hpprc commited on
Commit
069e61e
·
1 Parent(s): b87807c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -19
README.md CHANGED
@@ -9,27 +9,25 @@ datasets:
9
  - wiki40b
10
  ---
11
 
12
- # {MODEL_NAME}
13
 
14
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
 
16
- <!--- Describe your model here -->
17
 
18
  ## Usage (Sentence-Transformers)
19
 
20
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
21
 
22
  ```
23
- pip install -U sentence-transformers
24
  ```
25
 
26
  Then you can use the model like this:
27
 
28
  ```python
29
  from sentence_transformers import SentenceTransformer
30
- sentences = ["This is an example sentence", "Each sentence is converted"]
31
 
32
- model = SentenceTransformer('{MODEL_NAME}')
33
  embeddings = model.encode(sentences)
34
  print(embeddings)
35
  ```
@@ -52,8 +50,8 @@ def cls_pooling(model_output, attention_mask):
52
  sentences = ['This is an example sentence', 'Each sentence is converted']
53
 
54
  # Load model from HuggingFace Hub
55
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
56
- model = AutoModel.from_pretrained('{MODEL_NAME}')
57
 
58
  # Tokenize sentences
59
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -69,16 +67,6 @@ print("Sentence embeddings:")
69
  print(sentence_embeddings)
70
  ```
71
 
72
-
73
-
74
- ## Evaluation Results
75
-
76
- <!--- Describe how your model was evaluated -->
77
-
78
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
79
-
80
-
81
-
82
  ## Full Model Architecture
83
  ```
84
  SentenceTransformer(
@@ -89,4 +77,14 @@ SentenceTransformer(
89
 
90
  ## Citing & Authors
91
 
92
- <!--- Describe where people can find more information -->
 
 
 
 
 
 
 
 
 
 
 
9
  - wiki40b
10
  ---
11
 
 
12
 
13
+ # unsup-simcse-ja-base
14
 
 
15
 
16
  ## Usage (Sentence-Transformers)
17
 
18
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
 
20
  ```
21
+ pip install -U fugashi[unidic-lite] sentence-transformers
22
  ```
23
 
24
  Then you can use the model like this:
25
 
26
  ```python
27
  from sentence_transformers import SentenceTransformer
28
+ sentences = ["こんにちは、世界!", "文埋め込み最高!文埋め込み最高と叫びなさい", "極度乾燥しなさい"]
29
 
30
+ model = SentenceTransformer("unsup-simcse-ja-base")
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
 
50
  sentences = ['This is an example sentence', 'Each sentence is converted']
51
 
52
  # Load model from HuggingFace Hub
53
+ tokenizer = AutoTokenizer.from_pretrained("unsup-simcse-ja-base")
54
+ model = AutoModel.from_pretrained("unsup-simcse-ja-base")
55
 
56
  # Tokenize sentences
57
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
67
  print(sentence_embeddings)
68
  ```
69
 
 
 
 
 
 
 
 
 
 
 
70
  ## Full Model Architecture
71
  ```
72
  SentenceTransformer(
 
77
 
78
  ## Citing & Authors
79
 
80
+ ```
81
+ @misc{
82
+ hayato-tsukagoshi-2023-simple-simcse-ja,
83
+ author = {Hayato Tsukagoshi},
84
+ title = {Japanese Simple-SimCSE},
85
+ year = {2023},
86
+ publisher = {GitHub},
87
+ journal = {GitHub repository},
88
+ howpublished = {\url{https://github.com/hppRC/simple-simcse-ja}}
89
+ }
90
+ ```