Upload 2 files
Browse files- code/inference.py +226 -0
- code/requirements.txt +2 -0
code/inference.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
from transformers import (
|
4 |
+
AutoModelForCausalLM,
|
5 |
+
AutoTokenizer,
|
6 |
+
BitsAndBytesConfig,
|
7 |
+
pipeline,
|
8 |
+
logging,
|
9 |
+
)
|
10 |
+
import torch
|
11 |
+
import json
|
12 |
+
import re
|
13 |
+
|
14 |
+
# Activate 4-bit precision base model loading
|
15 |
+
use_4bit = True
|
16 |
+
|
17 |
+
# Compute dtype for 4-bit base models
|
18 |
+
bnb_4bit_compute_dtype = "float16"
|
19 |
+
|
20 |
+
# Quantization type (fp4 or nf4)
|
21 |
+
bnb_4bit_quant_type = "nf4"
|
22 |
+
|
23 |
+
use_nested_quant = False
|
24 |
+
|
25 |
+
# Load the entire model on the GPU 0
|
26 |
+
device_map = {"": 0}
|
27 |
+
|
28 |
+
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
|
29 |
+
|
30 |
+
bnb_config = BitsAndBytesConfig(
|
31 |
+
load_in_4bit=use_4bit,
|
32 |
+
bnb_4bit_quant_type=bnb_4bit_quant_type,
|
33 |
+
bnb_4bit_compute_dtype=compute_dtype,
|
34 |
+
bnb_4bit_use_double_quant=use_nested_quant,
|
35 |
+
)
|
36 |
+
model_name = "cjsanjay/llama-3-8B-gorilla-meraki_v2"
|
37 |
+
model = AutoModelForCausalLM.from_pretrained(
|
38 |
+
model_name,
|
39 |
+
quantization_config=bnb_config,
|
40 |
+
device_map=device_map
|
41 |
+
)
|
42 |
+
# Load LLaMA tokenizer
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
44 |
+
tokenizer.pad_token = tokenizer.eos_token
|
45 |
+
tokenizer.padding_side = "right"
|
46 |
+
# tokenizer.add_tokens(["<START_Q>", "<END_Q>", "<START_A>", "<END_A>"], special_tokens=True)
|
47 |
+
|
48 |
+
logging.set_verbosity(logging.CRITICAL)
|
49 |
+
|
50 |
+
|
51 |
+
# model.resize_token_embeddings(len(tokenizer))
|
52 |
+
|
53 |
+
|
54 |
+
# def get_question_prompt_old(data):
|
55 |
+
# instruction = f"### Instruction\n{data['Instruction']}"
|
56 |
+
# context = f"### Context\n{data['Functions']}" if len(data["Functions"]) > 0 else None
|
57 |
+
# # join all the parts together
|
58 |
+
# prompt = "\n\n".join([i for i in [instruction, context] if i is not None])
|
59 |
+
# return prompt
|
60 |
+
#
|
61 |
+
#
|
62 |
+
# # def generate_prompt_for_llama3(data):
|
63 |
+
# # system = "You are an AI programming assistant, utilizing the finetuned LLM model you only answer questions related to function calling using the provided functions. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer."
|
64 |
+
# # output_string = json.dumps(data['Output'])
|
65 |
+
# # functions_string = json.dumps(data['Functions'])
|
66 |
+
# # prompt = f"""<|start_header_id|>system<|end_header_id|> {system}\n### Instruction: <<functions>> {functions_string} <|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: {data['Instruction']}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {output_string}<|eot_id|>"""
|
67 |
+
# # return prompt
|
68 |
+
#
|
69 |
+
#
|
70 |
+
# def generate_prompt_for_llama3_test(data):
|
71 |
+
#
|
72 |
+
# functions_string = json.dumps(data['Functions'])
|
73 |
+
# prompt = f"""<|start_header_id|>system<|end_header_id|> {system}\n### Instruction: <<functions>> {functions_string} <|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: {data['Instruction']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
74 |
+
# return prompt
|
75 |
+
#
|
76 |
+
with open('meraki_full_unknown_fn_dataset_llama_v1.json', 'r') as json_file:
|
77 |
+
known_test_dataset_gorilla = json.load(json_file)
|
78 |
+
|
79 |
+
matched = 0
|
80 |
+
skipped = 0
|
81 |
+
failed = 0
|
82 |
+
total = len(known_test_dataset_gorilla)
|
83 |
+
failed_questions = []
|
84 |
+
skipped_questions = []
|
85 |
+
accuracy = {}
|
86 |
+
i = 0
|
87 |
+
processed_questions = []
|
88 |
+
pattern = r'<|im_start|>assistant(.*?)(?:<|im_end|>|$)'
|
89 |
+
system = ("You are an AI programming assistant, utilizing the finetuned LLM model you only answer questions related to "
|
90 |
+
"function calling using the provided functions. For politically sensitive questions, security and privacy "
|
91 |
+
"issues, and other non-computer science questions, you will refuse to answer. Use ")
|
92 |
+
|
93 |
+
|
94 |
+
def extract_assistant_function_response(r_patter, generated_text):
|
95 |
+
"""
|
96 |
+
|
97 |
+
:param r_patter:
|
98 |
+
:param generated_text:
|
99 |
+
:return:
|
100 |
+
"""
|
101 |
+
m_result = re.findall(pattern, seq['generated_text'], re.DOTALL)
|
102 |
+
# # Remove leading and trailing whitespace from the matches
|
103 |
+
m_result = [match.strip() for match in m_result]
|
104 |
+
for match in m_result:
|
105 |
+
if match.find("api_name") > -1:
|
106 |
+
return match.strip()
|
107 |
+
|
108 |
+
return None
|
109 |
+
|
110 |
+
|
111 |
+
for d in known_test_dataset_gorilla:
|
112 |
+
i += 1
|
113 |
+
# prompt = generate_prompt_for_llama3_test(d)
|
114 |
+
# tokenized_input = tokenizer.tokenize(prompt)
|
115 |
+
# if len(tokenized_input) > 4096:
|
116 |
+
# skipped += 1
|
117 |
+
# skipped_questions.append(d)
|
118 |
+
# print (f"Skipped: {i}, token_size: {len(tokenized_input)}")
|
119 |
+
# continue
|
120 |
+
functions_string = json.dumps(d['Functions'])
|
121 |
+
messages = [
|
122 |
+
{"role": "system", "content": f"{system}\n### Instruction: <<functions>> {functions_string}"},
|
123 |
+
{"role": "user", "content": d['Instruction']},
|
124 |
+
]
|
125 |
+
processed_questions.append(d)
|
126 |
+
pipeline1 = pipeline(
|
127 |
+
"text-generation",
|
128 |
+
model=model,
|
129 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
130 |
+
device_map="auto",
|
131 |
+
tokenizer=tokenizer
|
132 |
+
)
|
133 |
+
prompt = pipeline1.tokenizer.apply_chat_template(
|
134 |
+
messages,
|
135 |
+
tokenize=False,
|
136 |
+
add_generation_prompt=True
|
137 |
+
)
|
138 |
+
terminators = [
|
139 |
+
pipeline1.tokenizer.eos_token_id,
|
140 |
+
pipeline1.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
141 |
+
]
|
142 |
+
outputs = pipeline1(
|
143 |
+
prompt,
|
144 |
+
max_new_tokens=512,
|
145 |
+
eos_token_id=terminators,
|
146 |
+
do_sample=True,
|
147 |
+
temperature=0.6,
|
148 |
+
top_p=0.9,
|
149 |
+
)
|
150 |
+
final_assistant_response = None
|
151 |
+
assistant_raw_response = ""
|
152 |
+
for seq in outputs:
|
153 |
+
assistant_raw_response = seq['generated_text']
|
154 |
+
final_assistant_response = extract_assistant_function_response(pattern, seq['generated_text'])
|
155 |
+
try:
|
156 |
+
if final_assistant_response is None:
|
157 |
+
d["GotOutput"] = str(assistant_raw_response)
|
158 |
+
failed_questions.append(d)
|
159 |
+
failed += 1
|
160 |
+
print(f"Improper response from assistant Expected: {d['Output']}, Got: {assistant_raw_response}")
|
161 |
+
output_data = final_assistant_response
|
162 |
+
try:
|
163 |
+
output_data_json = json.loads(final_assistant_response)
|
164 |
+
if "arguments" in output_data_json:
|
165 |
+
try:
|
166 |
+
arg_dict_ans = json.loads(output_data_json["arguments"].replace("'", '"').replace("True", "true").replace("False", "false"))
|
167 |
+
arg_dict_input = json.loads(d["Output"]["arguments"].replace("'", '"').replace("True", "true").replace("False", "false"))
|
168 |
+
except Exception as ex:
|
169 |
+
print (f"Json loading failed for args string: {str(ex)}, Falling back to string comparison, args_string: {output_data_json['arguments']}")
|
170 |
+
raise
|
171 |
+
if output_data_json["api_name"] == d["Output"]["api_name"] and arg_dict_ans == arg_dict_input:
|
172 |
+
matched += 1
|
173 |
+
print ("Matched")
|
174 |
+
else:
|
175 |
+
d["GotOutput"] = str(output_data)
|
176 |
+
failed_questions.append(d)
|
177 |
+
failed += 1
|
178 |
+
print(f"JSON mismatch Expected: {d['Output']}, Got: {output_data_json}")
|
179 |
+
else:
|
180 |
+
if output_data_json == d["Output"]:
|
181 |
+
matched += 1
|
182 |
+
print ("Matched")
|
183 |
+
else:
|
184 |
+
d["GotOutput"] = str(output_data)
|
185 |
+
failed_questions.append(d)
|
186 |
+
failed += 1
|
187 |
+
print(f"JSON mismatch Expected: {d['Output']}, Got: {output_data_json}")
|
188 |
+
except Exception as ex:
|
189 |
+
print (f"Json loading failed: {str(ex)}, Falling back to string comparison")
|
190 |
+
if str(output_data) == str(d["Output"]):
|
191 |
+
matched += 1
|
192 |
+
print ("Matched")
|
193 |
+
else:
|
194 |
+
d["GotOutput"] = str(output_data)
|
195 |
+
failed_questions.append(d)
|
196 |
+
failed += 1
|
197 |
+
print(f"Expected: {d['Output']}, Got: {output_data}")
|
198 |
+
except Exception as ex:
|
199 |
+
print(f"Expected: {d['Output']}, Got: {output_data}, error: {str(ex)}")
|
200 |
+
failed_questions.append(d)
|
201 |
+
failed += 1
|
202 |
+
|
203 |
+
del pipeline1
|
204 |
+
del outputs
|
205 |
+
pipeline1 = None
|
206 |
+
outputs = None
|
207 |
+
with torch.no_grad():
|
208 |
+
torch.cuda.empty_cache()
|
209 |
+
print(f"Done: {i}/{total}, Skipped: {skipped}, matched: {matched}, failed: {failed}")
|
210 |
+
if len(processed_questions) >= 100:
|
211 |
+
break
|
212 |
+
time.sleep(1)
|
213 |
+
input()
|
214 |
+
|
215 |
+
accuracy["matched"] = matched
|
216 |
+
accuracy["total"] = total - skipped
|
217 |
+
accuracy["recall"] = float(accuracy["matched"])/accuracy["total"]
|
218 |
+
|
219 |
+
with open("failed_questions_meraki_unknown_test_dataset_llama3_gorilla.json", "w") as f:
|
220 |
+
json.dump(failed_questions, f, indent=4)
|
221 |
+
|
222 |
+
with open("skipped_questions_meraki_unknown_test_dataset_llama3_gorilla.json", "w") as f:
|
223 |
+
json.dump(skipped_questions, f, indent=4)
|
224 |
+
|
225 |
+
with open("accuracy_meraki_unknown_test_dataset_llama3_gorilla", "w") as f:
|
226 |
+
json.dump(accuracy, f, indent=4)
|
code/requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|