TajaKuzman commited on
Commit
6d75ead
·
verified ·
1 Parent(s): e8f920a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -4
README.md CHANGED
@@ -121,7 +121,7 @@ If we do not filter out instances, predicted with lower confidence score, the mo
121
 
122
  ## Intended use and limitations
123
 
124
- For reliable results, the classifier should be applied to documents of sufficient length (the rule of thumbs is at least 75 words).
125
 
126
 
127
  Use example:
@@ -154,7 +154,8 @@ for result in results:
154
 
155
  The classifier uses the top-level of the [IPTC Media Topic NewsCodes](https://iptc.org/std/NewsCodes/guidelines/#_what_are_the_iptc_newscodes) schema, consisting of 17 labels.
156
 
157
- List of labels:
 
158
  ```
159
  labels_list=['education', 'human interest', 'society', 'sport', 'crime, law and justice',
160
  'disaster, accident and emergency incident', 'arts, culture, entertainment and media', 'politics',
@@ -167,7 +168,7 @@ labels_map={0: 'education', 1: 'human interest', 2: 'society', 3: 'sport', 4: 'c
167
  11: 'health', 12: 'labour', 13: 'religion', 14: 'weather', 15: 'environment', 16: 'conflict, war and peace'}
168
  ```
169
 
170
- Description of labels:
171
 
172
  The descriptions of the labels are based on the descriptions provided in the [IPTC Media Topic NewsCodes schema](https://www.iptc.org/std/NewsCodes/treeview/mediatopic/mediatopic-en-GB.html)
173
  and enriched with information which specific subtopics belong to the top-level topics, based on the IPTC Media Topic label hierarchy.
@@ -250,7 +251,7 @@ When we remove instances predicted with lower confidence (229 instances - 20%),
250
  | Slovenian | 0.835443 | 0.783873 | 237 |
251
  | Greek | 0.84188 | 0.785525 | 234 |
252
 
253
- ### Fine-tuning hyperparameters
254
 
255
  Fine-tuning was performed with `simpletransformers`.
256
  Beforehand, a brief hyperparameter optimization was performed and the presumed optimal hyperparameters are:
 
121
 
122
  ## Intended use and limitations
123
 
124
+ For reliable results, the classifier should be applied to documents of sufficient length (the rule of thumb is at least 75 words).
125
 
126
 
127
  Use example:
 
154
 
155
  The classifier uses the top-level of the [IPTC Media Topic NewsCodes](https://iptc.org/std/NewsCodes/guidelines/#_what_are_the_iptc_newscodes) schema, consisting of 17 labels.
156
 
157
+ ### List of labels
158
+
159
  ```
160
  labels_list=['education', 'human interest', 'society', 'sport', 'crime, law and justice',
161
  'disaster, accident and emergency incident', 'arts, culture, entertainment and media', 'politics',
 
168
  11: 'health', 12: 'labour', 13: 'religion', 14: 'weather', 15: 'environment', 16: 'conflict, war and peace'}
169
  ```
170
 
171
+ ### Description of labels
172
 
173
  The descriptions of the labels are based on the descriptions provided in the [IPTC Media Topic NewsCodes schema](https://www.iptc.org/std/NewsCodes/treeview/mediatopic/mediatopic-en-GB.html)
174
  and enriched with information which specific subtopics belong to the top-level topics, based on the IPTC Media Topic label hierarchy.
 
251
  | Slovenian | 0.835443 | 0.783873 | 237 |
252
  | Greek | 0.84188 | 0.785525 | 234 |
253
 
254
+ ## Fine-tuning hyperparameters
255
 
256
  Fine-tuning was performed with `simpletransformers`.
257
  Beforehand, a brief hyperparameter optimization was performed and the presumed optimal hyperparameters are: