# coding=utf-8 # Copyright 2023 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch PONET model.""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, SequenceClassifierOutput, ) from transformers.modeling_utils import PreTrainedModel from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from transformers.utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_ponet import PoNetConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "ponet-base" _CONFIG_FOR_DOC = "PoNetConfig" PONET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "chtan/ponet-base-uncased", # See all PoNet models at https://huggingface.co/models?filter=ponet ] # XXX: get from tokenizer CLS_ID = 101 EOS_ID = 102 def segment_max(src, index, dim=1): out = torch.zeros_like(src).scatter_reduce( dim, index.unsqueeze(-1).expand_as(src), src, reduce="amax", include_self=False ) dummy = index.unsqueeze(-1).expand(*index.shape[:2], out.size(-1)) return torch.gather(out, dim, dummy).to(dtype=src.dtype) def get_segment_index(input_ids, cls_id=CLS_ID, eos_id=EOS_ID): mask = (input_ids == cls_id).to(dtype=torch.long) + (input_ids == eos_id).to(dtype=torch.long) mask = mask + torch.cat([torch.zeros_like(mask[:, 0:1]), mask[:, :-1]], dim=1) num_segments = input_ids[:, :1] == cls_id segment_idx = mask.cumsum(dim=1) return torch.where(num_segments == 0, segment_idx, segment_idx - 1) def get_token_type_mask(input_ids, cls_id=CLS_ID, eos_id=EOS_ID): mask = (input_ids == cls_id) | (input_ids == eos_id) return mask def get_win_max(hidden_states, kernel_size=3): m = nn.MaxPool1d(kernel_size, stride=1, padding=kernel_size // 2) out = m(hidden_states.permute(0, 2, 1)).permute(0, 2, 1) return out # Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->PoNet class PoNetEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values_length: int = 0, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class PoNetSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.clsgsepg = getattr(config, "clsgsepg", True) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.dense_local = nn.Linear(config.hidden_size, config.hidden_size) self.dense_segment = nn.Linear(config.hidden_size, config.hidden_size) self.dense_q = nn.Linear(config.hidden_size, self.all_head_size) self.dense_k = nn.Linear(config.hidden_size, self.all_head_size) self.dense_o = nn.Linear(config.hidden_size, self.all_head_size) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, segment_index: torch.LongTensor, token_type_mask: torch.LongTensor, attention_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: context_layer_q = self.transpose_for_scores(self.dense_q(hidden_states)) context_layer_k = self.transpose_for_scores(self.dense_k(hidden_states)) context_layer_v = context_layer_k context_layer_o = self.transpose_for_scores(self.dense_o(hidden_states)) if attention_mask is not None: _attention_mask = attention_mask.squeeze(1).unsqueeze(-1) < -1 if attention_mask is not None: context_layer_q.masked_fill_(_attention_mask, 0.0) q = context_layer_q.sum(dim=-2) / torch.ones_like(_attention_mask).to( dtype=context_layer_q.dtype ).masked_fill(_attention_mask, 0.0).sum(dim=-2) else: q = context_layer_q.mean(dim=-2) att = torch.einsum("bdh,bdlh -> bdl", q, context_layer_k) / math.sqrt(context_layer_q.shape[-1]) if attention_mask is not None: att = att + attention_mask.squeeze(1) att_prob = att.softmax(dim=-1) v = torch.einsum("bdlh,bdl->bdh", context_layer_v, att_prob) context_layer_segment = self.dense_segment(hidden_states) context_layer_local = self.dense_local(hidden_states) if attention_mask is not None: context_layer_local.masked_fill_(_attention_mask.squeeze(1), -10000) context_layer_segment.masked_fill_(_attention_mask.squeeze(1), -10000) if self.clsgsepg: # XXX: a trick to make sure the segment and local information will not leak context_layer_local = get_win_max( context_layer_local.masked_fill(token_type_mask.unsqueeze(dim=-1), -10000) ) context_layer_segment = segment_max(context_layer_segment, index=segment_index) context_layer_segment.masked_fill_(token_type_mask.unsqueeze(dim=-1), 0.0) context_layer_local.masked_fill_(token_type_mask.unsqueeze(dim=-1), 0.0) else: context_layer_local = get_win_max(context_layer_local) context_layer_segment = segment_max(context_layer_segment, index=segment_index) context_layer_local = self.transpose_for_scores(context_layer_local) context_layer_segment = self.transpose_for_scores(context_layer_segment) context_layer = (v.unsqueeze(dim=-2) + context_layer_segment) * context_layer_o + context_layer_local context_layer = context_layer.permute(0, 2, 1, 3).reshape(*hidden_states.shape[:2], -1) if attention_mask is not None: context_layer.masked_fill_(_attention_mask.squeeze(1), 0.0) outputs = (context_layer, att_prob) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->PoNet class PoNetSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class PoNetAttention(nn.Module): def __init__(self, config): super().__init__() self.self = PoNetSelfAttention(config) self.output = PoNetSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, segment_index: torch.LongTensor, token_type_mask: torch.LongTensor, attention_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, segment_index, token_type_mask, attention_mask, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->PoNet class PoNetIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->PoNet class PoNetOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class PoNetLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = PoNetAttention(config) config.is_decoder = False # XXX: Decoder is not yet impletemented. self.is_decoder = config.is_decoder self.intermediate = PoNetIntermediate(config) self.output = PoNetOutput(config) def forward( self, hidden_states: torch.Tensor, segment_index: torch.LongTensor, token_type_mask: torch.LongTensor, attention_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attention_outputs = self.attention( hidden_states, segment_index, token_type_mask, attention_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class PoNetEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([PoNetLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, segment_index: torch.LongTensor, token_type_mask: torch.LongTensor, attention_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, segment_index, token_type_mask, attention_mask, ) else: layer_outputs = layer_module( hidden_states, segment_index, token_type_mask, attention_mask, output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, all_hidden_states, all_self_attentions, ] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->PoNet class PoNetPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->PoNet class PoNetPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->PoNet class PoNetLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = PoNetPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->PoNet class PoNetOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = PoNetLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores # Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->PoNet class PoNetOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score class PoNetOnlySSOHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 3) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score class PoNetPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = PoNetLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 3) # 3 classes: sentence structural objective (SSO) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class PoNetPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = PoNetConfig base_model_prefix = "ponet" supports_gradient_checkpointing = True _keys_to_ignore_on_load_missing = [r"position_ids"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, PoNetEncoder): module.gradient_checkpointing = value @dataclass class PoNetForPreTrainingOutput(ModelOutput): """ Output type of [*PoNetForPreTraining*]. Args: loss (*optional*, returned when *labels* is provided, *torch.FloatTensor* of shape *(1,)*): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. mlm_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Masked language modeling loss. sso_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): sso loss. prediction_logits (*torch.FloatTensor* of shape *(batch_size, sequence_length, config.vocab_size)*): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (*torch.FloatTensor* of shape *(batch_size, 3)*): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (*tuple(torch.FloatTensor)*, *optional*, returned when *output_hidden_states=True* is passed or when *config.output_hidden_states=True*): Tuple of *torch.FloatTensor* (one for the output of the embeddings + one for the output of each layer) of shape *(batch_size, sequence_length, hidden_size)*. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (*tuple(torch.FloatTensor)*, *optional*, returned when *output_attentions=True* is passed or when *config.output_attentions=True*): Tuple of *torch.FloatTensor* (one for each layer) of shape *(batch_size, num_heads, sequence_length, sequence_length)*. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None mlm_loss: Optional[torch.FloatTensor] = None sso_loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None PONET_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ PONET_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare PoNet Model transformer outputting raw hidden-states without any specific head on top.", PONET_START_DOCSTRING, ) class PoNetModel(PoNetPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = PoNetEmbeddings(config) self.encoder = PoNetEncoder(config) self.pooler = PoNetPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(PONET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, segment_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) segment_index = get_segment_index(input_ids) if segment_ids is None else segment_ids token_type_mask = get_token_type_mask(input_ids) encoder_outputs = self.encoder( embedding_output, segment_index, token_type_mask, attention_mask=extended_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ PoNet Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, PONET_START_DOCSTRING, ) class PoNetForPreTraining(PoNetPreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids", r"cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.ponet = PoNetModel(config) self.cls = PoNetPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PONET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=PoNetForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, segment_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, sentence_structural_label: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], PoNetForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` sentence_structural_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sentence structural objective (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1, 2]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence A is a continuation of sequence B, - 2 indicates sequence B is a random sequence. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. Returns: Example: ```python >>> from transformers import AutoTokenizer, PoNetForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("ponet-base") >>> model = PoNetForPreTraining.from_pretrained("ponet-base") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ponet( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, segment_ids=segment_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None masked_lm_loss = None sso_loss = None if labels is not None and sentence_structural_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) sso_loss = loss_fct(seq_relationship_score.view(-1, 3), sentence_structural_label.view(-1)) total_loss = masked_lm_loss + sso_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss, masked_lm_loss, sso_loss) + output) if total_loss is not None else output return PoNetForPreTrainingOutput( loss=total_loss, mlm_loss=masked_lm_loss, sso_loss=sso_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ PoNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, PONET_START_DOCSTRING, ) class PoNetForSequenceClassification(PoNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.ponet = PoNetModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PONET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, segment_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ponet( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, segment_ids=segment_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )