Update README.md
Browse files
README.md
CHANGED
@@ -15,11 +15,9 @@ base_model:
|
|
15 |
- facebook/w2v-bert-2.0
|
16 |
---
|
17 |
|
18 |
-
# Model Card
|
19 |
-
|
20 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
21 |
-
|
22 |
|
|
|
23 |
|
24 |
## Model Details
|
25 |
|
@@ -38,37 +36,98 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
38 |
|
39 |
<!-- Provide the basic links for the model. -->
|
40 |
|
41 |
-
- **
|
42 |
-
- **Paper [optional]:** [More Information Needed]
|
43 |
-
- **Demo [optional]:** [More Information Needed]
|
44 |
-
|
45 |
-
## Uses
|
46 |
|
47 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
48 |
|
49 |
### Direct Use
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
70 |
-
|
71 |
-
[More Information Needed]
|
72 |
|
73 |
### Recommendations
|
74 |
|
@@ -101,13 +160,11 @@ Use the code below to get started with the model.
|
|
101 |
|
102 |
#### Training Hyperparameters
|
103 |
|
104 |
-
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
[More Information Needed]
|
111 |
|
112 |
## Evaluation
|
113 |
|
@@ -115,94 +172,12 @@ Use the code below to get started with the model.
|
|
115 |
|
116 |
### Testing Data, Factors & Metrics
|
117 |
|
118 |
-
#### Testing Data
|
119 |
-
|
120 |
-
<!-- This should link to a Dataset Card if possible. -->
|
121 |
-
|
122 |
-
[More Information Needed]
|
123 |
-
|
124 |
-
#### Factors
|
125 |
-
|
126 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
127 |
-
|
128 |
-
[More Information Needed]
|
129 |
-
|
130 |
-
#### Metrics
|
131 |
-
|
132 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
133 |
-
|
134 |
-
[More Information Needed]
|
135 |
-
|
136 |
-
### Results
|
137 |
-
|
138 |
-
[More Information Needed]
|
139 |
|
140 |
#### Summary
|
141 |
|
142 |
|
143 |
|
144 |
-
## Model Examination [optional]
|
145 |
-
|
146 |
-
<!-- Relevant interpretability work for the model goes here -->
|
147 |
-
|
148 |
-
[More Information Needed]
|
149 |
-
|
150 |
-
## Environmental Impact
|
151 |
-
|
152 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
153 |
-
|
154 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
155 |
-
|
156 |
-
- **Hardware Type:** [More Information Needed]
|
157 |
-
- **Hours used:** [More Information Needed]
|
158 |
-
- **Cloud Provider:** [More Information Needed]
|
159 |
-
- **Compute Region:** [More Information Needed]
|
160 |
-
- **Carbon Emitted:** [More Information Needed]
|
161 |
-
|
162 |
-
## Technical Specifications [optional]
|
163 |
-
|
164 |
-
### Model Architecture and Objective
|
165 |
-
|
166 |
-
[More Information Needed]
|
167 |
-
|
168 |
-
### Compute Infrastructure
|
169 |
-
|
170 |
-
[More Information Needed]
|
171 |
-
|
172 |
-
#### Hardware
|
173 |
-
|
174 |
-
[More Information Needed]
|
175 |
-
|
176 |
-
#### Software
|
177 |
-
|
178 |
-
[More Information Needed]
|
179 |
-
|
180 |
-
## Citation [optional]
|
181 |
-
|
182 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
183 |
-
|
184 |
-
**BibTeX:**
|
185 |
-
|
186 |
-
[More Information Needed]
|
187 |
-
|
188 |
-
**APA:**
|
189 |
-
|
190 |
-
[More Information Needed]
|
191 |
-
|
192 |
-
## Glossary [optional]
|
193 |
-
|
194 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
195 |
-
|
196 |
-
[More Information Needed]
|
197 |
-
|
198 |
-
## More Information [optional]
|
199 |
-
|
200 |
-
[More Information Needed]
|
201 |
-
|
202 |
-
## Model Card Authors [optional]
|
203 |
-
|
204 |
-
[More Information Needed]
|
205 |
|
206 |
-
##
|
207 |
|
208 |
-
|
|
|
15 |
- facebook/w2v-bert-2.0
|
16 |
---
|
17 |
|
18 |
+
# Model Card
|
|
|
|
|
|
|
19 |
|
20 |
+
This model annotates primary stress in words on 20ms frames.
|
21 |
|
22 |
## Model Details
|
23 |
|
|
|
36 |
|
37 |
<!-- Provide the basic links for the model. -->
|
38 |
|
39 |
+
- **Paper [optional]:** Coming soon
|
|
|
|
|
|
|
|
|
40 |
|
|
|
41 |
|
42 |
### Direct Use
|
43 |
|
44 |
+
The model is intended for data-driven analyses in primary stress position. ATM, it has been proven to work on 4 datasets in 3 languages.
|
45 |
+
|
46 |
+
|
47 |
+
## Example use
|
48 |
+
|
49 |
+
```python
|
50 |
+
import numpy as np
|
51 |
+
|
52 |
+
from datasets import Audio, Dataset
|
53 |
+
from transformers import AutoFeatureExtractor, Wav2Vec2BertForAudioFrameClassification
|
54 |
+
import torch
|
55 |
+
import numpy as np
|
56 |
+
|
57 |
+
if torch.cuda.is_available():
|
58 |
+
device = torch.device("cuda")
|
59 |
+
else:
|
60 |
+
device = torch.device("cpu")
|
61 |
+
|
62 |
+
model_name = "5roop/Wav2Vec2BertPrimaryStressAudioFrameClassifier"
|
63 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
64 |
+
model = Wav2Vec2BertForAudioFrameClassification.from_pretrained(model_name).to(device)
|
65 |
+
# Path to the file, containing the word to be annotated:
|
66 |
+
f = "wavs/word.wav"
|
67 |
+
|
68 |
+
|
69 |
+
def frames_to_intervals(frames: list[int]) -> list[tuple[float]]:
|
70 |
+
from itertools import pairwise
|
71 |
+
import pandas as pd
|
72 |
+
|
73 |
+
results = []
|
74 |
+
ndf = pd.DataFrame(
|
75 |
+
data={
|
76 |
+
"time_s": [0.020 * i for i in range(len(frames))],
|
77 |
+
"frames": frames,
|
78 |
+
}
|
79 |
+
)
|
80 |
+
ndf = ndf.dropna()
|
81 |
+
indices_of_change = ndf.frames.diff()[ndf.frames.diff() != 0].index.values
|
82 |
+
for si, ei in pairwise(indices_of_change):
|
83 |
+
if ndf.loc[si : ei - 1, "frames"].mode()[0] == 0:
|
84 |
+
pass
|
85 |
+
else:
|
86 |
+
results.append(
|
87 |
+
(round(ndf.loc[si, "time_s"], 3), round(ndf.loc[ei - 1, "time_s"], 3))
|
88 |
+
)
|
89 |
+
if results == []:
|
90 |
+
return None
|
91 |
+
# Post-processing: if multiple regions were returned, only the longest should be taken:
|
92 |
+
if len(results) > 1:
|
93 |
+
results = sorted(results, key=lambda t: t[1]-t[0], reverse=True)
|
94 |
+
return results[0:1]
|
95 |
+
|
96 |
+
|
97 |
+
def evaluator(chunks):
|
98 |
+
sampling_rate = chunks["audio"][0]["sampling_rate"]
|
99 |
+
with torch.no_grad():
|
100 |
+
inputs = feature_extractor(
|
101 |
+
[i["array"] for i in chunks["audio"]],
|
102 |
+
return_tensors="pt",
|
103 |
+
sampling_rate=sampling_rate,
|
104 |
+
).to(device)
|
105 |
+
logits = model(**inputs).logits
|
106 |
+
y_pred_raw = np.array(logits.cpu())
|
107 |
+
y_pred = y_pred_raw.argmax(axis=-1)
|
108 |
+
primary_stress = [frames_to_intervals(i) for i in y_pred]
|
109 |
+
return {
|
110 |
+
"y_pred": y_pred,
|
111 |
+
"y_pred_logits": y_pred_raw,
|
112 |
+
"primary_stress": primary_stress,
|
113 |
+
}
|
114 |
+
|
115 |
+
# Create a dataset with a single instance and map our evaluator function on it:
|
116 |
+
ds = Dataset.from_dict({"audio": [f]}).cast_column("audio", Audio(16000, mono=True))
|
117 |
+
ds = ds.map(evaluator, batched=True, batch_size=1) # Adjust batch size according to your hardware specs
|
118 |
+
print(ds["y_pred"][0])
|
119 |
+
# Outputs: [0, 0, 1, 1, 1, 1, 1, ...]
|
120 |
+
print(ds["y_pred_logits"][0])
|
121 |
+
# Outputs:
|
122 |
+
# [[ 0.89419061, -0.77746612],
|
123 |
+
# [ 0.44213724, -0.34862748],
|
124 |
+
# [-0.08605709, 0.13012762],
|
125 |
+
# ....
|
126 |
+
print(ds["prosodic_units"][0])
|
127 |
+
# Outputs: [0.34, 0.4]
|
128 |
+
|
129 |
+
```
|
130 |
|
|
|
|
|
|
|
131 |
|
132 |
### Recommendations
|
133 |
|
|
|
160 |
|
161 |
#### Training Hyperparameters
|
162 |
|
163 |
+
- Learning rate: 1e-5
|
164 |
+
- Batch size: 32
|
165 |
+
- Number of epochs: 20
|
166 |
+
- Weight decay: 0.01
|
167 |
+
- Gradient accumulation steps: 1
|
|
|
|
|
168 |
|
169 |
## Evaluation
|
170 |
|
|
|
172 |
|
173 |
### Testing Data, Factors & Metrics
|
174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
#### Summary
|
177 |
|
178 |
|
179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
+
## Citation
|
182 |
|
183 |
+
Coming soon
|