File size: 1,862 Bytes
ed74ee7 120d81d d014508 fe1d8d6 120d81d ed74ee7 d014508 ed74ee7 d014508 ed74ee7 d014508 ed74ee7 d014508 ed74ee7 d014508 ed74ee7 d014508 ed74ee7 d014508 ed74ee7 d014508 963bbd5 6a82144 963bbd5 d014508 ed74ee7 d014508 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
library_name: zeroshot_classifier
tags:
- transformers
- sentence-transformers
- zeroshot_classifier
license: mit
datasets:
- claritylab/UTCD
language:
- en
pipeline_tag: zero-shot-classification
metrics:
- accuracy
---
# Zero-shot Implicit Binary BERT
This model is a BERT model.
It was introduced in the Findings of ACL'23 Paper **Label Agnostic Pre-training for Zero-shot Text Classification** by ***Christopher Clarke, Yuzhao Heng, Yiping Kang, Krisztian Flautner, Lingjia Tang and Jason Mars***.
The code for training and evaluating this model can be found [here](https://github.com/ChrisIsKing/zero-shot-text-classification/tree/master).
## Model description
This model was trained via the binary classification framework. It is intended for zero-shot text classification.
It was trained via implicit training with the aspect-normalized [UTCD](https://huggingface.co/datasets/claritylab/UTCD) dataset.
- **Finetuned from model:** [`bert-base-uncased`](https://huggingface.co/bert-base-uncased)
## Usage
You can use the model like this:
```python
>>> from zeroshot_classifier.models import BinaryBertCrossEncoder
>>> model = BinaryBertCrossEncoder(model_name='claritylab/zero-shot-implicit-binary-bert')
>>> text = "I'd like to have this track onto my Classical Relaxations playlist."
>>> labels = [
>>> 'Add To Playlist', 'Book Restaurant', 'Get Weather', 'Play Music', 'Rate Book', 'Search Creative Work',
>>> 'Search Screening Event'
>>> ]
>>> aspect = 'intent'
>>> query = [[text, f'{lb} {aspect}'] for lb in labels]
>>> logits = model.predict(query, apply_softmax=True)
>>> print(logits)
[[6.8812753e-04 9.9931192e-01]
[9.9974447e-01 2.5556990e-04]
[9.9978167e-01 2.1833177e-04]
[1.6187031e-03 9.9838126e-01]
[9.9965131e-01 3.4869535e-04]
[9.9413908e-01 5.8608940e-03]
[9.9685740e-01 3.1425431e-03]]
```
|