import pandas as pd import numpy as np import os from tqdm import tqdm import timm import torchvision.transforms as T from PIL import Image import torch from typing import List def is_gpu_available(): """Check if the python package `onnxruntime-gpu` is installed.""" return torch.cuda.is_available() WIDTH = 224 HEIGHT = 224 MODEL_PATH = "metaformer-s-224.pth" MODEL_NAME = "caformer_s18.sail_in22k" class PytorchWorker: """Run inference using ONNX runtime.""" def __init__(self, model_path: str, model_name: str, number_of_categories: int = 1605): def _load_model(model_name, model_path): print("Setting up Pytorch Model") self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"Using devide: {self.device}") model = timm.create_model(model_name, num_classes=number_of_categories, pretrained=False) weights = torch.load(model_path, map_location=self.device) model.load_state_dict({w.replace("model.", ""): v for w, v in weights.items()}) return model.to(self.device).eval() self.model = _load_model(model_name, model_path) self.transforms = T.Compose([T.Resize((HEIGHT, WIDTH)), T.ToTensor(), T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) def predict_image(self, image: np.ndarray) -> List: """Run inference using ONNX runtime. :param image: Input image as numpy array. :return: A list with logits and confidences. """ logits = self.model(self.transforms(image).unsqueeze(0).to(self.device)) return logits.tolist() def make_submission(test_metadata, model_path, model_name, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"): """Make submission with given """ model = PytorchWorker(model_path, model_name) predictions = [] for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)): image_path = os.path.join(images_root_path, row.image_path.replace("jpg", "JPG")) test_image = Image.open(image_path).convert("RGB") logits = model.predict_image(test_image) predictions.append(np.argmax(logits)) test_metadata["class_id"] = predictions user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first") for ix, row in user_pred_df.iterrows(): if row['class_id'] == 1604: user_pred_df.loc[ix, 'class_id'] = -1 user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None) def test_submission(): metadata_file_path = "../trial_test.csv" test_metadata = pd.read_csv(metadata_file_path) make_submission( test_metadata=test_metadata, model_path=MODEL_PATH, model_name=MODEL_NAME, images_root_path="../data/DF_FULL/" ) if __name__ == "__main__": test_submission() # import zipfile # with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref: # zip_ref.extractall("/tmp/data") # metadata_file_path = "./FungiCLEF2024_TestMetadata.csv" # test_metadata = pd.read_csv(metadata_file_path) # make_submission( # test_metadata=test_metadata, # model_path=MODEL_PATH, # model_name=MODEL_NAME # )