File size: 4,786 Bytes
2ac2327 128fdf1 8d39a71 461d8d9 ebfc7fb 461d8d9 ebfc7fb 461d8d9 ebfc7fb 461d8d9 ebfc7fb 461d8d9 ebfc7fb 461d8d9 2ac2327 5c11cde 2ac2327 4dd05ff 2ac2327 128fdf1 515eb1a 128fdf1 2ac2327 128fdf1 2ac2327 128fdf1 2ac2327 128fdf1 2ac2327 128fdf1 2ac2327 128fdf1 da5719f 128fdf1 2ac2327 128fdf1 2ac2327 128fdf1 2ac2327 128fdf1 2ac2327 128fdf1 2ac2327 128fdf1 2ac2327 128fdf1 2ac2327 128fdf1 2ac2327 128fdf1 2ac2327 128fdf1 2ac2327 128fdf1 b0ab9db 128fdf1 b0ab9db 128fdf1 2ac2327 5c11cde 2ac2327 4dd05ff fcd8999 4dd05ff 2ac2327 128fdf1 2ac2327 128fdf1 2ac2327 128fdf1 2ac2327 8f4509b 2ac2327 128fdf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
language:
- hr
license: cc-by-sa-4.0
library_name: transformers
base_model: openai/whisper-large-v3
datasets:
- classla/Mici_Princ
metrics:
- wer
- cer
pipeline_tag: automatic-speech-recognition
widget:
- example_title: example 1
src: https://huggingface.co/classla/whisper-large-v3-mici-princ/raw/main/MP_13_65.37-74.67.mp3.wav
- example_title: example 2
src: https://huggingface.co/classla/whisper-large-v3-mici-princ/raw/main/MP_15_201.53-210.02.mp3.wav
- example_title: example 3
src: https://huggingface.co/classla/whisper-large-v3-mici-princ/raw/main/MP_15_60.527-67.71.mp3.wav
- example_title: example 4
src: https://huggingface.co/classla/whisper-large-v3-mici-princ/raw/main/MP_15_68.5-72.45.mp3.wav
---
# Model Card for Model ID
This model was finetuned on the [Mići Princ dataset](https://huggingface.co/datasets/classla/Mici_Princ),
the audiobook of the translation of _Le Petit Prince_ into the Chakavian dialect of Croatian.
## Model Details
### Model Description
The model, already very potent in standard Croatian, was finetuned for 80 epochs with an effective batch size of 16. Performance was inspected every 4 epochs, and the latest checkpoint
is uploaded here. Character error rate has been brought down from 11.54% to 3.95%, while word error rate has been lowered from 35.43% to 16.83%.
- **Developed by:** Nikola Ljubešić, Peter Rupnik, Tea Perinčić
- **Language(s) (NLP):** Croatian (hrv) - Chakavian dialect (ckm)
- **License:** Creative Commons - Share Alike 4.0
- **Finetuned from model:** openai/whisper-large-v3
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** [GitHub](https://github.com/5roop/mici_princ_whisper)
- **Paper:** Coming soon
- **Dataset:** [Mići Princ](https://huggingface.co/datasets/classla/Mici_Princ)
## Example use:
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from transformers.pipelines.pt_utils import KeyDataset
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id = "classla/whisper-large-v3-mici-princ"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id,
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
ds = load_dataset("classla/Mici_Princ", split="test")
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
device=device,
)
result = pipe(
KeyDataset(ds, "audio"),
generate_kwargs={"language": "croatian"},
)
for i in result:
print(i)
# Output:
# {'text': ' Šesti planet je biv deset put veći. Na njin je bivav niki stari čovik ki je pisav vele knjige.', 'chunks': [{'timestamp': (0.0, 7.18), 'text': ' Šesti planet je biv deset put veći. Na njin je bivav niki stari čovik ki je pisav vele knjige.'}]}
# ...
```
## Training Details
#### Preprocessing
Model was trained on the `normalized_text` attribute of the [Mići Princ dataset](https://huggingface.co/datasets/classla/Mici_Princ). This means
that the data included capital letters and punctuation, except bullet points, newlines, and quotation marks. Special characters, present in
the dialect, but not in standard Croatian, were substituted.
Only the `train` split was used in training.
#### Training Hyperparameters
```
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
learning_rate=1e-5,
warmup_steps=100,
max_steps=277 * 80,
gradient_checkpointing=True,
predict_with_generate=True,
generation_max_length=225,
save_steps=277,
```
## Evaluation
For evaluation, the `test` split of the [Mići Princ dataset](https://huggingface.co/datasets/classla/Mici_Princ) was used. The test split consists of two known speakers, Autor and Mići Princ, and two unknown speakers, Geograf and Dilavac. Important to note is that each speaker uses a different micro-dialect, so the test data is challenging on including two new micro-dialects.
#### Metrics
| speaker | WER vanilla | WER fine-tuned | WER reduction | CER vanilla | CER fine-tuned| CER reduction |
|---|---|---|---|---|---|---|
| all | 35.43% | 16.83% | 52.50% | 11.54% | 3.95% | 65.77% |
| Autor | 38.96% | 14.29% | 63.32% | 10.24% | 2.93% | 71.39% |
| Geograf | 20.94% | 11.57% | 44.75% | 4.99% | 2.19% | 56.11% |
| Mići Princ | 45.32% | 16.62% | 63.33% | 12.21% | 5.09% | 58.31% |
| Dilavac | 39.60% | 23.70% | 40.15% | 18.55% | 5.27% | 71.59% |
## Citation
Coming soon.
## Model Card Authors
* Peter Rupnik
* Nikola Ljubešić
## Model Card Contact
[https://huggingface.co/5roop](https://huggingface.co/5roop) |