--- language: - en - de - fr - it - pt - hi - es - th library_name: transformers pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama-3 license: llama3.2 base_model: - meta-llama/Llama-3.2-1B-Instruct --- # Represents A quantized version of Llama 3.2 1B Instruct with Activation-aware Weight Quantization (AWQ)[https://github.com/mit-han-lab/llm-awq] ## Use with transformers/autoawq Starting with - `transformers==4.45.1` - `accelerate==0.34.2` - `torch==2.3.1` - `numpy==2.0.0` - `autoawq==0.2.6` Experimented with - OS = Windows - GPU = Nvidia GeForce RTX 3080 10gb - CPU = Intel Core i5-9600K - RAM = 32GB ### For CUDA users **AutoAWQ** NOTE: this example uses `fuse_layers=True` to fuse attention and mlp layers together for faster inference ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer, TextStreamer quant_id = "ciCic/llama-3.2-1B-Instruct-AWQ" model = AutoAWQForCausalLM.from_quantized(quant_id, fuse_layers=True) tokenizer = AutoTokenizer.from_pretrained(quant_id, trust_remote_code=True) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Declare prompt prompt = "You're standing on the surface of the Earth. "\ "You walk one mile south, one mile west and one mile north. "\ "You end up exactly where you started. Where are you?" # Tokenization of the prompt tokens = tokenizer( prompt, return_tensors='pt' ).input_ids.cuda() # Generate output in a streaming fashion generation_output = model.generate( tokens, streamer=streamer, max_new_tokens=512 ) ``` **Transformers** ```python from transformers import AutoTokenizer, TextStreamer, AutoModelForCausalLM import torch quant_id = "ciCic/llama-3.2-1B-Instruct-AWQ" tokenizer = AutoTokenizer.from_pretrained(quant_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( quant_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="cuda" ) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Convert prompt to tokens prompt = "You're standing on the surface of the Earth. "\ "You walk one mile south, one mile west and one mile north. "\ "You end up exactly where you started. Where are you?" tokens = tokenizer( prompt, return_tensors='pt' ).input_ids.cuda() # Generate output generation_output = model.generate( tokens, streamer=streamer, max_new_tokens=512 ) ``` #### Issue/Solution - torch.from_numpy fails - This might be due to certain issues within `torch==2.3.1` .cpp files. Since AutoAWQ uses torch version 2.3.1, instead of most recent, this issue might occur within module `marlin.py -> def _get_perms()` - Module path: Python\Python311\site-packages\awq\modules\linear\marlin.py - Solution: - there are several operations to numpy (cpu) then back to tensor (gpu) which could be completely replaced by tensor without having to use numpy, this will solve (temporarily) the from_numpy() issue ```python def _get_perms(): perm = [] for i in range(32): perm1 = [] col = i // 4 for block in [0, 1]: for row in [ 2 * (i % 4), 2 * (i % 4) + 1, 2 * (i % 4 + 4), 2 * (i % 4 + 4) + 1, ]: perm1.append(16 * row + col + 8 * block) for j in range(4): perm.extend([p + 256 * j for p in perm1]) # perm = np.array(perm) perm = torch.asarray(perm) # interleave = np.array([0, 2, 4, 6, 1, 3, 5, 7]) interleave = torch.asarray([0, 2, 4, 6, 1, 3, 5, 7]) perm = perm.reshape((-1, 8))[:, interleave].ravel() # perm = torch.from_numpy(perm) scale_perm = [] for i in range(8): scale_perm.extend([i + 8 * j for j in range(8)]) scale_perm_single = [] for i in range(4): scale_perm_single.extend([2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]]) return perm, scale_perm, scale_perm_single ```