script
Browse files
script.py
CHANGED
@@ -1,12 +1,360 @@
|
|
1 |
-
import
|
2 |
-
import numpy as np
|
3 |
import os
|
4 |
-
from
|
|
|
|
|
|
|
|
|
5 |
import timm
|
|
|
|
|
|
|
6 |
import torchvision.transforms as T
|
|
|
|
|
|
|
|
|
7 |
from PIL import Image
|
8 |
-
import
|
9 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def is_gpu_available():
|
12 |
"""Check if the python package `onnxruntime-gpu` is installed."""
|
@@ -48,63 +396,71 @@ class PytorchWorker:
|
|
48 |
return [-1]
|
49 |
|
50 |
|
51 |
-
def make_submission(
|
|
|
|
|
|
|
52 |
"""Make submission with given """
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
predictions = []
|
57 |
|
58 |
-
|
59 |
-
image_path = os.path.join(images_root_path, row.image_path) #.replace("jpg", "JPG"))
|
60 |
|
61 |
-
|
62 |
|
63 |
-
|
|
|
|
|
64 |
|
65 |
-
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
user_pred_df.loc[ix, 'class_id'] = -1
|
74 |
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
# import zipfile
|
84 |
|
85 |
-
|
86 |
-
# zip_ref.extractall("/tmp/data")
|
87 |
|
88 |
-
|
89 |
-
|
90 |
|
91 |
-
#
|
92 |
-
|
93 |
-
# model_path=MODEL_PATH,
|
94 |
-
# model_name=MODEL_NAME
|
95 |
-
# )
|
96 |
|
97 |
-
|
|
|
98 |
|
99 |
-
metadata_file_path = "
|
|
|
100 |
|
101 |
-
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
test_metadata=test_metadata,
|
105 |
-
model_path=MODEL_PATH,
|
106 |
-
model_name=MODEL_NAME,
|
107 |
-
images_root_path="../data/DF_FULL"
|
108 |
-
)
|
109 |
|
|
|
110 |
|
|
|
|
1 |
+
import io
|
|
|
2 |
import os
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
import timm
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
import torchvision.transforms as T
|
13 |
+
from albumentations import (CenterCrop, Compose, HorizontalFlip, Normalize,
|
14 |
+
PadIfNeeded, RandomBrightnessContrast, RandomCrop,
|
15 |
+
RandomResizedCrop, Resize, VerticalFlip)
|
16 |
+
from albumentations.pytorch import ToTensorV2
|
17 |
from PIL import Image
|
18 |
+
from timm.layers import LayerNorm2d, SelectAdaptivePool2d
|
19 |
+
from timm.models.metaformer import MlpHead
|
20 |
+
from torch.utils.data import DataLoader, Dataset
|
21 |
+
from tqdm import tqdm
|
22 |
+
|
23 |
+
DEFAULT_WIDTH = 518
|
24 |
+
DEFAULT_HEIGHT = 518
|
25 |
+
|
26 |
+
def get_transforms(*, data, model=None, width=None, height=None):
|
27 |
+
assert data in ("train", "valid")
|
28 |
+
|
29 |
+
width = width if width else DEFAULT_WIDTH
|
30 |
+
height = height if height else DEFAULT_HEIGHT
|
31 |
+
|
32 |
+
model_mean = list(model.default_cfg["mean"]) if model else (0.5, 0.5, 0.5)
|
33 |
+
model_std = list(model.default_cfg["std"]) if model else (0.5, 0.5, 0.5)
|
34 |
+
|
35 |
+
if data == "train":
|
36 |
+
return Compose(
|
37 |
+
[
|
38 |
+
RandomResizedCrop(width, height, scale=(0.6, 1.0)),
|
39 |
+
HorizontalFlip(p=0.5),
|
40 |
+
VerticalFlip(p=0.5),
|
41 |
+
RandomBrightnessContrast(p=0.2),
|
42 |
+
Normalize(mean=model_mean, std=model_std),
|
43 |
+
ToTensorV2(),
|
44 |
+
]
|
45 |
+
)
|
46 |
+
|
47 |
+
elif data == "valid":
|
48 |
+
return Compose(
|
49 |
+
[
|
50 |
+
Resize(width, height),
|
51 |
+
Normalize(mean=model_mean, std=model_std),
|
52 |
+
ToTensorV2(),
|
53 |
+
]
|
54 |
+
)
|
55 |
+
|
56 |
+
DIM = 518
|
57 |
+
BASE_PATH = "../data/DF_FULL"
|
58 |
+
|
59 |
+
def generate_embeddings(metadata_file_path, root_dir):
|
60 |
+
|
61 |
+
metadata_df = pd.read_csv(metadata_file_path)
|
62 |
+
|
63 |
+
transforms = get_transforms(data="valid", width=DIM, height=DIM)
|
64 |
+
|
65 |
+
test_dataset = ImageMetadataDataset(
|
66 |
+
metadata_df, local_filepath=root_dir, transform=transforms
|
67 |
+
)
|
68 |
+
|
69 |
+
loader = DataLoader(test_dataset, batch_size=3, shuffle=False, num_workers=4)
|
70 |
+
|
71 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
72 |
+
model = timm.create_model("timm/vit_large_patch14_reg4_dinov2.lvd142m", pretrained=True)
|
73 |
+
model = model.to(device)
|
74 |
+
model.eval()
|
75 |
+
|
76 |
+
all_embs = []
|
77 |
+
for data in tqdm(loader):
|
78 |
+
|
79 |
+
img, _ = data
|
80 |
+
img = img.to(device)
|
81 |
+
|
82 |
+
emb = model.forward(img)
|
83 |
+
|
84 |
+
all_embs.append(emb.detach().cpu().numpy())
|
85 |
+
|
86 |
+
all_embs = np.vstack(all_embs)
|
87 |
+
|
88 |
+
embs_list = [x for x in all_embs]
|
89 |
+
metadata_df["embedding"] = embs_list
|
90 |
+
|
91 |
+
return metadata_df
|
92 |
+
|
93 |
+
|
94 |
+
TIME = ['m0', 'm1', 'd0', 'd1']
|
95 |
+
GEO = ['g0', 'g1', 'g2', 'g3', 'g4', 'g5', 'g_float']
|
96 |
+
SUBSTRATE = ["substrate_0",
|
97 |
+
"substrate_1",
|
98 |
+
"substrate_2",
|
99 |
+
"substrate_3",
|
100 |
+
"substrate_4",
|
101 |
+
"substrate_5",
|
102 |
+
"substrate_6",
|
103 |
+
"substrate_7",
|
104 |
+
"substrate_8",
|
105 |
+
"substrate_9",
|
106 |
+
"substrate_10",
|
107 |
+
"substrate_11",
|
108 |
+
"substrate_12",
|
109 |
+
"substrate_13",
|
110 |
+
"substrate_14",
|
111 |
+
"substrate_15",
|
112 |
+
"substrate_16",
|
113 |
+
"substrate_17",
|
114 |
+
"substrate_18",
|
115 |
+
"substrate_19",
|
116 |
+
"substrate_20",
|
117 |
+
"substrate_21",
|
118 |
+
"substrate_22",
|
119 |
+
"substrate_23",
|
120 |
+
"substrate_24",
|
121 |
+
"substrate_25",
|
122 |
+
"substrate_26",
|
123 |
+
"substrate_27",
|
124 |
+
"substrate_28",
|
125 |
+
"substrate_29",
|
126 |
+
"substrate_30",
|
127 |
+
"metasubstrate_0",
|
128 |
+
"metasubstrate_1",
|
129 |
+
"metasubstrate_2",
|
130 |
+
"metasubstrate_3",
|
131 |
+
"metasubstrate_4",
|
132 |
+
"metasubstrate_5",
|
133 |
+
"metasubstrate_6",
|
134 |
+
"metasubstrate_7",
|
135 |
+
"metasubstrate_8",
|
136 |
+
"metasubstrate_9",
|
137 |
+
"habitat_0",
|
138 |
+
"habitat_1",
|
139 |
+
"habitat_2",
|
140 |
+
"habitat_3",
|
141 |
+
"habitat_4",
|
142 |
+
"habitat_5",
|
143 |
+
"habitat_6",
|
144 |
+
"habitat_7",
|
145 |
+
"habitat_8",
|
146 |
+
"habitat_9",
|
147 |
+
"habitat_10",
|
148 |
+
"habitat_11",
|
149 |
+
"habitat_12",
|
150 |
+
"habitat_13",
|
151 |
+
"habitat_14",
|
152 |
+
"habitat_15",
|
153 |
+
"habitat_16",
|
154 |
+
"habitat_17",
|
155 |
+
"habitat_18",
|
156 |
+
"habitat_19",
|
157 |
+
"habitat_20",
|
158 |
+
"habitat_21",
|
159 |
+
"habitat_22",
|
160 |
+
"habitat_23",
|
161 |
+
"habitat_24",
|
162 |
+
"habitat_25",
|
163 |
+
"habitat_26",
|
164 |
+
"habitat_27",
|
165 |
+
"habitat_28",
|
166 |
+
"habitat_29",
|
167 |
+
"habitat_30",
|
168 |
+
"habitat_31",
|
169 |
+
]
|
170 |
+
|
171 |
+
class EmbeddingMetadataDataset(Dataset):
|
172 |
+
def __init__(self, df):
|
173 |
+
self.df = df
|
174 |
+
|
175 |
+
self.emb = df['embedding']
|
176 |
+
self.metadata_date = df[TIME].to_numpy()
|
177 |
+
self.metadata_geo = df[GEO].to_numpy()
|
178 |
+
self.metadata_substrate = df[SUBSTRATE].to_numpy()
|
179 |
+
|
180 |
+
def __len__(self):
|
181 |
+
return len(self.df)
|
182 |
+
|
183 |
+
def __getitem__(self, idx):
|
184 |
+
embedding = torch.Tensor(self.emb[idx].copy()).type(torch.float)
|
185 |
+
|
186 |
+
metadata = {
|
187 |
+
"date": torch.from_numpy(self.metadata_date[idx, :]).type(torch.float),
|
188 |
+
"geo": torch.from_numpy(self.metadata_geo[idx, :]).type(torch.float),
|
189 |
+
"substr": torch.from_numpy(self.metadata_substrate[idx, :]).type(torch.float),
|
190 |
+
}
|
191 |
+
|
192 |
+
return embedding, metadata
|
193 |
+
|
194 |
+
|
195 |
+
class ImageMetadataDataset(Dataset):
|
196 |
+
def __init__(self, df, transform=None, local_filepath=None):
|
197 |
+
self.df = df
|
198 |
+
self.transform = transform
|
199 |
+
self.local_filepath = local_filepath
|
200 |
+
|
201 |
+
self.filepaths = df["image_path"].apply(lambda x: x.replace("jpg", "JPG")).to_list()
|
202 |
+
self.metadata_date = df[TIME].to_numpy()
|
203 |
+
self.metadata_geo = df[GEO].to_numpy()
|
204 |
+
self.metadata_substrate = df[SUBSTRATE].to_numpy()
|
205 |
+
|
206 |
+
|
207 |
+
def __len__(self):
|
208 |
+
return len(self.df)
|
209 |
+
|
210 |
+
def __getitem__(self, idx):
|
211 |
+
file_path = os.path.join(self.local_filepath, self.filepaths[idx])
|
212 |
+
|
213 |
+
try:
|
214 |
+
image = cv2.imread(file_path)
|
215 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
216 |
+
except:
|
217 |
+
print(file_path)
|
218 |
+
|
219 |
+
if self.transform:
|
220 |
+
augmented = self.transform(image=image)
|
221 |
+
image = augmented["image"]
|
222 |
+
|
223 |
+
metadata = {
|
224 |
+
"date": torch.from_numpy(self.metadata_date[idx, :]).type(torch.float),
|
225 |
+
"geo": torch.from_numpy(self.metadata_geo[idx, :]).type(torch.float),
|
226 |
+
"substr": torch.from_numpy(self.metadata_substrate[idx, :]).type(torch.float),
|
227 |
+
}
|
228 |
+
|
229 |
+
return image, metadata
|
230 |
+
|
231 |
+
DATE_SIZE = 4
|
232 |
+
GEO_SIZE = 7
|
233 |
+
SUBSTRATE_SIZE = 73
|
234 |
+
NUM_CLASSES = 1717
|
235 |
+
|
236 |
+
class StarReLU(nn.Module):
|
237 |
+
"""
|
238 |
+
StarReLU: s * relu(x) ** 2 + b
|
239 |
+
"""
|
240 |
+
|
241 |
+
def __init__(
|
242 |
+
self,
|
243 |
+
scale_value=1.0,
|
244 |
+
bias_value=0.0,
|
245 |
+
scale_learnable=True,
|
246 |
+
bias_learnable=True,
|
247 |
+
mode=None,
|
248 |
+
inplace=False,
|
249 |
+
):
|
250 |
+
super().__init__()
|
251 |
+
self.inplace = inplace
|
252 |
+
self.relu = nn.ReLU(inplace=inplace)
|
253 |
+
self.scale = nn.Parameter(
|
254 |
+
scale_value * torch.ones(1), requires_grad=scale_learnable
|
255 |
+
)
|
256 |
+
self.bias = nn.Parameter(
|
257 |
+
bias_value * torch.ones(1), requires_grad=bias_learnable
|
258 |
+
)
|
259 |
+
|
260 |
+
def forward(self, x):
|
261 |
+
return self.scale * self.relu(x) ** 2 + self.bias
|
262 |
+
|
263 |
+
class FungiMEEModel(nn.Module):
|
264 |
+
def __init__(
|
265 |
+
self,
|
266 |
+
num_classes=NUM_CLASSES,
|
267 |
+
dim=1024,
|
268 |
+
):
|
269 |
+
super().__init__()
|
270 |
+
|
271 |
+
print("Setting up Pytorch Model")
|
272 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
273 |
+
print(f"Using devide: {self.device}")
|
274 |
+
|
275 |
+
|
276 |
+
self.date_embedding = MlpHead(
|
277 |
+
dim=DATE_SIZE, num_classes=dim, mlp_ratio=128, act_layer=StarReLU
|
278 |
+
)
|
279 |
+
self.geo_embedding = MlpHead(
|
280 |
+
dim=GEO_SIZE, num_classes=dim, mlp_ratio=128, act_layer=StarReLU
|
281 |
+
)
|
282 |
+
self.substr_embedding = MlpHead(
|
283 |
+
dim=SUBSTRATE_SIZE,
|
284 |
+
num_classes=dim,
|
285 |
+
mlp_ratio=8,
|
286 |
+
act_layer=StarReLU,
|
287 |
+
)
|
288 |
+
|
289 |
+
self.encoder = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=dim, nhead=8, batch_first=True), num_layers=4)
|
290 |
+
|
291 |
+
self.head = MlpHead(dim=dim, num_classes=num_classes, drop_rate=0)
|
292 |
+
|
293 |
+
for param in self.parameters():
|
294 |
+
if param.dim() > 1:
|
295 |
+
nn.init.kaiming_normal_(param)
|
296 |
+
|
297 |
+
|
298 |
+
def forward(self, img_emb, metadata):
|
299 |
+
|
300 |
+
img_emb = img_emb.to(self.device)
|
301 |
+
|
302 |
+
date_emb = self.date_embedding.forward(metadata["date"].to(self.device))
|
303 |
+
geo_emb = self.geo_embedding.forward(metadata["geo"].to(self.device))
|
304 |
+
substr_emb = self.substr_embedding.forward(metadata["substr"].to(self.device))
|
305 |
+
|
306 |
+
full_emb = torch.stack((img_emb, date_emb, geo_emb, substr_emb), dim=1) #.unsqueeze(0)
|
307 |
+
# print(full_emb.shape)
|
308 |
+
|
309 |
+
cls_emb = self.encoder.forward(full_emb)[:, 0, :].squeeze(1)
|
310 |
+
|
311 |
+
return self.head.forward(cls_emb)
|
312 |
+
|
313 |
+
def predict(self, img_emb, metadata):
|
314 |
+
|
315 |
+
logits = self.forward(img_emb, metadata)
|
316 |
+
|
317 |
+
# Any preprocess happens here
|
318 |
+
|
319 |
+
return logits.argmax(1).tolist()
|
320 |
+
|
321 |
+
class FungiEnsembleModel(nn.Module):
|
322 |
+
|
323 |
+
def __init__(self, models, softmax=True) -> None:
|
324 |
+
super().__init__()
|
325 |
+
|
326 |
+
self.models = nn.ModuleList()
|
327 |
+
self.softmax = softmax
|
328 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
329 |
+
|
330 |
+
for model in models:
|
331 |
+
model = model.to(self.device)
|
332 |
+
model.eval()
|
333 |
+
self.models.append(model)
|
334 |
+
|
335 |
+
def forward(self, img_emb, metadata):
|
336 |
+
|
337 |
+
img_emb = img_emb.to(self.device)
|
338 |
+
|
339 |
+
probs = []
|
340 |
+
|
341 |
+
for model in self.models:
|
342 |
+
logits = model.forward(img_emb, metadata)
|
343 |
+
|
344 |
+
p = logits.softmax(dim=1).detach().cpu() if self.softmax else logits.detach().cpu()
|
345 |
+
|
346 |
+
probs.append(p)
|
347 |
+
|
348 |
+
return torch.stack(probs).mean(dim=0)
|
349 |
+
|
350 |
+
def predict(self, img_emb, metadata):
|
351 |
+
|
352 |
+
logits = self.forward(img_emb, metadata)
|
353 |
+
|
354 |
+
# Any preprocess happens here
|
355 |
+
|
356 |
+
return logits.argmax(1).tolist()
|
357 |
+
|
358 |
|
359 |
def is_gpu_available():
|
360 |
"""Check if the python package `onnxruntime-gpu` is installed."""
|
|
|
396 |
return [-1]
|
397 |
|
398 |
|
399 |
+
def make_submission(metadata_df, model_names=None):
|
400 |
+
|
401 |
+
OUTPUT_CSV_PATH="./submission.csv"
|
402 |
+
|
403 |
"""Make submission with given """
|
404 |
|
405 |
+
BASE_CKPT_PATH = "./checkpoints"
|
|
|
|
|
406 |
|
407 |
+
model_names = model_names or os.listdir(BASE_CKPT_PATH)
|
|
|
408 |
|
409 |
+
models = []
|
410 |
|
411 |
+
for model_path in model_names:
|
412 |
+
print("loading ", model_path)
|
413 |
+
ckpt_path = os.path.join(BASE_CKPT_PATH, model_path)
|
414 |
|
415 |
+
ckpt = torch.load(ckpt_path)
|
416 |
+
model = FungiMEEModel()
|
417 |
+
model.load_state_dict({w: ckpt['state_dict']["model." + w] for w in model.state_dict().keys()})
|
418 |
+
model.eval()
|
419 |
+
model.cuda()
|
420 |
|
421 |
+
models.append(model)
|
422 |
|
423 |
+
ensemble_model = FungiEnsembleModel(models)
|
424 |
|
425 |
+
embedding_dataset = EmbeddingMetadataDataset(metadata_df)
|
426 |
+
loader = DataLoader(embedding_dataset, batch_size=128, shuffle=False)
|
|
|
427 |
|
428 |
+
preds = []
|
429 |
+
for data in tqdm(loader):
|
430 |
+
emb, metadata = data
|
431 |
+
pred = ensemble_model.forward(emb, metadata)
|
432 |
+
preds.append(pred)
|
433 |
|
434 |
+
all_preds = torch.vstack(preds).numpy()
|
435 |
|
436 |
+
preds_df = metadata_df[['observation_id', 'image_path']]
|
437 |
+
preds_df['preds'] = [i for i in all_preds]
|
438 |
+
preds_df = preds_df[['observation_id', 'preds']].groupby('observation_id').mean().reset_index()
|
439 |
+
preds_df['class_id'] = preds_df['preds'].apply(lambda x: x.argmax() if x.argmax() <= 1603 else -1)
|
440 |
+
preds_df[['observation_id', 'class_id']].to_csv(OUTPUT_CSV_PATH, index=None)
|
441 |
|
442 |
+
print("Submission complete")
|
|
|
443 |
|
444 |
+
if __name__ == "__main__":
|
|
|
445 |
|
446 |
+
MODEL_PATH = "metaformer-s-224.pth"
|
447 |
+
MODEL_NAME = "timm/vit_base_patch14_reg4_dinov2.lvd142m"
|
448 |
|
449 |
+
# # Real submission
|
450 |
+
import zipfile
|
|
|
|
|
|
|
451 |
|
452 |
+
with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
|
453 |
+
zip_ref.extractall("/tmp/data")
|
454 |
|
455 |
+
metadata_file_path = "./_test_preprocessed.csv"
|
456 |
+
root_dir = "/tmp/data"
|
457 |
|
458 |
+
# # Test submission
|
459 |
+
# metadata_file_path = "../trial_submission.csv"
|
460 |
+
# root_dir = "../data/DF_FULL"
|
461 |
|
462 |
+
##############
|
|
|
|
|
|
|
|
|
|
|
463 |
|
464 |
+
metadata_df = generate_embeddings(metadata_file_path, root_dir)
|
465 |
|
466 |
+
make_submission(metadata_df)
|