjeQdS2qdX2UKGgGR0BsyL06HTJAaAdNHgFoCEdAns5ipNsWPHV9lChoBkdAbZli0fHPvGgHTQ0BaAhHQJ7PH7m+0w91fZQoaAZHQHHb5ItlI3BoB00VAWgIR0Ce0ADM/yG0dX2UKGgGR0Bx9q+i8FpxaAdNOQFoCEdAntEQMlTm4nV9lChoBkdAcP1NayKNymgHTREBaAhHQJ7RLwH7gsN1fZQoaAZHQHLe4fr8iwBoB00DAWgIR0Ce0YDGLk0adX2UKGgGR0Burm+h4+r3aAdNJAFoCEdAntH42n8893V9lChoBkdAcB0NcGC7LGgHTSwBaAhHQJ7SMssg+yJ1fZQoaAZHQHK5/boKUmloB00SAWgIR0Ce0m5Gz8gqdX2UKGgGR0BwLZPM0P6LaAdNDAFoCEdAntLhciW3SnV9lChoBkdAbVJizcAR02gHTScBaAhHQJ7TGLxZuAJ1fZQoaAZHQG4prPMSsbNoB009AWgIR0Ce1NsVLzwudX2UKGgGR0Bxl7sVtXPraAdNLgFoCEdAntbJT6zmfXV9lChoBkdAcqO4Pf8/EGgHTTIBaAhHQJ7XZNZeRgZ1fZQoaAZHQHB4A2ETQE9oB01qAWgIR0Ce13EWIoE0dX2UKGgGR0BwidxWDHwPaAdNMwFoCEdAntd+UliSaHV9lChoBkdAbILArxy4nWgHTTkBaAhHQJ7X2ctoSL91fZQoaAZHQG/usWO6unxoB000AWgIR0Ce2JcfvF3qdX2UKGgGR0Bw6F0+1SflaAdNHwFoCEdAntjj1XeWOnV9lChoBkdAOv0i2UjcEmgHS8RoCEdAntj+w5eZ5XV9lChoBkdAbwg4uscQy2gHTREBaAhHQJ7ZZm6Gxlh1fZQoaAZHQHIXDfvWpZRoB00AAWgIR0Ce2bbwz+FUdX2UKGgGR0Bw57NX5nDjaAdNHQFoCEdAntnTXBguy3V9lChoBkdAbj+FuejEemgHTQ4BaAhHQJ7abWRRuTB1fZQoaAZHQHDmHMyJsO5oB00fAWgIR0Ce2qjebd8BdX2UKGgGR0Bx2luJk5IZaAdNRwFoCEdAntsMUM5OrXV9lChoBkdAb2Q17Y02tWgHTSYBaAhHQJ7bmAhB7eF1fZQoaAZHQHE5AIyCWeJoB00wAWgIR0Ce3ZJOnEVGdX2UKGgGR0Byotb9qDbraAdNEQFoCEdAnt8fLDAJs3V9lChoBkdAT8sRg7YChmgHS9poCEdAnt9shs67unV9lChoBkdAb2CjzqbBoGgHTR8BaAhHQJ7fiuX/o7p1fZQoaAZHQHEXYKQaJhxoB00HAWgIR0Ce3/ht+CsfdX2UKGgGR0BxopFEy+HraAdNCAFoCEdAnuBWnbZezHV9lChoBkdAc4BA1ejVQWgHTTwBaAhHQJ7glJf6XSl1fZQoaAZHQHHrhNZeRgZoB007AWgIR0Ce4Pk1dgOSdX2UKGgGR0BxIARTS9dvaAdNGgFoCEdAnuEVBppN9HV9lChoBkdAcE+WC2+fy2gHTR0BaAhHQJ7idqBVdX11fZQoaAZHQHJc2Nm16VtoB02AAWgIR0Ce4qZWJaaDdX2UKGgGR0BwKhelbeMyaAdNEQFoCEdAnuOPgzguRXV9lChoBkdAcjNYAsCkoGgHTUMBaAhHQJ7kJ+Vkc0d1fZQoaAZHQG6ygF5fMOhoB00lAWgIR0Ce5P5HVf/ndX2UKGgGR0Bxu29AX2ugaAdNFwFoCEdAnuVdLpRoAXV9lChoBkdAcRUH4Glhw2gHTXMBaAhHQJ7m8lb/wRZ1fZQoaAZHQHHNOZLIxQBoB00tAWgIR0Ce6RpuuRs/dX2UKGgGR0BtMZPZZjhDaAdNAAFoCEdAnukyTpxFRnV9lChoBkdATdXhIe5nUWgHS+ZoCEdAnumU/B3zMHV9lChoBkdAcdrOuq3mWGgHTQwBaAhHQJ7qPJr+Hah1fZQoaAZHQEjH8O09hZ1oB0vvaAhHQJ7qSjoIOYp1fZQoaAZHQG5jWdmQKa5oB00TAWgIR0Ce6xvC/GlzdX2UKGgGR0BvwWg13t8eaAdNAgFoCEdAnuvMtPHktHV9lChoBkdAcMKkrPMSsmgHTTQBaAhHQJ7r36vaDf51fZQoaAZHQHBakZm7J4loB00NAWgIR0Ce7B3solUqdX2UKGgGR0BxiKTFERapaAdNHgFoCEdAnu5hXXAdn3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:124fd863c54e10e67bbcdcbf30442c6850cfcf955ead03e866017e7ea1cce7be
3
+ size 146739
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7caa22ffa320>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7caa22ffa3b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7caa22ffa440>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7caa22ffa4d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7caa22ffa560>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7caa22ffa5f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7caa22ffa680>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7caa22ffa710>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7caa22ffa7a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7caa22ffa830>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7caa22ffa8c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7caa22ffa950>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7caa22f9ef40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1697626114938205806,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr517xIJ5C6a3SZOEn/OrY0DY2626OvtwAAgD8AAIA/MwHSvDhlsT9A5Pu+sjqNvi39GTwQz1u9AAAAAAAAAABqFlO+RBQtP/Mu+T3cRNO+0K0KvrdgED4AAAAAAAAAAGDxpr6mc28/x7AEPcdHyL5Ag9q+FzMqPgAAAAAAAAAAZpEvPXswoLqFzAg3ZwMXMhbgArt01R62AACAPwAAgD9mRyE9bKbJu3FUrzvtO4U8yrIhvVAlYj0AAIA/AACAP+bxPD1Bz8S8Yss7u7nkGD1U5S6+Yz3mPQAAgD8AAIA/M1Q9PRwWDD/I1BE925CcvgpKpz2FAho9AAAAAAAAAABAaKM9y9BzP9ZJfD1Ke8m+tNDaPPsGEr4AAAAAAAAAACA9dz7bbTY/TZOvvcX5sL4Q+EQ+tQ1OvQAAAAAAAAAAs2/GPeTp9j2O4+W9YdpFvuWHRz1Fe8q7AAAAAAAAAAAmuRS++PD5PoU/Qz7rZZa+H2YJPYwDxj0AAAAAAAAAAPPDLD7jjsw++G1pvjHKZL4qBhS8WoEVPQAAAAAAAAAA5oQpvXsOobr43SqzqlMCsDQQ0riLV84zAACAPwAAgD/NAZq9TJ7UPkavtD2cjYC+w2wsvRoFhzsAAAAAAAAAAA1opb1t32E/o5CDO6qx0r7koi+9j2kcPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEfQZOzpouMAWyUTRcBjAF0lEdAnp4VDjR2KXV9lChoBkdAS4Tdk8Rtg2gHS85oCEdAnp5dvn8sMHV9lChoBkdAbYoLE1l5GGgHTSgBaAhHQJ6e4DxLCep1fZQoaAZHQHGTb08NhE1oB00RAWgIR0Cen2MCLdeqdX2UKGgGR0BKZI1tO2y+aAdL12gIR0Cen5df9gnddX2UKGgGR0Bt65I1+AmRaAdNMgFoCEdAnqDCX6ZYxXV9lChoBkdAbPXd3Sro4mgHTS0BaAhHQJ6hlNFjNIN1fZQoaAZHQFN+v5P/JeVoB00GAWgIR0Ceol9Wp6yCdX2UKGgGR0Bx3la2WpqAaAdL/mgIR0Ceo+QHRkVfdX2UKGgGR0ByFI7hegL7aAdNPgFoCEdAnqPweJYT03V9lChoBkdAcXiYqG1x82gHTRABaAhHQJ6kow22oeh1fZQoaAZHQHECp1zQu29oB00XAWgIR0CepZrB0p3HdX2UKGgGR0ByHGpBHCoCaAdNMgFoCEdAnqWZsKsuF3V9lChoBkdAb9IvllsguGgHTTYBaAhHQJ6mj4dp7C11fZQoaAZHQG1gnR1HOKRoB00TAWgIR0CeptNRWLgodX2UKGgGR0BuqR5JK8L8aAdNJAFoCEdAnqc1zMibD3V9lChoBkdAccvf/3nIQ2gHTRABaAhHQJ6nWfthNM51fZQoaAZHQHBeDhDPWx1oB00dAWgIR0Cep2ezlcQidX2UKGgGR0BvFBHd43WGaAdNBgFoCEdAnqhdRWLgoHV9lChoBkdAb/6HyEtdzGgHTR8BaAhHQJ6pnctXgcd1fZQoaAZHQG+mg1m8M/hoB01YAWgIR0CeqrUdaMaTdX2UKGgGR0BuNEuJ1q33aAdNLAFoCEdAnqvp1Ng0CXV9lChoBkdAbp4irT6SDGgHTTkBaAhHQJ6t9ddE9dN1fZQoaAZHQHKmUGJN0vJoB0v2aAhHQJ6uZ53Tuv51fZQoaAZHQHCA68cuJ1toB00sAWgIR0CersbcoH9ndX2UKGgGR0ByJTv+fh/BaAdL9WgIR0CerwMOPNmldX2UKGgGR0BQLv16E8JVaAdLxmgIR0CesQ3M6ij+dX2UKGgGR0ByRbA9FF2FaAdNDQFoCEdAnrEpudf9gnV9lChoBkdAcawEBKcurmgHTTMBaAhHQJ6xTZ6D5CZ1fZQoaAZHQHGxTfWMCLdoB00lAWgIR0Ceskd92HLzdX2UKGgGR0BwnuZjQRf4aAdNBwFoCEdAnrLNeUpuuXV9lChoBkdAbNORV6u4gGgHTSMBaAhHQJ6zNEBsANp1fZQoaAZHQHDy1lCkXUJoB005AWgIR0CetP6NEPUbdX2UKGgGR0BzBQGbCrLhaAdNSQFoCEdAnrYAOz6acHV9lChoBkdAcPD4REnb7GgHTVkBaAhHQJ62JQ40dil1fZQoaAZHQHEa+IInjQ1oB00aAWgIR0Cet/+r2g3+dX2UKGgGR0BxO3+sHSncaAdNPQFoCEdAnrhDa9K28nV9lChoBkdAcg/ujh1klWgHTQMBaAhHQJ64TSqlxfh1fZQoaAZHQE89ddmg8KZoB0vUaAhHQJ65Avi97F91fZQoaAZHQFG52qkuYhNoB0vqaAhHQJ65gYZVGTd1fZQoaAZHQHBJOCPIXCVoB0v2aAhHQJ65oF8ohIR1fZQoaAZHQCLMmOU+s5poB0vPaAhHQJ66KIqLCN11fZQoaAZHQFDXCTUy57RoB0vNaAhHQJ66u9oN/fB1fZQoaAZHQHEYLU1AJLNoB01GAWgIR0CezFQ0XP7fdX2UKGgGR0BxUA5QxesxaAdNKwFoCEdAns3JlrdnCnV9lChoBkdAcyvz1bqyGGgHTT0BaAhHQJ7OKeCkGiZ1fZQoaAZHQG4/DDbah6BoB00RAWgIR0CezjeQdS2qdX2UKGgGR0BsyL06HTJAaAdNHgFoCEdAns5ipNsWPHV9lChoBkdAbZli0fHPvGgHTQ0BaAhHQJ7PH7m+0w91fZQoaAZHQHHb5ItlI3BoB00VAWgIR0Ce0ADM/yG0dX2UKGgGR0Bx9q+i8FpxaAdNOQFoCEdAntEQMlTm4nV9lChoBkdAcP1NayKNymgHTREBaAhHQJ7RLwH7gsN1fZQoaAZHQHLe4fr8iwBoB00DAWgIR0Ce0YDGLk0adX2UKGgGR0Burm+h4+r3aAdNJAFoCEdAntH42n8893V9lChoBkdAcB0NcGC7LGgHTSwBaAhHQJ7SMssg+yJ1fZQoaAZHQHK5/boKUmloB00SAWgIR0Ce0m5Gz8gqdX2UKGgGR0BwLZPM0P6LaAdNDAFoCEdAntLhciW3SnV9lChoBkdAbVJizcAR02gHTScBaAhHQJ7TGLxZuAJ1fZQoaAZHQG4prPMSsbNoB009AWgIR0Ce1NsVLzwudX2UKGgGR0Bxl7sVtXPraAdNLgFoCEdAntbJT6zmfXV9lChoBkdAcqO4Pf8/EGgHTTIBaAhHQJ7XZNZeRgZ1fZQoaAZHQHB4A2ETQE9oB01qAWgIR0Ce13EWIoE0dX2UKGgGR0BwidxWDHwPaAdNMwFoCEdAntd+UliSaHV9lChoBkdAbILArxy4nWgHTTkBaAhHQJ7X2ctoSL91fZQoaAZHQG/usWO6unxoB000AWgIR0Ce2JcfvF3qdX2UKGgGR0Bw6F0+1SflaAdNHwFoCEdAntjj1XeWOnV9lChoBkdAOv0i2UjcEmgHS8RoCEdAntj+w5eZ5XV9lChoBkdAbwg4uscQy2gHTREBaAhHQJ7ZZm6Gxlh1fZQoaAZHQHIXDfvWpZRoB00AAWgIR0Ce2bbwz+FUdX2UKGgGR0Bw57NX5nDjaAdNHQFoCEdAntnTXBguy3V9lChoBkdAbj+FuejEemgHTQ4BaAhHQJ7abWRRuTB1fZQoaAZHQHDmHMyJsO5oB00fAWgIR0Ce2qjebd8BdX2UKGgGR0Bx2luJk5IZaAdNRwFoCEdAntsMUM5OrXV9lChoBkdAb2Q17Y02tWgHTSYBaAhHQJ7bmAhB7eF1fZQoaAZHQHE5AIyCWeJoB00wAWgIR0Ce3ZJOnEVGdX2UKGgGR0Byotb9qDbraAdNEQFoCEdAnt8fLDAJs3V9lChoBkdAT8sRg7YChmgHS9poCEdAnt9shs67unV9lChoBkdAb2CjzqbBoGgHTR8BaAhHQJ7fiuX/o7p1fZQoaAZHQHEXYKQaJhxoB00HAWgIR0Ce3/ht+CsfdX2UKGgGR0BxopFEy+HraAdNCAFoCEdAnuBWnbZezHV9lChoBkdAc4BA1ejVQWgHTTwBaAhHQJ7glJf6XSl1fZQoaAZHQHHrhNZeRgZoB007AWgIR0Ce4Pk1dgOSdX2UKGgGR0BxIARTS9dvaAdNGgFoCEdAnuEVBppN9HV9lChoBkdAcE+WC2+fy2gHTR0BaAhHQJ7idqBVdX11fZQoaAZHQHJc2Nm16VtoB02AAWgIR0Ce4qZWJaaDdX2UKGgGR0BwKhelbeMyaAdNEQFoCEdAnuOPgzguRXV9lChoBkdAcjNYAsCkoGgHTUMBaAhHQJ7kJ+Vkc0d1fZQoaAZHQG6ygF5fMOhoB00lAWgIR0Ce5P5HVf/ndX2UKGgGR0Bxu29AX2ugaAdNFwFoCEdAnuVdLpRoAXV9lChoBkdAcRUH4Glhw2gHTXMBaAhHQJ7m8lb/wRZ1fZQoaAZHQHHNOZLIxQBoB00tAWgIR0Ce6RpuuRs/dX2UKGgGR0BtMZPZZjhDaAdNAAFoCEdAnukyTpxFRnV9lChoBkdATdXhIe5nUWgHS+ZoCEdAnumU/B3zMHV9lChoBkdAcdrOuq3mWGgHTQwBaAhHQJ7qPJr+Hah1fZQoaAZHQEjH8O09hZ1oB0vvaAhHQJ7qSjoIOYp1fZQoaAZHQG5jWdmQKa5oB00TAWgIR0Ce6xvC/GlzdX2UKGgGR0BvwWg13t8eaAdNAgFoCEdAnuvMtPHktHV9lChoBkdAcMKkrPMSsmgHTTQBaAhHQJ7r36vaDf51fZQoaAZHQHBakZm7J4loB00NAWgIR0Ce7B3solUqdX2UKGgGR0BxiKTFERapaAdNHgFoCEdAnu5hXXAdn3VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79f2357895ffd71fd1373ef8f05621af00c60fa5ae7633ff05756c10ef8fbd2b
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a70a8108b0ba276db7847e9e1c840f1934303df31159bcd13cc0cb7b226c6311
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (178 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.755662, "std_reward": 18.79173226315488, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-18T11:12:09.386456"}