Add library_name and pipeline_tag to metadata
Browse filesThis PR adds the `library_name` and `pipeline_tag` to the model card metadata. The `library_name` is set to `transformers` given the model's compatibility with the Hugging Face Transformers library. The `pipeline_tag` is set to `text-generation` as the model is used for text generation tasks.
README.md
CHANGED
@@ -1,11 +1,13 @@
|
|
1 |
---
|
2 |
base_model:
|
3 |
- Qwen/Qwen2.5-7B-Instruct
|
4 |
-
license: apache-2.0
|
5 |
-
language:
|
6 |
-
- en
|
7 |
datasets:
|
8 |
- chtmp223/CLIPPER
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
# Qwen2.5-7B-CLIPPER
|
@@ -43,26 +45,4 @@ Please check [our paper](https://arxiv.org/abs/2502.14854) for more details on t
|
|
43 |
| learning_rate | 1.0e-6 |
|
44 |
| lr_scheduler_type | cosine |
|
45 |
| max_length | 131072 |
|
46 |
-
| num_train_epochs | 1 |
|
47 |
-
| optim | adamw_torch |
|
48 |
-
|
49 |
-
#### Software
|
50 |
-
|
51 |
-
Training code is adapted from [https://github.com/Qihoo360/360-LLaMA-Factory/tree/1b5398f539c7d94a530f3f32b53553a3b1928314](https://github.com/Qihoo360/360-LLaMA-Factory/tree/1b5398f539c7d94a530f3f32b53553a3b1928314).
|
52 |
-
|
53 |
-
## 🤗 Inference
|
54 |
-
Inference is done with [vLLM](https://github.com/vllm-project/vllm) on 1 A100-80GB.
|
55 |
-
|
56 |
-
## 📜 Citation
|
57 |
-
|
58 |
-
```
|
59 |
-
@misc{pham2025clippercompressionenableslongcontext,
|
60 |
-
title={CLIPPER: Compression enables long-context synthetic data generation},
|
61 |
-
author={Chau Minh Pham and Yapei Chang and Mohit Iyyer},
|
62 |
-
year={2025},
|
63 |
-
eprint={2502.14854},
|
64 |
-
archivePrefix={arXiv},
|
65 |
-
primaryClass={cs.CL},
|
66 |
-
url={https://arxiv.org/abs/2502.14854},
|
67 |
-
}
|
68 |
-
```
|
|
|
1 |
---
|
2 |
base_model:
|
3 |
- Qwen/Qwen2.5-7B-Instruct
|
|
|
|
|
|
|
4 |
datasets:
|
5 |
- chtmp223/CLIPPER
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
license: apache-2.0
|
9 |
+
library_name: transformers
|
10 |
+
pipeline_tag: text-generation
|
11 |
---
|
12 |
|
13 |
# Qwen2.5-7B-CLIPPER
|
|
|
45 |
| learning_rate | 1.0e-6 |
|
46 |
| lr_scheduler_type | cosine |
|
47 |
| max_length | 131072 |
|
48 |
+
| num_train_epochs | 1 |\n| optim | adamw_torch |\n\n#### Software\n\nTraining code is adapted from [https://github.com/Qihoo360/360-LLaMA-Factory/tree/1b5398f539c7d94a530f3f32b53553a3b1928314](https://github.com/Qihoo360/360-LLaMA-Factory/tree/1b5398f539c7d94a530f3f32b53553a3b1928314).\n\n## 🤗 Inference\nInference is done with [vLLM](https://github.com/vllm-project/vllm) on 1 A100-80GB. \n\n## 📜 Citation \n\n```\n@misc{pham2025clippercompressionenableslongcontext,\n title={CLIPPER: Compression enables long-context synthetic data generation}, \n author={Chau Minh Pham and Yapei Chang and Mohit Iyyer},\n year={2025},\n eprint={2502.14854},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n url={https://arxiv.org/abs/2502.14854}, \n}\n```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|