File size: 1,745 Bytes
901c9d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c20fa9
 
 
901c9d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c20fa9
901c9d4
 
 
 
 
8c20fa9
 
 
 
 
901c9d4
 
 
 
 
 
 
8c20fa9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: bert-base-multilingual-uncased-finetuned-masress
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-multilingual-uncased-finetuned-masress

This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0946
- Accuracy: 0.5782
- F1: 0.5769

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.1646        | 1.0   | 151  | 1.0626          | 0.5588   | 0.5566 |
| 0.9281        | 2.0   | 302  | 0.9800          | 0.5869   | 0.5792 |
| 0.8269        | 3.0   | 453  | 1.0134          | 0.5911   | 0.5775 |
| 0.7335        | 4.0   | 604  | 1.0644          | 0.5861   | 0.5816 |
| 0.6786        | 5.0   | 755  | 1.0946          | 0.5782   | 0.5769 |


### Framework versions

- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1