single batch, single model
Browse files
script.py
CHANGED
@@ -158,7 +158,7 @@ def generate_embeddings(metadata_file_path, root_dir):
|
|
158 |
|
159 |
test_dataset = ImageDataset(metadata_df, local_filepath=root_dir)
|
160 |
|
161 |
-
loader = DataLoader(test_dataset, batch_size=
|
162 |
|
163 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
164 |
model = timm.create_model(
|
@@ -313,40 +313,41 @@ def make_submission(metadata_df):
|
|
313 |
OUTPUT_CSV_PATH = "./submission.csv"
|
314 |
BASE_CKPT_PATH = "./checkpoints"
|
315 |
|
316 |
-
#
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
model.cuda()
|
340 |
|
341 |
-
|
342 |
|
343 |
-
fungi_model = FungiEnsembleModel(models)
|
344 |
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
|
|
|
|
350 |
|
351 |
embedding_dataset = EmbeddingMetadataDataset(metadata_df)
|
352 |
loader = DataLoader(embedding_dataset, batch_size=128, shuffle=False)
|
@@ -377,9 +378,6 @@ def make_submission(metadata_df):
|
|
377 |
|
378 |
if __name__ == "__main__":
|
379 |
|
380 |
-
MODEL_PATH = "metaformer-s-224.pth"
|
381 |
-
MODEL_NAME = "timm/vit_base_patch14_reg4_dinov2.lvd142m"
|
382 |
-
|
383 |
# # # # # # Real submission
|
384 |
import zipfile
|
385 |
|
|
|
158 |
|
159 |
test_dataset = ImageDataset(metadata_df, local_filepath=root_dir)
|
160 |
|
161 |
+
loader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=4)
|
162 |
|
163 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
164 |
model = timm.create_model(
|
|
|
313 |
OUTPUT_CSV_PATH = "./submission.csv"
|
314 |
BASE_CKPT_PATH = "./checkpoints"
|
315 |
|
316 |
+
# model_names = [
|
317 |
+
# "dino_2_optuna_05242231.ckpt",
|
318 |
+
# "dino_optuna_05241449.ckpt",
|
319 |
+
# "dino_optuna_05241257.ckpt",
|
320 |
+
# "dino_optuna_05241222.ckpt",
|
321 |
+
# "dino_2_optuna_05242055.ckpt",
|
322 |
+
# "dino_2_optuna_05242156.ckpt",
|
323 |
+
# "dino_2_optuna_05242344.ckpt",
|
324 |
+
# ]
|
325 |
+
|
326 |
+
# models = []
|
327 |
+
|
328 |
+
# for model_path in model_names:
|
329 |
+
# print("loading ", model_path)
|
330 |
+
# ckpt_path = os.path.join(BASE_CKPT_PATH, model_path)
|
331 |
+
|
332 |
+
# ckpt = torch.load(ckpt_path)
|
333 |
+
# model = FungiMEEModel()
|
334 |
+
# model.load_state_dict(
|
335 |
+
# {w: ckpt["model." + w] for w in model.state_dict().keys()}
|
336 |
+
# )
|
337 |
+
# model.eval()
|
338 |
+
# model.cuda()
|
|
|
339 |
|
340 |
+
# models.append(model)
|
341 |
|
342 |
+
# fungi_model = FungiEnsembleModel(models)
|
343 |
|
344 |
+
ckpt_path = os.path.join(BASE_CKPT_PATH, "dino_2_optuna_05242055.ckpt")
|
345 |
+
|
346 |
+
fungi_model = FungiMEEModel()
|
347 |
+
ckpt = torch.load(ckpt_path)
|
348 |
+
fungi_model.load_state_dict(
|
349 |
+
{w: ckpt["model." + w] for w in fungi_model.state_dict().keys()}
|
350 |
+
)
|
351 |
|
352 |
embedding_dataset = EmbeddingMetadataDataset(metadata_df)
|
353 |
loader = DataLoader(embedding_dataset, batch_size=128, shuffle=False)
|
|
|
378 |
|
379 |
if __name__ == "__main__":
|
380 |
|
|
|
|
|
|
|
381 |
# # # # # # Real submission
|
382 |
import zipfile
|
383 |
|