5roop commited on
Commit
4bfc89d
·
1 Parent(s): 5a68f9b

Corrected examples.

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -12,7 +12,7 @@ widget:
12
 
13
  Ternary text classification model based on [`classla/bcms-bertic`](https://huggingface.co/classla/bcms-bertic) and fine-tuned on the BCS Political Sentiment dataset (sentence-level data).
14
 
15
- This classifier classifies text into only three categories: Negative, Neutral, and Positive. For the binary classifier (Negative, Other) check [this model](https://huggingface.co/classla/bcms-bertic-parlasent-bcs-bi).
16
 
17
  For details on the dataset and the finetuning procedure, please see [this paper](https://arxiv.org/abs/2206.00929).
18
 
@@ -49,17 +49,17 @@ from simpletransformers.classification import ClassificationModel
49
  model = ClassificationModel("electra", "classla/bcms-bertic-parlasent-bcs-ter")
50
 
51
  predictions, logits = model.predict([
52
- "Đački autobusi moraju da voze svaki dan",
53
- "Vi niste normalni",
54
- "Da bog da ti saksida padne na glavu",
55
  ]
56
  )
57
 
58
  predictions
59
- # Output: array([1, 0, 0])
60
 
61
  [model.config.id2label[i] for i in predictions]
62
- # Output: ['Other', 'Negative', 'Negative']
63
  ```
64
 
65
  ## Citation
 
12
 
13
  Ternary text classification model based on [`classla/bcms-bertic`](https://huggingface.co/classla/bcms-bertic) and fine-tuned on the BCS Political Sentiment dataset (sentence-level data).
14
 
15
+ This classifier classifies text into only three categories: Negative, Neutral, and Positive. For the binary classifier (Negative, Other) check [this model](https://huggingface.co/classla/bcms-bertic-parlasent-bcs-bi ).
16
 
17
  For details on the dataset and the finetuning procedure, please see [this paper](https://arxiv.org/abs/2206.00929).
18
 
 
49
  model = ClassificationModel("electra", "classla/bcms-bertic-parlasent-bcs-ter")
50
 
51
  predictions, logits = model.predict([
52
+ "Vi niste normalni",
53
+ "Đački autobusi moraju da voze svaki dan",
54
+ "Ovo je najbolji zakon na svetu",
55
  ]
56
  )
57
 
58
  predictions
59
+ # Output: array([0, 1, 2])
60
 
61
  [model.config.id2label[i] for i in predictions]
62
+ # Output: ['Negative', 'Neutral', 'Positive']
63
  ```
64
 
65
  ## Citation