--- base_model: stabilityai/stable-diffusion-2-1 library_name: diffusers license: openrail++ inference: true instance_prompt: a red chicken in the style of widget: - text: a chicken on a beach, in the style of output: url: image_0.png - text: a chicken on a beach, in the style of output: url: image_1.png - text: a chicken on a beach, in the style of output: url: image_2.png - text: a chicken on a beach, in the style of output: url: image_3.png tags: - text-to-image - diffusers - diffusers-training - lora - template:sd-lorastable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora - template:sd-lorastable-diffusion - stable-diffusion-diffusers --- # SD1.5 LoRA DreamBooth - cindyloo337/sbne-chicken-sd21-lora ## Model description ### These are cindyloo337/sbne-chicken-sd21-lora LoRA adaption weights for stabilityai/stable-diffusion-2-1. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`sbne-chicken-sd21-lora.safetensors` here ๐Ÿ’พ](/cindyloo337/sbne-chicken-sd21-lora/blob/main/sbne-chicken-sd21-lora.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`sbne-chicken-sd21-lora_emb.safetensors` here ๐Ÿ’พ](/cindyloo337/sbne-chicken-sd21-lora/blob/main/sbne-chicken-sd21-lora_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `sbne-chicken-sd21-lora_emb` to your prompt. For example, `a red chicken in the style of sbne-chicken-sd21-lora_emb` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('runwayml/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('cindyloo337/sbne-chicken-sd21-lora', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='cindyloo337/sbne-chicken-sd21-lora', filename='sbne-chicken-sd21-lora_emb.safetensors', repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["", ""], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) image = pipeline('a chicken on a beach, in the style of ').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` โ†’ use `` in your prompt ## Details All [Files & versions](/cindyloo337/sbne-chicken-sd21-lora/tree/main). The weights were trained using [๐Ÿงจ diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: None. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]