rippertnt commited on
Commit
e33cdad
·
verified ·
1 Parent(s): d3bcb54

Upload 23 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 151673,
3
+ "</img>": 151666,
4
+ "</quad>": 151669,
5
+ "</ref>": 151671,
6
+ "</tool_call>": 151658,
7
+ "<IMG_CONTEXT>": 151667,
8
+ "<box>": 151672,
9
+ "<img>": 151665,
10
+ "<quad>": 151668,
11
+ "<ref>": 151670,
12
+ "<tool_call>": 151657,
13
+ "<|box_end|>": 151649,
14
+ "<|box_start|>": 151648,
15
+ "<|endoftext|>": 151643,
16
+ "<|file_sep|>": 151664,
17
+ "<|fim_middle|>": 151660,
18
+ "<|fim_pad|>": 151662,
19
+ "<|fim_prefix|>": 151659,
20
+ "<|fim_suffix|>": 151661,
21
+ "<|im_end|>": 151645,
22
+ "<|im_start|>": 151644,
23
+ "<|image_pad|>": 151655,
24
+ "<|object_ref_end|>": 151647,
25
+ "<|object_ref_start|>": 151646,
26
+ "<|quad_end|>": 151651,
27
+ "<|quad_start|>": 151650,
28
+ "<|repo_name|>": 151663,
29
+ "<|video_pad|>": 151656,
30
+ "<|vision_end|>": 151653,
31
+ "<|vision_pad|>": 151654,
32
+ "<|vision_start|>": 151652
33
+ }
chat_template.jinja ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0]['role'] == 'system' %}
4
+ {{- messages[0]['content'] }}
5
+ {%- else %}
6
+ {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
7
+ {%- endif %}
8
+ {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {%- if messages[0]['role'] == 'system' %}
16
+ {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
17
+ {%- else %}
18
+ {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
19
+ {%- endif %}
20
+ {%- endif %}
21
+ {%- for message in messages %}
22
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
23
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
24
+ {%- elif message.role == "assistant" %}
25
+ {{- '<|im_start|>' + message.role }}
26
+ {%- if message.content %}
27
+ {{- '\n' + message.content }}
28
+ {%- endif %}
29
+ {%- for tool_call in message.tool_calls %}
30
+ {%- if tool_call.function is defined %}
31
+ {%- set tool_call = tool_call.function %}
32
+ {%- endif %}
33
+ {{- '\n<tool_call>\n{"name": "' }}
34
+ {{- tool_call.name }}
35
+ {{- '", "arguments": ' }}
36
+ {{- tool_call.arguments | tojson }}
37
+ {{- '}\n</tool_call>' }}
38
+ {%- endfor %}
39
+ {{- '<|im_end|>\n' }}
40
+ {%- elif message.role == "tool" %}
41
+ {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
42
+ {{- '<|im_start|>user' }}
43
+ {%- endif %}
44
+ {{- '\n<tool_response>\n' }}
45
+ {{- message.content }}
46
+ {{- '\n</tool_response>' }}
47
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
48
+ {{- '<|im_end|>\n' }}
49
+ {%- endif %}
50
+ {%- endif %}
51
+ {%- endfor %}
52
+ {%- if add_generation_prompt %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "InternVLChatModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
7
+ "AutoModel": "OpenGVLab/InternVL3-2B--modeling_internvl_chat.InternVLChatModel",
8
+ "AutoModelForCausalLM": "OpenGVLab/InternVL3-2B--modeling_internvl_chat.InternVLChatModel"
9
+ },
10
+ "downsample_ratio": 0.5,
11
+ "dynamic_image_size": true,
12
+ "force_image_size": 448,
13
+ "hidden_size": 1536,
14
+ "image_fold": null,
15
+ "img_context_token_id": 151667,
16
+ "llm_config": {
17
+ "_name_or_path": "./pretrained/Qwen2.5-32B-Instruct",
18
+ "architectures": [
19
+ "Qwen2ForCausalLM"
20
+ ],
21
+ "attention_dropout": 0.0,
22
+ "bos_token_id": 151643,
23
+ "eos_token_id": 151643,
24
+ "hidden_act": "silu",
25
+ "hidden_size": 1536,
26
+ "initializer_range": 0.02,
27
+ "intermediate_size": 8960,
28
+ "max_position_embeddings": 32768,
29
+ "max_window_layers": 70,
30
+ "model_type": "qwen2",
31
+ "moe_config": null,
32
+ "num_attention_heads": 12,
33
+ "num_hidden_layers": 28,
34
+ "num_key_value_heads": 2,
35
+ "rms_norm_eps": 1e-06,
36
+ "rope_scaling": {
37
+ "factor": 2.0,
38
+ "rope_type": "dynamic",
39
+ "type": "dynamic"
40
+ },
41
+ "rope_theta": 1000000.0,
42
+ "sliding_window": null,
43
+ "torch_dtype": "bfloat16",
44
+ "use_bfloat16": true,
45
+ "use_cache": false,
46
+ "use_sliding_window": false,
47
+ "vocab_size": 151674
48
+ },
49
+ "max_dynamic_patch": 12,
50
+ "min_dynamic_patch": 1,
51
+ "model_type": "internvl_chat",
52
+ "pad2square": false,
53
+ "ps_version": "v2",
54
+ "select_layer": -1,
55
+ "system_message": null,
56
+ "template": "internvl2_5",
57
+ "tie_word_embeddings": false,
58
+ "torch_dtype": "bfloat16",
59
+ "transformers_version": null,
60
+ "use_backbone_lora": 0,
61
+ "use_llm_lora": 0,
62
+ "use_thumbnail": true,
63
+ "vision_config": {
64
+ "_name_or_path": "OpenGVLab/InternViT-6B-448px-V1-5",
65
+ "architectures": [
66
+ "InternVisionModel"
67
+ ],
68
+ "attention_dropout": 0.0,
69
+ "auto_map": {
70
+ "AutoConfig": "configuration_intern_vit.InternVisionConfig",
71
+ "AutoModel": "modeling_intern_vit.InternVisionModel"
72
+ },
73
+ "capacity_factor": 1.2,
74
+ "drop_path_rate": 0.1,
75
+ "dropout": 0.0,
76
+ "eval_capacity_factor": 1.4,
77
+ "hidden_act": "gelu",
78
+ "hidden_size": 1024,
79
+ "image_size": 448,
80
+ "initializer_factor": 0.1,
81
+ "initializer_range": 1e-10,
82
+ "intermediate_size": 4096,
83
+ "laux_allreduce": "all_nodes",
84
+ "layer_norm_eps": 1e-06,
85
+ "model_type": "intern_vit_6b",
86
+ "moe_coeff_ratio": 0.5,
87
+ "moe_intermediate_size": 768,
88
+ "moe_output_scale": 4.0,
89
+ "noisy_gate_policy": "RSample_before",
90
+ "norm_type": "layer_norm",
91
+ "num_attention_heads": 16,
92
+ "num_channels": 3,
93
+ "num_experts": 8,
94
+ "num_hidden_layers": 24,
95
+ "num_routed_experts": 4,
96
+ "num_shared_experts": 4,
97
+ "patch_size": 14,
98
+ "qk_normalization": false,
99
+ "qkv_bias": true,
100
+ "shared_expert_intermediate_size": 3072,
101
+ "torch_dtype": "bfloat16",
102
+ "use_bfloat16": true,
103
+ "use_flash_attn": true,
104
+ "use_moe": false,
105
+ "use_residual": true,
106
+ "use_rts": false,
107
+ "use_weighted_residual": false
108
+ }
109
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import os
8
+ from typing import Union
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+
16
+ class InternVisionConfig(PretrainedConfig):
17
+ r"""
18
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
19
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
20
+
21
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
22
+ documentation from [`PretrainedConfig`] for more information.
23
+
24
+ Args:
25
+ num_channels (`int`, *optional*, defaults to 3):
26
+ Number of color channels in the input images (e.g., 3 for RGB).
27
+ patch_size (`int`, *optional*, defaults to 14):
28
+ The size (resolution) of each patch.
29
+ image_size (`int`, *optional*, defaults to 224):
30
+ The size (resolution) of each image.
31
+ qkv_bias (`bool`, *optional*, defaults to `False`):
32
+ Whether to add a bias to the queries and values in the self-attention layers.
33
+ hidden_size (`int`, *optional*, defaults to 3200):
34
+ Dimensionality of the encoder layers and the pooler layer.
35
+ num_attention_heads (`int`, *optional*, defaults to 25):
36
+ Number of attention heads for each attention layer in the Transformer encoder.
37
+ intermediate_size (`int`, *optional*, defaults to 12800):
38
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
39
+ qk_normalization (`bool`, *optional*, defaults to `True`):
40
+ Whether to normalize the queries and keys in the self-attention layers.
41
+ num_hidden_layers (`int`, *optional*, defaults to 48):
42
+ Number of hidden layers in the Transformer encoder.
43
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
44
+ Whether to use flash attention mechanism.
45
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
46
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
47
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
48
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
49
+ The epsilon used by the layer normalization layers.
50
+ dropout (`float`, *optional*, defaults to 0.0):
51
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
52
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
53
+ Dropout rate for stochastic depth.
54
+ attention_dropout (`float`, *optional*, defaults to 0.0):
55
+ The dropout ratio for the attention probabilities.
56
+ initializer_range (`float`, *optional*, defaults to 0.02):
57
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
58
+ initializer_factor (`float`, *optional*, defaults to 0.1):
59
+ A factor for layer scale.
60
+ """
61
+
62
+ model_type = 'intern_vit_6b'
63
+
64
+ def __init__(
65
+ self,
66
+ num_channels=3,
67
+ patch_size=14,
68
+ image_size=224,
69
+ qkv_bias=False,
70
+ hidden_size=3200,
71
+ num_attention_heads=25,
72
+ intermediate_size=12800,
73
+ qk_normalization=True,
74
+ num_hidden_layers=48,
75
+ use_flash_attn=True,
76
+ hidden_act='gelu',
77
+ norm_type='rms_norm',
78
+ layer_norm_eps=1e-6,
79
+ dropout=0.0,
80
+ drop_path_rate=0.0,
81
+ attention_dropout=0.0,
82
+ initializer_range=0.02,
83
+ initializer_factor=0.1,
84
+ **kwargs,
85
+ ):
86
+ super().__init__(**kwargs)
87
+
88
+ self.hidden_size = hidden_size
89
+ self.intermediate_size = intermediate_size
90
+ self.dropout = dropout
91
+ self.drop_path_rate = drop_path_rate
92
+ self.num_hidden_layers = num_hidden_layers
93
+ self.num_attention_heads = num_attention_heads
94
+ self.num_channels = num_channels
95
+ self.patch_size = patch_size
96
+ self.image_size = image_size
97
+ self.initializer_range = initializer_range
98
+ self.initializer_factor = initializer_factor
99
+ self.attention_dropout = attention_dropout
100
+ self.layer_norm_eps = layer_norm_eps
101
+ self.hidden_act = hidden_act
102
+ self.norm_type = norm_type
103
+ self.qkv_bias = qkv_bias
104
+ self.qk_normalization = qk_normalization
105
+ self.use_flash_attn = use_flash_attn
106
+
107
+ @classmethod
108
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
109
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
110
+
111
+ if 'vision_config' in config_dict:
112
+ config_dict = config_dict['vision_config']
113
+
114
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
115
+ logger.warning(
116
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
117
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
118
+ )
119
+
120
+ return cls.from_dict(config_dict, **kwargs)
configuration_internvl_chat.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig, Qwen2Config
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+
15
+ logger = logging.get_logger(__name__)
16
+
17
+
18
+ class InternVLChatConfig(PretrainedConfig):
19
+ model_type = 'internvl_chat'
20
+ is_composition = True
21
+
22
+ def __init__(
23
+ self,
24
+ vision_config=None,
25
+ llm_config=None,
26
+ use_backbone_lora=0,
27
+ use_llm_lora=0,
28
+ select_layer=-1,
29
+ force_image_size=None,
30
+ downsample_ratio=0.5,
31
+ template=None,
32
+ dynamic_image_size=False,
33
+ use_thumbnail=False,
34
+ ps_version='v1',
35
+ min_dynamic_patch=1,
36
+ max_dynamic_patch=6,
37
+ **kwargs):
38
+ super().__init__(**kwargs)
39
+
40
+ if vision_config is None:
41
+ vision_config = {'architectures': ['InternVisionModel']}
42
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
43
+
44
+ if llm_config is None:
45
+ llm_config = {'architectures': ['Qwen2ForCausalLM']}
46
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
47
+
48
+ self.vision_config = InternVisionConfig(**vision_config)
49
+ if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
50
+ self.llm_config = LlamaConfig(**llm_config)
51
+ elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
52
+ self.llm_config = Qwen2Config(**llm_config)
53
+ else:
54
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
55
+ self.use_backbone_lora = use_backbone_lora
56
+ self.use_llm_lora = use_llm_lora
57
+ self.select_layer = select_layer
58
+ self.force_image_size = force_image_size
59
+ self.downsample_ratio = downsample_ratio
60
+ self.template = template
61
+ self.dynamic_image_size = dynamic_image_size
62
+ self.use_thumbnail = use_thumbnail
63
+ self.ps_version = ps_version # pixel shuffle version
64
+ self.min_dynamic_patch = min_dynamic_patch
65
+ self.max_dynamic_patch = max_dynamic_patch
66
+ # By default, we use tie_word_embeddings=False for models of all sizes.
67
+ self.tie_word_embeddings = self.llm_config.tie_word_embeddings
68
+
69
+ logger.info(f'vision_select_layer: {self.select_layer}')
70
+ logger.info(f'ps_version: {self.ps_version}')
71
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
72
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
73
+
74
+ def to_dict(self):
75
+ """
76
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
77
+
78
+ Returns:
79
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
80
+ """
81
+ output = copy.deepcopy(self.__dict__)
82
+ output['vision_config'] = self.vision_config.to_dict()
83
+ output['llm_config'] = self.llm_config.to_dict()
84
+ output['model_type'] = self.__class__.model_type
85
+ output['use_backbone_lora'] = self.use_backbone_lora
86
+ output['use_llm_lora'] = self.use_llm_lora
87
+ output['select_layer'] = self.select_layer
88
+ output['force_image_size'] = self.force_image_size
89
+ output['downsample_ratio'] = self.downsample_ratio
90
+ output['template'] = self.template
91
+ output['dynamic_image_size'] = self.dynamic_image_size
92
+ output['use_thumbnail'] = self.use_thumbnail
93
+ output['ps_version'] = self.ps_version
94
+ output['min_dynamic_patch'] = self.min_dynamic_patch
95
+ output['max_dynamic_patch'] = self.max_dynamic_patch
96
+
97
+ return output
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.52.3"
4
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
openvino_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dtype": "int4",
3
+ "input_info": null,
4
+ "optimum_version": "1.25.3",
5
+ "quantization_config": {
6
+ "all_layers": null,
7
+ "backup_precision": null,
8
+ "bits": 4,
9
+ "dataset": null,
10
+ "dtype": "int4",
11
+ "gptq": null,
12
+ "group_size": 128,
13
+ "ignored_scope": null,
14
+ "lora_correction": null,
15
+ "num_samples": null,
16
+ "processor": null,
17
+ "quant_method": "default",
18
+ "ratio": 1.0,
19
+ "scale_estimation": null,
20
+ "sensitivity_metric": null,
21
+ "sym": false,
22
+ "tokenizer": null,
23
+ "trust_remote_code": false
24
+ },
25
+ "save_onnx_model": false,
26
+ "transformers_version": "4.52.3"
27
+ }
openvino_detokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0a0d75ca233db27305df00cf870e8cf0e06c6b391d5f22ea0cc5f7afeab38fe
3
+ size 2189806
openvino_detokenizer.xml ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="detokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_1631039" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="Parameter_1631039">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="Convert_1631209" type="Convert" version="opset1">
14
+ <data destination_type="i32" />
15
+ <input>
16
+ <port id="0" precision="I64">
17
+ <dim>-1</dim>
18
+ <dim>-1</dim>
19
+ </port>
20
+ </input>
21
+ <output>
22
+ <port id="1" precision="I32">
23
+ <dim>-1</dim>
24
+ <dim>-1</dim>
25
+ </port>
26
+ </output>
27
+ </layer>
28
+ <layer id="2" name="Constant_1631041" type="Const" version="opset1">
29
+ <data element_type="i32" shape="151674" offset="0" size="606696" />
30
+ <output>
31
+ <port id="0" precision="I32">
32
+ <dim>151674</dim>
33
+ </port>
34
+ </output>
35
+ </layer>
36
+ <layer id="3" name="Constant_1631043" type="Const" version="opset1">
37
+ <data element_type="i32" shape="151674" offset="606696" size="606696" />
38
+ <output>
39
+ <port id="0" precision="I32">
40
+ <dim>151674</dim>
41
+ </port>
42
+ </output>
43
+ </layer>
44
+ <layer id="4" name="Constant_1631045" type="Const" version="opset1">
45
+ <data element_type="u8" shape="976322" offset="1213392" size="976322" />
46
+ <output>
47
+ <port id="0" precision="U8">
48
+ <dim>976322</dim>
49
+ </port>
50
+ </output>
51
+ </layer>
52
+ <layer id="5" name="Slice_1631050" type="Const" version="opset1">
53
+ <data element_type="i32" shape="23" offset="2189714" size="92" />
54
+ <output>
55
+ <port id="0" precision="I32">
56
+ <dim>23</dim>
57
+ </port>
58
+ </output>
59
+ </layer>
60
+ <layer id="6" name="VocabDecoder_1631052" type="VocabDecoder" version="extension">
61
+ <data skip_tokens="" />
62
+ <input>
63
+ <port id="0" precision="I32">
64
+ <dim>-1</dim>
65
+ <dim>-1</dim>
66
+ </port>
67
+ <port id="1" precision="I32">
68
+ <dim>151674</dim>
69
+ </port>
70
+ <port id="2" precision="I32">
71
+ <dim>151674</dim>
72
+ </port>
73
+ <port id="3" precision="U8">
74
+ <dim>976322</dim>
75
+ </port>
76
+ <port id="4" precision="I32">
77
+ <dim>23</dim>
78
+ </port>
79
+ </input>
80
+ <output>
81
+ <port id="5" precision="I32">
82
+ <dim>-1</dim>
83
+ </port>
84
+ <port id="6" precision="I32">
85
+ <dim>-1</dim>
86
+ </port>
87
+ <port id="7" precision="I32">
88
+ <dim>-1</dim>
89
+ </port>
90
+ <port id="8" precision="I32">
91
+ <dim>-1</dim>
92
+ </port>
93
+ <port id="9" precision="U8">
94
+ <dim>-1</dim>
95
+ </port>
96
+ </output>
97
+ </layer>
98
+ <layer id="7" name="FuzeRagged_1631053" type="FuzeRagged" version="extension">
99
+ <input>
100
+ <port id="0" precision="I32">
101
+ <dim>-1</dim>
102
+ </port>
103
+ <port id="1" precision="I32">
104
+ <dim>-1</dim>
105
+ </port>
106
+ <port id="2" precision="I32">
107
+ <dim>-1</dim>
108
+ </port>
109
+ <port id="3" precision="I32">
110
+ <dim>-1</dim>
111
+ </port>
112
+ </input>
113
+ <output>
114
+ <port id="4" precision="I32">
115
+ <dim>-1</dim>
116
+ </port>
117
+ <port id="5" precision="I32">
118
+ <dim>-1</dim>
119
+ </port>
120
+ </output>
121
+ </layer>
122
+ <layer id="8" name="UTF8Validate_1631054" type="UTF8Validate" version="extension">
123
+ <data replace_mode="true" />
124
+ <input>
125
+ <port id="0" precision="I32">
126
+ <dim>-1</dim>
127
+ </port>
128
+ <port id="1" precision="I32">
129
+ <dim>-1</dim>
130
+ </port>
131
+ <port id="2" precision="U8">
132
+ <dim>-1</dim>
133
+ </port>
134
+ </input>
135
+ <output>
136
+ <port id="3" precision="I32">
137
+ <dim>-1</dim>
138
+ </port>
139
+ <port id="4" precision="I32">
140
+ <dim>-1</dim>
141
+ </port>
142
+ <port id="5" precision="U8">
143
+ <dim>-1</dim>
144
+ </port>
145
+ </output>
146
+ </layer>
147
+ <layer id="9" name="StringTensorPack_1631055" type="StringTensorPack" version="opset15">
148
+ <input>
149
+ <port id="0" precision="I32">
150
+ <dim>-1</dim>
151
+ </port>
152
+ <port id="1" precision="I32">
153
+ <dim>-1</dim>
154
+ </port>
155
+ <port id="2" precision="U8">
156
+ <dim>-1</dim>
157
+ </port>
158
+ </input>
159
+ <output>
160
+ <port id="3" precision="STRING" names="Result_1631056,string_output">
161
+ <dim>-1</dim>
162
+ </port>
163
+ </output>
164
+ </layer>
165
+ <layer id="10" name="Result_1631056" type="Result" version="opset1" output_names="Result_1631056,string_output">
166
+ <input>
167
+ <port id="0" precision="STRING">
168
+ <dim>-1</dim>
169
+ </port>
170
+ </input>
171
+ </layer>
172
+ </layers>
173
+ <edges>
174
+ <edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
175
+ <edge from-layer="1" from-port="1" to-layer="6" to-port="0" />
176
+ <edge from-layer="2" from-port="0" to-layer="6" to-port="1" />
177
+ <edge from-layer="3" from-port="0" to-layer="6" to-port="2" />
178
+ <edge from-layer="4" from-port="0" to-layer="6" to-port="3" />
179
+ <edge from-layer="5" from-port="0" to-layer="6" to-port="4" />
180
+ <edge from-layer="6" from-port="7" to-layer="7" to-port="2" />
181
+ <edge from-layer="6" from-port="9" to-layer="8" to-port="2" />
182
+ <edge from-layer="6" from-port="8" to-layer="7" to-port="3" />
183
+ <edge from-layer="6" from-port="6" to-layer="7" to-port="1" />
184
+ <edge from-layer="6" from-port="5" to-layer="7" to-port="0" />
185
+ <edge from-layer="7" from-port="4" to-layer="8" to-port="0" />
186
+ <edge from-layer="7" from-port="5" to-layer="8" to-port="1" />
187
+ <edge from-layer="8" from-port="3" to-layer="9" to-port="0" />
188
+ <edge from-layer="8" from-port="4" to-layer="9" to-port="1" />
189
+ <edge from-layer="8" from-port="5" to-layer="9" to-port="2" />
190
+ <edge from-layer="9" from-port="3" to-layer="10" to-port="0" />
191
+ </edges>
192
+ <rt_info>
193
+ <add_attention_mask value="True" />
194
+ <add_prefix_space />
195
+ <add_special_tokens value="True" />
196
+ <chat_template value="{%- if tools %}&#10; {{- '&lt;|im_start|>system\n' }}&#10; {%- if messages[0]['role'] == 'system' %}&#10; {{- messages[0]['content'] }}&#10; {%- else %}&#10; {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}&#10; {%- endif %}&#10; {{- &quot;\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within &lt;tools>&lt;/tools> XML tags:\n&lt;tools>&quot; }}&#10; {%- for tool in tools %}&#10; {{- &quot;\n&quot; }}&#10; {{- tool | tojson }}&#10; {%- endfor %}&#10; {{- &quot;\n&lt;/tools>\n\nFor each function call, return a json object with function name and arguments within &lt;tool_call>&lt;/tool_call> XML tags:\n&lt;tool_call>\n{\&quot;name\&quot;: &lt;function-name>, \&quot;arguments\&quot;: &lt;args-json-object>}\n&lt;/tool_call>&lt;|im_end|>\n&quot; }}&#10;{%- else %}&#10; {%- if messages[0]['role'] == 'system' %}&#10; {{- '&lt;|im_start|>system\n' + messages[0]['content'] + '&lt;|im_end|>\n' }}&#10; {%- else %}&#10; {{- '&lt;|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.&lt;|im_end|>\n' }}&#10; {%- endif %}&#10;{%- endif %}&#10;{%- for message in messages %}&#10; {%- if (message.role == &quot;user&quot;) or (message.role == &quot;system&quot; and not loop.first) or (message.role == &quot;assistant&quot; and not message.tool_calls) %}&#10; {{- '&lt;|im_start|>' + message.role + '\n' + message.content + '&lt;|im_end|>' + '\n' }}&#10; {%- elif message.role == &quot;assistant&quot; %}&#10; {{- '&lt;|im_start|>' + message.role }}&#10; {%- if message.content %}&#10; {{- '\n' + message.content }}&#10; {%- endif %}&#10; {%- for tool_call in message.tool_calls %}&#10; {%- if tool_call.function is defined %}&#10; {%- set tool_call = tool_call.function %}&#10; {%- endif %}&#10; {{- '\n&lt;tool_call>\n{&quot;name&quot;: &quot;' }}&#10; {{- tool_call.name }}&#10; {{- '&quot;, &quot;arguments&quot;: ' }}&#10; {{- tool_call.arguments | tojson }}&#10; {{- '}\n&lt;/tool_call>' }}&#10; {%- endfor %}&#10; {{- '&lt;|im_end|>\n' }}&#10; {%- elif message.role == &quot;tool&quot; %}&#10; {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != &quot;tool&quot;) %}&#10; {{- '&lt;|im_start|>user' }}&#10; {%- endif %}&#10; {{- '\n&lt;tool_response>\n' }}&#10; {{- message.content }}&#10; {{- '\n&lt;/tool_response>' }}&#10; {%- if loop.last or (messages[loop.index0 + 1].role != &quot;tool&quot;) %}&#10; {{- '&lt;|im_end|>\n' }}&#10; {%- endif %}&#10; {%- endif %}&#10;{%- endfor %}&#10;{%- if add_generation_prompt %}&#10; {{- '&lt;|im_start|>assistant\n' }}&#10;{%- endif %}&#10;" />
197
+ <clean_up_tokenization_spaces />
198
+ <detokenizer_input_type value="i64" />
199
+ <eos_token_id value="151645" />
200
+ <handle_special_tokens_with_re />
201
+ <max_length />
202
+ <number_of_inputs value="1" />
203
+ <openvino_tokenizers_version value="2025.1.0.0-523-710ddf14de8" />
204
+ <openvino_version value="2025.1.0-18503-6fec06580ab-releases/2025/1" />
205
+ <original_post_processor_template value="{&quot;type&quot;: &quot;ByteLevel&quot;, &quot;add_prefix_space&quot;: false, &quot;trim_offsets&quot;: false, &quot;use_regex&quot;: false}" />
206
+ <original_tokenizer_class value="&lt;class 'transformers.models.qwen2.tokenization_qwen2_fast.Qwen2TokenizerFast'>" />
207
+ <pad_token_id value="151643" />
208
+ <sentencepiece_version value="0.2.0" />
209
+ <skip_special_tokens value="True" />
210
+ <streaming_detokenizer value="False" />
211
+ <tiktoken_version value="0.9.0" />
212
+ <tokenizer_output_type value="i64" />
213
+ <tokenizers_version value="0.21.1" />
214
+ <transformers_version value="4.52.3" />
215
+ <use_max_padding value="False" />
216
+ <use_sentencepiece_backend value="False" />
217
+ <utf8_replace_mode value="replace" />
218
+ <with_detokenizer value="True" />
219
+ </rt_info>
220
+ </net>
openvino_language_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a63f29f2125e45a9b6c816773067d417496884176e0460766020d1644d30d9b
3
+ size 914579394
openvino_language_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
openvino_text_embeddings_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c018fddd902ef9763b660558c104cfed02596a34e3f5301673b62e889fc5048
3
+ size 233274616
openvino_text_embeddings_model.xml ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="Model3" version="11">
3
+ <layers>
4
+ <layer id="0" name="input" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="input">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="self.weight" type="Const" version="opset1">
14
+ <data element_type="i8" shape="151674, 1536" offset="0" size="232971264" />
15
+ <output>
16
+ <port id="0" precision="I8">
17
+ <dim>151674</dim>
18
+ <dim>1536</dim>
19
+ </port>
20
+ </output>
21
+ </layer>
22
+ <layer id="2" name="Convert_1145818" type="Convert" version="opset1">
23
+ <data destination_type="f16" />
24
+ <input>
25
+ <port id="0" precision="I8">
26
+ <dim>151674</dim>
27
+ <dim>1536</dim>
28
+ </port>
29
+ </input>
30
+ <output>
31
+ <port id="1" precision="FP16">
32
+ <dim>151674</dim>
33
+ <dim>1536</dim>
34
+ </port>
35
+ </output>
36
+ </layer>
37
+ <layer id="3" name="self.weight/scale" type="Const" version="opset1">
38
+ <data element_type="f16" shape="151674, 1" offset="232971264" size="303348" />
39
+ <output>
40
+ <port id="0" precision="FP16">
41
+ <dim>151674</dim>
42
+ <dim>1</dim>
43
+ </port>
44
+ </output>
45
+ </layer>
46
+ <layer id="4" name="self.weight/fq_weights_0" type="Multiply" version="opset1">
47
+ <data auto_broadcast="numpy" />
48
+ <input>
49
+ <port id="0" precision="FP16">
50
+ <dim>151674</dim>
51
+ <dim>1536</dim>
52
+ </port>
53
+ <port id="1" precision="FP16">
54
+ <dim>151674</dim>
55
+ <dim>1</dim>
56
+ </port>
57
+ </input>
58
+ <output>
59
+ <port id="2" precision="FP16">
60
+ <dim>151674</dim>
61
+ <dim>1536</dim>
62
+ </port>
63
+ </output>
64
+ </layer>
65
+ <layer id="5" name="ov_ext::embedding/Convert" type="Convert" version="opset1">
66
+ <data destination_type="f32" />
67
+ <rt_info>
68
+ <attribute name="decompression" version="0" />
69
+ </rt_info>
70
+ <input>
71
+ <port id="0" precision="FP16">
72
+ <dim>151674</dim>
73
+ <dim>1536</dim>
74
+ </port>
75
+ </input>
76
+ <output>
77
+ <port id="1" precision="FP32">
78
+ <dim>151674</dim>
79
+ <dim>1536</dim>
80
+ </port>
81
+ </output>
82
+ </layer>
83
+ <layer id="6" name="ov_ext::embedding/Convert_1" type="Convert" version="opset1">
84
+ <data destination_type="i32" />
85
+ <input>
86
+ <port id="0" precision="I64">
87
+ <dim>-1</dim>
88
+ <dim>-1</dim>
89
+ </port>
90
+ </input>
91
+ <output>
92
+ <port id="1" precision="I32">
93
+ <dim>-1</dim>
94
+ <dim>-1</dim>
95
+ </port>
96
+ </output>
97
+ </layer>
98
+ <layer id="7" name="ov_ext::embedding/Constant" type="Const" version="opset1">
99
+ <data element_type="i32" shape="" offset="233274612" size="4" />
100
+ <output>
101
+ <port id="0" precision="I32" />
102
+ </output>
103
+ </layer>
104
+ <layer id="8" name="ov_ext::embedding/Gather" type="Gather" version="opset8">
105
+ <data batch_dims="0" />
106
+ <input>
107
+ <port id="0" precision="FP32">
108
+ <dim>151674</dim>
109
+ <dim>1536</dim>
110
+ </port>
111
+ <port id="1" precision="I32">
112
+ <dim>-1</dim>
113
+ <dim>-1</dim>
114
+ </port>
115
+ <port id="2" precision="I32" />
116
+ </input>
117
+ <output>
118
+ <port id="3" precision="FP32" names="inputs_embeds">
119
+ <dim>-1</dim>
120
+ <dim>-1</dim>
121
+ <dim>1536</dim>
122
+ </port>
123
+ </output>
124
+ </layer>
125
+ <layer id="9" name="Result_21649" type="Result" version="opset1" output_names="inputs_embeds">
126
+ <input>
127
+ <port id="0" precision="FP32">
128
+ <dim>-1</dim>
129
+ <dim>-1</dim>
130
+ <dim>1536</dim>
131
+ </port>
132
+ </input>
133
+ </layer>
134
+ </layers>
135
+ <edges>
136
+ <edge from-layer="0" from-port="0" to-layer="6" to-port="0" />
137
+ <edge from-layer="1" from-port="0" to-layer="2" to-port="0" />
138
+ <edge from-layer="2" from-port="1" to-layer="4" to-port="0" />
139
+ <edge from-layer="3" from-port="0" to-layer="4" to-port="1" />
140
+ <edge from-layer="4" from-port="2" to-layer="5" to-port="0" />
141
+ <edge from-layer="5" from-port="1" to-layer="8" to-port="0" />
142
+ <edge from-layer="6" from-port="1" to-layer="8" to-port="1" />
143
+ <edge from-layer="7" from-port="0" to-layer="8" to-port="2" />
144
+ <edge from-layer="8" from-port="3" to-layer="9" to-port="0" />
145
+ </edges>
146
+ <rt_info>
147
+ <Runtime_version value="2025.1.0-18503-6fec06580ab-releases/2025/1" />
148
+ <conversion_parameters>
149
+ <framework value="pytorch" />
150
+ <is_python_object value="True" />
151
+ </conversion_parameters>
152
+ <nncf>
153
+ <friendly_names_were_updated value="True" />
154
+ <weight_compression>
155
+ <advanced_parameters value="{'statistics_path': None, 'awq_params': {'subset_size': 32, 'percent_to_apply': 0.002, 'alpha_min': 0.0, 'alpha_max': 1.0, 'steps': 100}, 'scale_estimation_params': {'subset_size': 64, 'initial_steps': 5, 'scale_steps': 5, 'weight_penalty': -1.0}, 'gptq_params': {'damp_percent': 0.1, 'block_size': 128, 'subset_size': 128}, 'lora_correction_params': {'adapter_rank': 8, 'num_iterations': 3, 'apply_regularization': True, 'subset_size': 128, 'use_int8_adapters': True}}" />
156
+ <all_layers value="False" />
157
+ <awq value="False" />
158
+ <backup_mode value="int8_asym" />
159
+ <gptq value="False" />
160
+ <group_size value="-1" />
161
+ <ignored_scope value="[]" />
162
+ <lora_correction value="False" />
163
+ <mode value="int8_sym" />
164
+ <ratio value="1.0" />
165
+ <scale_estimation value="False" />
166
+ <sensitivity_metric value="weight_quantization_error" />
167
+ </weight_compression>
168
+ </nncf>
169
+ <optimum>
170
+ <nncf_version value="2.15.0" />
171
+ <optimum_intel_version value="1.24.0.dev0+dba7dce" />
172
+ <optimum_version value="1.25.3" />
173
+ <pytorch_version value="2.6.0" />
174
+ <transformers_version value="4.52.3" />
175
+ </optimum>
176
+ </rt_info>
177
+ </net>
openvino_tokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5365a0a3c9f496090c293249d6b76fac76f52910e7d2dbbccc3393aea97c1467
3
+ size 5589034
openvino_tokenizer.xml ADDED
@@ -0,0 +1,721 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="tokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_1630920" type="Parameter" version="opset1">
5
+ <data shape="?" element_type="string" />
6
+ <output>
7
+ <port id="0" precision="STRING" names="Parameter_1630920">
8
+ <dim>-1</dim>
9
+ </port>
10
+ </output>
11
+ </layer>
12
+ <layer id="1" name="Constant_1630926" type="Const" version="opset1">
13
+ <data element_type="i64" shape="" offset="0" size="8" />
14
+ <output>
15
+ <port id="0" precision="I64" />
16
+ </output>
17
+ </layer>
18
+ <layer id="2" name="StringTensorUnpack_1630921" type="StringTensorUnpack" version="opset15">
19
+ <input>
20
+ <port id="0" precision="STRING">
21
+ <dim>-1</dim>
22
+ </port>
23
+ </input>
24
+ <output>
25
+ <port id="1" precision="I32">
26
+ <dim>-1</dim>
27
+ </port>
28
+ <port id="2" precision="I32">
29
+ <dim>-1</dim>
30
+ </port>
31
+ <port id="3" precision="U8">
32
+ <dim>-1</dim>
33
+ </port>
34
+ </output>
35
+ </layer>
36
+ <layer id="3" name="ShapeOf_1630922" type="ShapeOf" version="opset3">
37
+ <data output_type="i64" />
38
+ <input>
39
+ <port id="0" precision="I32">
40
+ <dim>-1</dim>
41
+ </port>
42
+ </input>
43
+ <output>
44
+ <port id="1" precision="I64">
45
+ <dim>1</dim>
46
+ </port>
47
+ </output>
48
+ </layer>
49
+ <layer id="4" name="Constant_1630923" type="Const" version="opset1">
50
+ <data element_type="i64" shape="" offset="0" size="8" />
51
+ <output>
52
+ <port id="0" precision="I64" />
53
+ </output>
54
+ </layer>
55
+ <layer id="5" name="Constant_1630924" type="Const" version="opset1">
56
+ <data element_type="i64" shape="" offset="0" size="8" />
57
+ <output>
58
+ <port id="0" precision="I64" />
59
+ </output>
60
+ </layer>
61
+ <layer id="6" name="Gather_1630925" type="Gather" version="opset8">
62
+ <data batch_dims="0" />
63
+ <input>
64
+ <port id="0" precision="I64">
65
+ <dim>1</dim>
66
+ </port>
67
+ <port id="1" precision="I64" />
68
+ <port id="2" precision="I64" />
69
+ </input>
70
+ <output>
71
+ <port id="3" precision="I64" />
72
+ </output>
73
+ </layer>
74
+ <layer id="7" name="Constant_1630927" type="Const" version="opset1">
75
+ <data element_type="i64" shape="" offset="8" size="8" />
76
+ <output>
77
+ <port id="0" precision="I64" />
78
+ </output>
79
+ </layer>
80
+ <layer id="8" name="Range_1630928" type="Range" version="opset4">
81
+ <data output_type="i32" />
82
+ <input>
83
+ <port id="0" precision="I64" />
84
+ <port id="1" precision="I64" />
85
+ <port id="2" precision="I64" />
86
+ </input>
87
+ <output>
88
+ <port id="3" precision="I32">
89
+ <dim>-1</dim>
90
+ </port>
91
+ </output>
92
+ </layer>
93
+ <layer id="9" name="Constant_1630929" type="Const" version="opset1">
94
+ <data element_type="i64" shape="" offset="8" size="8" />
95
+ <output>
96
+ <port id="0" precision="I64" />
97
+ </output>
98
+ </layer>
99
+ <layer id="10" name="Constant_1630930" type="Const" version="opset1">
100
+ <data element_type="i64" shape="" offset="8" size="8" />
101
+ <output>
102
+ <port id="0" precision="I64" />
103
+ </output>
104
+ </layer>
105
+ <layer id="11" name="Add_1630931" type="Add" version="opset1">
106
+ <data auto_broadcast="numpy" />
107
+ <input>
108
+ <port id="0" precision="I64" />
109
+ <port id="1" precision="I64" />
110
+ </input>
111
+ <output>
112
+ <port id="2" precision="I64" />
113
+ </output>
114
+ </layer>
115
+ <layer id="12" name="Constant_1630932" type="Const" version="opset1">
116
+ <data element_type="i64" shape="" offset="8" size="8" />
117
+ <output>
118
+ <port id="0" precision="I64" />
119
+ </output>
120
+ </layer>
121
+ <layer id="13" name="Range_1630933" type="Range" version="opset4">
122
+ <data output_type="i32" />
123
+ <input>
124
+ <port id="0" precision="I64" />
125
+ <port id="1" precision="I64" />
126
+ <port id="2" precision="I64" />
127
+ </input>
128
+ <output>
129
+ <port id="3" precision="I32">
130
+ <dim>-1</dim>
131
+ </port>
132
+ </output>
133
+ </layer>
134
+ <layer id="14" name="Constant_1630995" type="Const" version="opset1">
135
+ <data element_type="u8" shape="552" offset="16" size="552" />
136
+ <output>
137
+ <port id="0" precision="U8">
138
+ <dim>552</dim>
139
+ </port>
140
+ </output>
141
+ </layer>
142
+ <layer id="15" name="SpecialTokensSplit_1630996" type="SpecialTokensSplit" version="extension">
143
+ <input>
144
+ <port id="0" precision="I32">
145
+ <dim>-1</dim>
146
+ </port>
147
+ <port id="1" precision="I32">
148
+ <dim>-1</dim>
149
+ </port>
150
+ <port id="2" precision="I32">
151
+ <dim>-1</dim>
152
+ </port>
153
+ <port id="3" precision="I32">
154
+ <dim>-1</dim>
155
+ </port>
156
+ <port id="4" precision="U8">
157
+ <dim>-1</dim>
158
+ </port>
159
+ <port id="5" precision="U8">
160
+ <dim>552</dim>
161
+ </port>
162
+ </input>
163
+ <output>
164
+ <port id="6" precision="I32">
165
+ <dim>-1</dim>
166
+ </port>
167
+ <port id="7" precision="I32">
168
+ <dim>-1</dim>
169
+ </port>
170
+ <port id="8" precision="I32">
171
+ <dim>-1</dim>
172
+ </port>
173
+ <port id="9" precision="I32">
174
+ <dim>-1</dim>
175
+ </port>
176
+ <port id="10" precision="U8">
177
+ <dim>-1</dim>
178
+ </port>
179
+ <port id="11" precision="BOOL">
180
+ <dim>-1</dim>
181
+ </port>
182
+ </output>
183
+ </layer>
184
+ <layer id="16" name="CharsMapNormalization_1630997" type="CharsMapNormalization" version="extension">
185
+ <data add_dummy_prefix="false" remove_extra_whitespaces="false" escape_whitespaces="false" normalization_form="nfc" case_fold="false" nmt="false" />
186
+ <input>
187
+ <port id="0" precision="I32">
188
+ <dim>-1</dim>
189
+ </port>
190
+ <port id="1" precision="I32">
191
+ <dim>-1</dim>
192
+ </port>
193
+ <port id="2" precision="U8">
194
+ <dim>-1</dim>
195
+ </port>
196
+ <port id="3" precision="BOOL">
197
+ <dim>-1</dim>
198
+ </port>
199
+ </input>
200
+ <output>
201
+ <port id="4" precision="I32">
202
+ <dim>-1</dim>
203
+ </port>
204
+ <port id="5" precision="I32">
205
+ <dim>-1</dim>
206
+ </port>
207
+ <port id="6" precision="U8">
208
+ <dim>-1</dim>
209
+ </port>
210
+ <port id="7" precision="BOOL">
211
+ <dim>-1</dim>
212
+ </port>
213
+ </output>
214
+ </layer>
215
+ <layer id="17" name="Constant_1630999" type="Const" version="opset1">
216
+ <data element_type="u8" shape="110" offset="568" size="110" />
217
+ <output>
218
+ <port id="0" precision="U8">
219
+ <dim>110</dim>
220
+ </port>
221
+ </output>
222
+ </layer>
223
+ <layer id="18" name="RegexSplit_1631000" type="RegexSplit" version="extension">
224
+ <data behaviour="isolate" invert="false" max_splits="-1" />
225
+ <input>
226
+ <port id="0" precision="I32">
227
+ <dim>-1</dim>
228
+ </port>
229
+ <port id="1" precision="I32">
230
+ <dim>-1</dim>
231
+ </port>
232
+ <port id="2" precision="I32">
233
+ <dim>-1</dim>
234
+ </port>
235
+ <port id="3" precision="I32">
236
+ <dim>-1</dim>
237
+ </port>
238
+ <port id="4" precision="U8">
239
+ <dim>-1</dim>
240
+ </port>
241
+ <port id="5" precision="BOOL">
242
+ <dim>-1</dim>
243
+ </port>
244
+ <port id="6" precision="U8">
245
+ <dim>110</dim>
246
+ </port>
247
+ </input>
248
+ <output>
249
+ <port id="7" precision="I32">
250
+ <dim>-1</dim>
251
+ </port>
252
+ <port id="8" precision="I32">
253
+ <dim>-1</dim>
254
+ </port>
255
+ <port id="9" precision="I32">
256
+ <dim>-1</dim>
257
+ </port>
258
+ <port id="10" precision="I32">
259
+ <dim>-1</dim>
260
+ </port>
261
+ <port id="11" precision="U8">
262
+ <dim>-1</dim>
263
+ </port>
264
+ <port id="12" precision="BOOL">
265
+ <dim>-1</dim>
266
+ </port>
267
+ </output>
268
+ </layer>
269
+ <layer id="19" name="Constant_1631002" type="Const" version="opset1">
270
+ <data element_type="i32" shape="151674" offset="678" size="606696" />
271
+ <output>
272
+ <port id="0" precision="I32">
273
+ <dim>151674</dim>
274
+ </port>
275
+ </output>
276
+ </layer>
277
+ <layer id="20" name="Constant_1631004" type="Const" version="opset1">
278
+ <data element_type="i32" shape="151674" offset="607374" size="606696" />
279
+ <output>
280
+ <port id="0" precision="I32">
281
+ <dim>151674</dim>
282
+ </port>
283
+ </output>
284
+ </layer>
285
+ <layer id="21" name="Constant_1631006" type="Const" version="opset1">
286
+ <data element_type="u8" shape="976322" offset="1214070" size="976322" />
287
+ <output>
288
+ <port id="0" precision="U8">
289
+ <dim>976322</dim>
290
+ </port>
291
+ </output>
292
+ </layer>
293
+ <layer id="22" name="Constant_1631014" type="Const" version="opset1">
294
+ <data element_type="i32" shape="151387" offset="2190392" size="605548" />
295
+ <output>
296
+ <port id="0" precision="I32">
297
+ <dim>151387</dim>
298
+ </port>
299
+ </output>
300
+ </layer>
301
+ <layer id="23" name="Constant_1631016" type="Const" version="opset1">
302
+ <data element_type="i32" shape="151387" offset="2795940" size="605548" />
303
+ <output>
304
+ <port id="0" precision="I32">
305
+ <dim>151387</dim>
306
+ </port>
307
+ </output>
308
+ </layer>
309
+ <layer id="24" name="Constant_1631018" type="Const" version="opset1">
310
+ <data element_type="u8" shape="491359" offset="3401488" size="491359" />
311
+ <output>
312
+ <port id="0" precision="U8">
313
+ <dim>491359</dim>
314
+ </port>
315
+ </output>
316
+ </layer>
317
+ <layer id="25" name="Constant_1631020" type="Const" version="opset1">
318
+ <data element_type="i32" shape="151387" offset="3892847" size="605548" />
319
+ <output>
320
+ <port id="0" precision="I32">
321
+ <dim>151387</dim>
322
+ </port>
323
+ </output>
324
+ </layer>
325
+ <layer id="26" name="Constant_1631022" type="Const" version="opset1">
326
+ <data element_type="i32" shape="151387" offset="4498395" size="605548" />
327
+ <output>
328
+ <port id="0" precision="I32">
329
+ <dim>151387</dim>
330
+ </port>
331
+ </output>
332
+ </layer>
333
+ <layer id="27" name="Constant_1631024" type="Const" version="opset1">
334
+ <data element_type="u8" shape="484354" offset="5103943" size="484354" />
335
+ <output>
336
+ <port id="0" precision="U8">
337
+ <dim>484354</dim>
338
+ </port>
339
+ </output>
340
+ </layer>
341
+ <layer id="28" name="Constant_1631008" type="Const" version="opset1">
342
+ <data element_type="i32" shape="31" offset="5588297" size="124" />
343
+ <output>
344
+ <port id="0" precision="I32">
345
+ <dim>31</dim>
346
+ </port>
347
+ </output>
348
+ </layer>
349
+ <layer id="29" name="Constant_1631010" type="Const" version="opset1">
350
+ <data element_type="i32" shape="31" offset="5588421" size="124" />
351
+ <output>
352
+ <port id="0" precision="I32">
353
+ <dim>31</dim>
354
+ </port>
355
+ </output>
356
+ </layer>
357
+ <layer id="30" name="Constant_1631012" type="Const" version="opset1">
358
+ <data element_type="u8" shape="353" offset="5588545" size="353" />
359
+ <output>
360
+ <port id="0" precision="U8">
361
+ <dim>353</dim>
362
+ </port>
363
+ </output>
364
+ </layer>
365
+ <layer id="31" name="Constant_1631025" type="Const" version="opset1">
366
+ <data element_type="i32" shape="31" offset="5588898" size="124" />
367
+ <output>
368
+ <port id="0" precision="I32">
369
+ <dim>31</dim>
370
+ </port>
371
+ </output>
372
+ </layer>
373
+ <layer id="32" name="BPETokenizer_1631026" type="BPETokenizer" version="extension">
374
+ <data unk_token="" fuse_unk="false" suffix_indicator="" end_suffix="" byte_fallback="false" cache_capacity="30328" />
375
+ <input>
376
+ <port id="0" precision="I32">
377
+ <dim>-1</dim>
378
+ </port>
379
+ <port id="1" precision="I32">
380
+ <dim>-1</dim>
381
+ </port>
382
+ <port id="2" precision="I32">
383
+ <dim>-1</dim>
384
+ </port>
385
+ <port id="3" precision="I32">
386
+ <dim>-1</dim>
387
+ </port>
388
+ <port id="4" precision="U8">
389
+ <dim>-1</dim>
390
+ </port>
391
+ <port id="5" precision="I32">
392
+ <dim>151674</dim>
393
+ </port>
394
+ <port id="6" precision="I32">
395
+ <dim>151674</dim>
396
+ </port>
397
+ <port id="7" precision="U8">
398
+ <dim>976322</dim>
399
+ </port>
400
+ <port id="8" precision="I32">
401
+ <dim>151387</dim>
402
+ </port>
403
+ <port id="9" precision="I32">
404
+ <dim>151387</dim>
405
+ </port>
406
+ <port id="10" precision="U8">
407
+ <dim>491359</dim>
408
+ </port>
409
+ <port id="11" precision="I32">
410
+ <dim>151387</dim>
411
+ </port>
412
+ <port id="12" precision="I32">
413
+ <dim>151387</dim>
414
+ </port>
415
+ <port id="13" precision="U8">
416
+ <dim>484354</dim>
417
+ </port>
418
+ <port id="14" precision="I32">
419
+ <dim>31</dim>
420
+ </port>
421
+ <port id="15" precision="I32">
422
+ <dim>31</dim>
423
+ </port>
424
+ <port id="16" precision="U8">
425
+ <dim>353</dim>
426
+ </port>
427
+ <port id="17" precision="I32">
428
+ <dim>31</dim>
429
+ </port>
430
+ </input>
431
+ <output>
432
+ <port id="18" precision="I32">
433
+ <dim>-1</dim>
434
+ </port>
435
+ <port id="19" precision="I32">
436
+ <dim>-1</dim>
437
+ </port>
438
+ <port id="20" precision="I32">
439
+ <dim>-1</dim>
440
+ </port>
441
+ </output>
442
+ </layer>
443
+ <layer id="33" name="Subtract_1631027" type="Subtract" version="opset1">
444
+ <data auto_broadcast="numpy" />
445
+ <input>
446
+ <port id="0" precision="I32">
447
+ <dim>-1</dim>
448
+ </port>
449
+ <port id="1" precision="I32">
450
+ <dim>-1</dim>
451
+ </port>
452
+ </input>
453
+ <output>
454
+ <port id="2" precision="I32">
455
+ <dim>-1</dim>
456
+ </port>
457
+ </output>
458
+ </layer>
459
+ <layer id="34" name="Constant_1631028" type="Const" version="opset1">
460
+ <data element_type="i32" shape="" offset="5589022" size="4" />
461
+ <output>
462
+ <port id="0" precision="I32" />
463
+ </output>
464
+ </layer>
465
+ <layer id="35" name="Minimum_1631029" type="Minimum" version="opset1">
466
+ <data auto_broadcast="numpy" />
467
+ <input>
468
+ <port id="0" precision="I32">
469
+ <dim>-1</dim>
470
+ </port>
471
+ <port id="1" precision="I32" />
472
+ </input>
473
+ <output>
474
+ <port id="2" precision="I32">
475
+ <dim>-1</dim>
476
+ </port>
477
+ </output>
478
+ </layer>
479
+ <layer id="36" name="Subtract_1631030" type="Subtract" version="opset1">
480
+ <data auto_broadcast="numpy" />
481
+ <input>
482
+ <port id="0" precision="I32">
483
+ <dim>-1</dim>
484
+ </port>
485
+ <port id="1" precision="I32">
486
+ <dim>-1</dim>
487
+ </port>
488
+ </input>
489
+ <output>
490
+ <port id="2" precision="I32">
491
+ <dim>-1</dim>
492
+ </port>
493
+ </output>
494
+ </layer>
495
+ <layer id="37" name="Subtract_1631031" type="Subtract" version="opset1">
496
+ <data auto_broadcast="numpy" />
497
+ <input>
498
+ <port id="0" precision="I32">
499
+ <dim>-1</dim>
500
+ </port>
501
+ <port id="1" precision="I32">
502
+ <dim>-1</dim>
503
+ </port>
504
+ </input>
505
+ <output>
506
+ <port id="2" precision="I32">
507
+ <dim>-1</dim>
508
+ </port>
509
+ </output>
510
+ </layer>
511
+ <layer id="38" name="Constant_1631032" type="Const" version="opset1">
512
+ <data element_type="i32" shape="" offset="5589026" size="4" />
513
+ <output>
514
+ <port id="0" precision="I32" />
515
+ </output>
516
+ </layer>
517
+ <layer id="39" name="ReduceMax_1631033" type="ReduceMax" version="opset1">
518
+ <data keep_dims="false" />
519
+ <input>
520
+ <port id="0" precision="I32">
521
+ <dim>-1</dim>
522
+ </port>
523
+ <port id="1" precision="I32" />
524
+ </input>
525
+ <output>
526
+ <port id="2" precision="I32" />
527
+ </output>
528
+ </layer>
529
+ <layer id="40" name="Constant_1631034" type="Const" version="opset1">
530
+ <data element_type="i32" shape="" offset="5589030" size="4" />
531
+ <output>
532
+ <port id="0" precision="I32" />
533
+ </output>
534
+ </layer>
535
+ <layer id="41" name="RaggedToDense_1631035" type="RaggedToDense" version="extension">
536
+ <data pad_right="false" m_pad_max_length="false" />
537
+ <input>
538
+ <port id="0" precision="I32">
539
+ <dim>-1</dim>
540
+ </port>
541
+ <port id="1" precision="I32">
542
+ <dim>-1</dim>
543
+ </port>
544
+ <port id="2" precision="I32">
545
+ <dim>-1</dim>
546
+ </port>
547
+ <port id="3" precision="I32" />
548
+ <port id="4" precision="I32" />
549
+ </input>
550
+ <output>
551
+ <port id="5" precision="I32">
552
+ <dim>-1</dim>
553
+ <dim>-1</dim>
554
+ </port>
555
+ <port id="6" precision="BOOL">
556
+ <dim>-1</dim>
557
+ <dim>-1</dim>
558
+ </port>
559
+ </output>
560
+ </layer>
561
+ <layer id="42" name="Convert_1631036" type="Convert" version="opset1">
562
+ <data destination_type="i32" />
563
+ <input>
564
+ <port id="0" precision="BOOL">
565
+ <dim>-1</dim>
566
+ <dim>-1</dim>
567
+ </port>
568
+ </input>
569
+ <output>
570
+ <port id="1" precision="I32">
571
+ <dim>-1</dim>
572
+ <dim>-1</dim>
573
+ </port>
574
+ </output>
575
+ </layer>
576
+ <layer id="43" name="Convert_1631036.0" type="Convert" version="opset1">
577
+ <data destination_type="i64" />
578
+ <input>
579
+ <port id="0" precision="I32">
580
+ <dim>-1</dim>
581
+ <dim>-1</dim>
582
+ </port>
583
+ </input>
584
+ <output>
585
+ <port id="1" precision="I64" names="attention_mask">
586
+ <dim>-1</dim>
587
+ <dim>-1</dim>
588
+ </port>
589
+ </output>
590
+ </layer>
591
+ <layer id="45" name="RaggedToDense_1631035.0" type="Convert" version="opset1">
592
+ <data destination_type="i64" />
593
+ <input>
594
+ <port id="0" precision="I32">
595
+ <dim>-1</dim>
596
+ <dim>-1</dim>
597
+ </port>
598
+ </input>
599
+ <output>
600
+ <port id="1" precision="I64" names="input_ids">
601
+ <dim>-1</dim>
602
+ <dim>-1</dim>
603
+ </port>
604
+ </output>
605
+ </layer>
606
+ <layer id="46" name="Result_1631037" type="Result" version="opset1" output_names="input_ids">
607
+ <input>
608
+ <port id="0" precision="I64">
609
+ <dim>-1</dim>
610
+ <dim>-1</dim>
611
+ </port>
612
+ </input>
613
+ </layer>
614
+ <layer id="44" name="Result_1631038" type="Result" version="opset1" output_names="attention_mask">
615
+ <input>
616
+ <port id="0" precision="I64">
617
+ <dim>-1</dim>
618
+ <dim>-1</dim>
619
+ </port>
620
+ </input>
621
+ </layer>
622
+ </layers>
623
+ <edges>
624
+ <edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
625
+ <edge from-layer="1" from-port="0" to-layer="8" to-port="0" />
626
+ <edge from-layer="2" from-port="1" to-layer="3" to-port="0" />
627
+ <edge from-layer="2" from-port="3" to-layer="15" to-port="4" />
628
+ <edge from-layer="2" from-port="2" to-layer="15" to-port="3" />
629
+ <edge from-layer="2" from-port="1" to-layer="15" to-port="2" />
630
+ <edge from-layer="3" from-port="1" to-layer="6" to-port="0" />
631
+ <edge from-layer="4" from-port="0" to-layer="6" to-port="1" />
632
+ <edge from-layer="5" from-port="0" to-layer="6" to-port="2" />
633
+ <edge from-layer="6" from-port="3" to-layer="11" to-port="0" />
634
+ <edge from-layer="6" from-port="3" to-layer="8" to-port="1" />
635
+ <edge from-layer="7" from-port="0" to-layer="8" to-port="2" />
636
+ <edge from-layer="8" from-port="3" to-layer="15" to-port="0" />
637
+ <edge from-layer="9" from-port="0" to-layer="13" to-port="0" />
638
+ <edge from-layer="10" from-port="0" to-layer="11" to-port="1" />
639
+ <edge from-layer="11" from-port="2" to-layer="13" to-port="1" />
640
+ <edge from-layer="12" from-port="0" to-layer="13" to-port="2" />
641
+ <edge from-layer="13" from-port="3" to-layer="15" to-port="1" />
642
+ <edge from-layer="14" from-port="0" to-layer="15" to-port="5" />
643
+ <edge from-layer="15" from-port="8" to-layer="16" to-port="0" />
644
+ <edge from-layer="15" from-port="7" to-layer="18" to-port="1" />
645
+ <edge from-layer="15" from-port="6" to-layer="18" to-port="0" />
646
+ <edge from-layer="15" from-port="11" to-layer="16" to-port="3" />
647
+ <edge from-layer="15" from-port="10" to-layer="16" to-port="2" />
648
+ <edge from-layer="15" from-port="9" to-layer="16" to-port="1" />
649
+ <edge from-layer="16" from-port="4" to-layer="18" to-port="2" />
650
+ <edge from-layer="16" from-port="5" to-layer="18" to-port="3" />
651
+ <edge from-layer="16" from-port="6" to-layer="18" to-port="4" />
652
+ <edge from-layer="16" from-port="7" to-layer="18" to-port="5" />
653
+ <edge from-layer="17" from-port="0" to-layer="18" to-port="6" />
654
+ <edge from-layer="18" from-port="11" to-layer="32" to-port="4" />
655
+ <edge from-layer="18" from-port="10" to-layer="32" to-port="3" />
656
+ <edge from-layer="18" from-port="8" to-layer="32" to-port="1" />
657
+ <edge from-layer="18" from-port="7" to-layer="32" to-port="0" />
658
+ <edge from-layer="18" from-port="9" to-layer="32" to-port="2" />
659
+ <edge from-layer="19" from-port="0" to-layer="32" to-port="5" />
660
+ <edge from-layer="20" from-port="0" to-layer="32" to-port="6" />
661
+ <edge from-layer="21" from-port="0" to-layer="32" to-port="7" />
662
+ <edge from-layer="22" from-port="0" to-layer="32" to-port="8" />
663
+ <edge from-layer="23" from-port="0" to-layer="32" to-port="9" />
664
+ <edge from-layer="24" from-port="0" to-layer="32" to-port="10" />
665
+ <edge from-layer="25" from-port="0" to-layer="32" to-port="11" />
666
+ <edge from-layer="26" from-port="0" to-layer="32" to-port="12" />
667
+ <edge from-layer="27" from-port="0" to-layer="32" to-port="13" />
668
+ <edge from-layer="28" from-port="0" to-layer="32" to-port="14" />
669
+ <edge from-layer="29" from-port="0" to-layer="32" to-port="15" />
670
+ <edge from-layer="30" from-port="0" to-layer="32" to-port="16" />
671
+ <edge from-layer="31" from-port="0" to-layer="32" to-port="17" />
672
+ <edge from-layer="32" from-port="19" to-layer="33" to-port="0" />
673
+ <edge from-layer="32" from-port="18" to-layer="33" to-port="1" />
674
+ <edge from-layer="32" from-port="20" to-layer="41" to-port="2" />
675
+ <edge from-layer="32" from-port="19" to-layer="36" to-port="0" />
676
+ <edge from-layer="32" from-port="19" to-layer="41" to-port="1" />
677
+ <edge from-layer="32" from-port="19" to-layer="37" to-port="0" />
678
+ <edge from-layer="33" from-port="2" to-layer="35" to-port="0" />
679
+ <edge from-layer="34" from-port="0" to-layer="35" to-port="1" />
680
+ <edge from-layer="35" from-port="2" to-layer="36" to-port="1" />
681
+ <edge from-layer="36" from-port="2" to-layer="37" to-port="1" />
682
+ <edge from-layer="36" from-port="2" to-layer="41" to-port="0" />
683
+ <edge from-layer="37" from-port="2" to-layer="39" to-port="0" />
684
+ <edge from-layer="38" from-port="0" to-layer="39" to-port="1" />
685
+ <edge from-layer="39" from-port="2" to-layer="41" to-port="3" />
686
+ <edge from-layer="40" from-port="0" to-layer="41" to-port="4" />
687
+ <edge from-layer="41" from-port="6" to-layer="42" to-port="0" />
688
+ <edge from-layer="41" from-port="5" to-layer="45" to-port="0" />
689
+ <edge from-layer="42" from-port="1" to-layer="43" to-port="0" />
690
+ <edge from-layer="43" from-port="1" to-layer="44" to-port="0" />
691
+ <edge from-layer="45" from-port="1" to-layer="46" to-port="0" />
692
+ </edges>
693
+ <rt_info>
694
+ <add_attention_mask value="True" />
695
+ <add_prefix_space />
696
+ <add_special_tokens value="True" />
697
+ <chat_template value="{%- if tools %}&#10; {{- '&lt;|im_start|>system\n' }}&#10; {%- if messages[0]['role'] == 'system' %}&#10; {{- messages[0]['content'] }}&#10; {%- else %}&#10; {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}&#10; {%- endif %}&#10; {{- &quot;\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within &lt;tools>&lt;/tools> XML tags:\n&lt;tools>&quot; }}&#10; {%- for tool in tools %}&#10; {{- &quot;\n&quot; }}&#10; {{- tool | tojson }}&#10; {%- endfor %}&#10; {{- &quot;\n&lt;/tools>\n\nFor each function call, return a json object with function name and arguments within &lt;tool_call>&lt;/tool_call> XML tags:\n&lt;tool_call>\n{\&quot;name\&quot;: &lt;function-name>, \&quot;arguments\&quot;: &lt;args-json-object>}\n&lt;/tool_call>&lt;|im_end|>\n&quot; }}&#10;{%- else %}&#10; {%- if messages[0]['role'] == 'system' %}&#10; {{- '&lt;|im_start|>system\n' + messages[0]['content'] + '&lt;|im_end|>\n' }}&#10; {%- else %}&#10; {{- '&lt;|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.&lt;|im_end|>\n' }}&#10; {%- endif %}&#10;{%- endif %}&#10;{%- for message in messages %}&#10; {%- if (message.role == &quot;user&quot;) or (message.role == &quot;system&quot; and not loop.first) or (message.role == &quot;assistant&quot; and not message.tool_calls) %}&#10; {{- '&lt;|im_start|>' + message.role + '\n' + message.content + '&lt;|im_end|>' + '\n' }}&#10; {%- elif message.role == &quot;assistant&quot; %}&#10; {{- '&lt;|im_start|>' + message.role }}&#10; {%- if message.content %}&#10; {{- '\n' + message.content }}&#10; {%- endif %}&#10; {%- for tool_call in message.tool_calls %}&#10; {%- if tool_call.function is defined %}&#10; {%- set tool_call = tool_call.function %}&#10; {%- endif %}&#10; {{- '\n&lt;tool_call>\n{&quot;name&quot;: &quot;' }}&#10; {{- tool_call.name }}&#10; {{- '&quot;, &quot;arguments&quot;: ' }}&#10; {{- tool_call.arguments | tojson }}&#10; {{- '}\n&lt;/tool_call>' }}&#10; {%- endfor %}&#10; {{- '&lt;|im_end|>\n' }}&#10; {%- elif message.role == &quot;tool&quot; %}&#10; {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != &quot;tool&quot;) %}&#10; {{- '&lt;|im_start|>user' }}&#10; {%- endif %}&#10; {{- '\n&lt;tool_response>\n' }}&#10; {{- message.content }}&#10; {{- '\n&lt;/tool_response>' }}&#10; {%- if loop.last or (messages[loop.index0 + 1].role != &quot;tool&quot;) %}&#10; {{- '&lt;|im_end|>\n' }}&#10; {%- endif %}&#10; {%- endif %}&#10;{%- endfor %}&#10;{%- if add_generation_prompt %}&#10; {{- '&lt;|im_start|>assistant\n' }}&#10;{%- endif %}&#10;" />
698
+ <clean_up_tokenization_spaces />
699
+ <detokenizer_input_type value="i64" />
700
+ <eos_token_id value="151645" />
701
+ <handle_special_tokens_with_re />
702
+ <max_length />
703
+ <number_of_inputs value="1" />
704
+ <openvino_tokenizers_version value="2025.1.0.0-523-710ddf14de8" />
705
+ <openvino_version value="2025.1.0-18503-6fec06580ab-releases/2025/1" />
706
+ <original_post_processor_template value="{&quot;type&quot;: &quot;ByteLevel&quot;, &quot;add_prefix_space&quot;: false, &quot;trim_offsets&quot;: false, &quot;use_regex&quot;: false}" />
707
+ <original_tokenizer_class value="&lt;class 'transformers.models.qwen2.tokenization_qwen2_fast.Qwen2TokenizerFast'>" />
708
+ <pad_token_id value="151643" />
709
+ <sentencepiece_version value="0.2.0" />
710
+ <skip_special_tokens value="True" />
711
+ <streaming_detokenizer value="False" />
712
+ <tiktoken_version value="0.9.0" />
713
+ <tokenizer_output_type value="i64" />
714
+ <tokenizers_version value="0.21.1" />
715
+ <transformers_version value="4.52.3" />
716
+ <use_max_padding value="False" />
717
+ <use_sentencepiece_backend value="False" />
718
+ <utf8_replace_mode value="replace" />
719
+ <with_detokenizer value="True" />
720
+ </rt_info>
721
+ </net>
openvino_vision_embeddings_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c691f192dfe3d77922acdd9ef03dfae49bf7efdf9315a4fa00930d1a11b0372
3
+ size 317217188
openvino_vision_embeddings_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": {
3
+ "height": 448,
4
+ "width": 448
5
+ },
6
+ "do_center_crop": true,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "image_mean": [
12
+ 0.485,
13
+ 0.456,
14
+ 0.406
15
+ ],
16
+ "image_processor_type": "CLIPImageProcessor",
17
+ "image_std": [
18
+ 0.229,
19
+ 0.224,
20
+ 0.225
21
+ ],
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "shortest_edge": 448
26
+ }
27
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f9ba4b4a6625b5047a1356f6081b641c3e4e6a4a198facbd4bef217747d1685
3
+ size 11423548
tokenizer_config.json ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|im_start|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "151645": {
23
+ "content": "<|im_end|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "151646": {
31
+ "content": "<|object_ref_start|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|object_ref_end|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "151648": {
47
+ "content": "<|box_start|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "151649": {
55
+ "content": "<|box_end|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "151665": {
183
+ "content": "<img>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ },
190
+ "151666": {
191
+ "content": "</img>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": true
197
+ },
198
+ "151667": {
199
+ "content": "<IMG_CONTEXT>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": true
205
+ },
206
+ "151668": {
207
+ "content": "<quad>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": true
213
+ },
214
+ "151669": {
215
+ "content": "</quad>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": true
221
+ },
222
+ "151670": {
223
+ "content": "<ref>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "151671": {
231
+ "content": "</ref>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": true
237
+ },
238
+ "151672": {
239
+ "content": "<box>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": false,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "151673": {
247
+ "content": "</box>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": false,
251
+ "single_word": false,
252
+ "special": true
253
+ }
254
+ },
255
+ "additional_special_tokens": [
256
+ "<|im_start|>",
257
+ "<|im_end|>",
258
+ "<|object_ref_start|>",
259
+ "<|object_ref_end|>",
260
+ "<|box_start|>",
261
+ "<|box_end|>",
262
+ "<|quad_start|>",
263
+ "<|quad_end|>",
264
+ "<|vision_start|>",
265
+ "<|vision_end|>",
266
+ "<|vision_pad|>",
267
+ "<|image_pad|>",
268
+ "<|video_pad|>"
269
+ ],
270
+ "bos_token": null,
271
+ "clean_up_tokenization_spaces": false,
272
+ "eos_token": "<|im_end|>",
273
+ "errors": "replace",
274
+ "extra_special_tokens": {},
275
+ "model_max_length": 12288,
276
+ "pad_token": "<|endoftext|>",
277
+ "split_special_tokens": false,
278
+ "tokenizer_class": "Qwen2Tokenizer",
279
+ "unk_token": null
280
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff