File size: 1,164 Bytes
c769b40 dd41067 c769b40 c1fb75b c769b40 6337b65 2cf2398 eb59026 07aaf0e 6337b65 eef9733 6337b65 9dc4d19 6337b65 cff8bc2 df1521a 083a5a6 df1521a 083a5a6 d69bd00 083a5a6 d69bd00 083a5a6 ed15c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
language: en
datasets:
- wnut_17
license: mit
metrics:
- f1
widget:
- text: "My name is Sylvain and I live in Paris"
example_title: "Parisian"
- text: "My name is Sarah and I live in London"
example_title: "Londoner"
---
# Reddit NER for place names
Fine-tuned `bert-base-uncased` for named entity recognition, trained using `wnut_17` with 498 additional comments from Reddit. This model is intended solely for place name extraction from social media text, other entities have therefore been removed.
This model was created with two key goals:
1. Improved NER results on social media
2. Target only place names
## Use in `transformers`
```python
from transformers import pipeline
generator = pipeline(
task="ner",
model="cjber/reddit-ner-place_names",
tokenizer="cjber/reddit-ner-place_names",
aggregation_strategy="first",
)
out = generator("I live north of liverpool in Waterloo")
```
Out gives:
```python
[{'entity_group': 'location',
'score': 0.94054973,
'word': 'liverpool',
'start': 16,
'end': 25},
{'entity_group': 'location',
'score': 0.99520856,
'word': 'waterloo',
'start': 29,
'end': 37}]
``` |