File size: 2,028 Bytes
6424b7f
 
 
 
 
 
 
 
 
 
 
c3d3fd8
6424b7f
 
 
 
 
 
c3d3fd8
dfe3e1b
6424b7f
c3d3fd8
6424b7f
c3d3fd8
6424b7f
 
 
888d989
6424b7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d3fd8
6424b7f
 
 
 
 
 
c3d3fd8
 
6424b7f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
library_name: transformers
language:
- twi
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
datasets:
- fsicoli/twi
model-index:
- name: SpeechT5 TTS Npontu Twi
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SpeechT5 TTS Npontu Twi
![image/png](https://snwolley.ai/static/img/snwolley_blue.png)

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the FsicoliTwi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3824

## Model description

Npontu Twi is designed to synthesize Twi-language speech with a focus on Ghanaian accents and cultural nuances. Leveraging pure language modeling, Npontu Twi offers high-quality, natural, and culturally relevant speech synthesis for diverse applications, including education, entertainment, and communication in Ghana and beyond.

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 0.4207        | 14.4928 | 1000 | 0.3869          |
| 0.41          | 28.9855 | 2000 | 0.3824          |


### Framework versions

- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0