emfomy commited on
Commit
17cd157
·
1 Parent(s): 8f36d1a

Upload model files.

Browse files
README.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png
5
+ tags:
6
+ - pytorch
7
+ - lm-head
8
+ - bert
9
+ - zh
10
+ license: gpl-3.0
11
+ datasets:
12
+ metrics:
13
+ ---
14
+
15
+ # CKIP BERT Tiny Chinese
16
+
17
+ This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition).
18
+
19
+ 這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。
20
+
21
+ ## Homepage
22
+
23
+ * https://github.com/ckiplab/ckip-transformers
24
+
25
+ ## Contributers
26
+
27
+ * [Mu Yang](https://muyang.pro) at [CKIP](https://ckip.iis.sinica.edu.tw) (Author & Maintainer)
28
+
29
+ ## Usage
30
+
31
+ Please use BertTokenizerFast as tokenizer instead of AutoTokenizer.
32
+
33
+ 請使用 BertTokenizerFast 而非 AutoTokenizer。
34
+
35
+ ```
36
+ from transformers import (
37
+ BertTokenizerFast,
38
+ AutoModel,
39
+ )
40
+
41
+ tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese')
42
+ model = AutoModel.from_pretrained('ckiplab/bert-tiny-chinese')
43
+ ```
44
+
45
+ For full usage and more information, please refer to https://github.com/ckiplab/ckip-transformers.
46
+
47
+ 有關完整使用方法及其他資訊,請參見 https://github.com/ckiplab/ckip-transformers 。
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "directionality": "bidi",
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 312,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1248,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 4,
18
+ "pad_token_id": 0,
19
+ "pooler_fc_size": 312,
20
+ "pooler_num_attention_heads": 12,
21
+ "pooler_num_fc_layers": 3,
22
+ "pooler_size_per_head": 128,
23
+ "pooler_type": "first_token_transform",
24
+ "tokenizer_class": "BertTokenizerFast",
25
+ "type_vocab_size": 2,
26
+ "vocab_size": 21128
27
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a8738e3dfb32c69be70abfead99d54f4bea1920a3cf0cb874b5dd47a55a2c25
3
+ size 46278802
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "do_basic_tokenize": true, "never_split": null, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "name_or_path": "bert-base-chinese"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff