claterza commited on
Commit
51a3dbd
·
1 Parent(s): f0ca023

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2318.83 +/- 119.34
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51a21ce8ae7f7b1b883dcfe0b3039c2c0c7c0c1d4fd2220e85144d291d6ba87a
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4456c09ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4456c09d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4456c09dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4456c09e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4456c09ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4456c09f70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4456c0e040>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4456c0e0d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4456c0e160>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4456c0e1f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4456c0e280>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4456c0e310>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f4456c048d0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674855896935885895,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMjkxD7EunQ+Wf8APxOsvj8VNww/SZVsv/5Va7+DlD2+9Nh0PllGjL9Wf7C+ZaoAQN0+Oz9Bozu/HXsoPz7uiDxLYYU/QhWHv38anr82b6S/aJUhvyAJJD99GaI/fPFCvwzic792YB4/sPoFwH2IZz+leRk+Vxebv48gFz58aN0/NAumvrLlNT+r6NW9VJSovqGD9z7qukJA4WT0PuvGHD92VaW/cdxqPcYcDj+ULzC/IOTMvlw8wr4V5hs+l5QUQFehJL51pFM/7MyCv3NfWT0JXIY/JObOvz6T9D6yho2/eMQePiAuub13bxQ/QLdtPzD/2738iDU+NghMv6K8Gr69z+Q+2jEAwAyOVr8WR609w5f0PvhAor7Wryw/GEXavYZSpz//guS+xeYwvxk0JcAtJUK/7BSrPrPGcj+DjO4+DOJzv3ZgHj+w+gXAfYhnP3/P2b5zknC+MLQVP6xlvT1BJMY+C/g1vwJvUb9pfRE/UIF2Pv/KoT8eDCy/N8JvPlUpbj+xXjY+wHAXP2vrP73NFoE/6OQKPgHkbb8ChTs/x8PsvuYF/j+fIJI+232svwlchj92YB4/sPoFwH2IZz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAHCL+1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASTYjPQAAAAAB0ui/AAAAAGOBNLwAAAAA4KviPwAAAACpQrG9AAAAAOTU3T8AAAAAGVeovQAAAACeUt6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgyUItwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMTNyD0AAAAANDgAwAAAAABEXzO9AAAAABvk5z8AAAAAGleMvQAAAAC47eU/AAAAAMJTCz4AAAAARfXzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgFwbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICoDs09AAAAAI6l/b8AAAAAw1hWPQAAAADAIfw/AAAAAFQAk70AAAAAPrz4PwAAAABRJwA+AAAAAN1l2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMiYc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2EbJugAAAABLpe+/AAAAANSLpT0AAAAAdO/oPwAAAACXm1q9AAAAADYs3T8AAAAABq2CvAAAAAB6HADAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ+fcQNCqp+MAWyUTegDjAF0lEdAq2PWkxh2GXV9lChoBkdAoBdeZkTYd2gHTegDaAhHQKtkYWjXWe91fZQoaAZHQJ1PonkT6BRoB03oA2gIR0CrZavLX+VDdX2UKGgGR0CeeIpgCwKTaAdN6ANoCEdAq2m5qGlANXV9lChoBkdAoRivoJRfnmgHTegDaAhHQKtvfueBg/l1fZQoaAZHQKBfL7j1f3NoB03oA2gIR0Crb/wCSzPbdX2UKGgGR0Chi7cQqZtvaAdN6ANoCEdAq3E3bVSXMXV9lChoBkdAn5mOdPLxJGgHTegDaAhHQKt1Yuuieup1fZQoaAZHQKEIH2vB7/poB03oA2gIR0Crey00vXbudX2UKGgGR0Cg6UX1J17qaAdN6ANoCEdAq3uoLJCBw3V9lChoBkdAn8/GyTpxFWgHTegDaAhHQKt88TibUgB1fZQoaAZHQKD2IRYA80VoB03oA2gIR0CrgRjM/yG0dX2UKGgGR0Chc6qlgtvoaAdN6ANoCEdAq4b+SMcZL3V9lChoBkdAoOqHCyhSL2gHTegDaAhHQKuHkJJGvwF1fZQoaAZHQKGLvhVENONoB03oA2gIR0CriNl+/gzhdX2UKGgGR0CbyQpHI6sAaAdN6ANoCEdAq40MCFK02XV9lChoBkdAolI2k56t1mgHTegDaAhHQKuS7fu1F6R1fZQoaAZHQKI9dEMspXpoB03oA2gIR0Crk2nP3SKFdX2UKGgGR0Chs7a9TP0JaAdN6ANoCEdAq5Sj1yvLYHV9lChoBkdAoeLjRa5f+mgHTegDaAhHQKuYv6lchTx1fZQoaAZHQJ+8Yl2NedFoB03oA2gIR0CrnnfmLcbjdX2UKGgGR0ChWj+98JD3aAdN6ANoCEdAq570TviLl3V9lChoBkdAoa64fGMn7mgHTegDaAhHQKugMM2m52B1fZQoaAZHQJ7MD6WPcSJoB03oA2gIR0CrpFLzwtrcdX2UKGgGR0CfgG+10DEFaAdN6ANoCEdAq6oGDpTuOXV9lChoBkdAndyf2Cdz4mgHTegDaAhHQKuqgufVZs91fZQoaAZHQKABz5Rjz7NoB03oA2gIR0Crq75+YtxudX2UKGgGR0CgEsDqv/zbaAdN6ANoCEdAq6/h7XxvvXV9lChoBkdAoTRibF0gbWgHTegDaAhHQKu1y3azu4R1fZQoaAZHQJ2mwqCpWFNoB03oA2gIR0Crtk7rC3w1dX2UKGgGR0CfiIVmjCYUaAdN6ANoCEdAq7eTc9GI9HV9lChoBkdAn/UqTKT0QWgHTegDaAhHQKu7sHARChN1fZQoaAZHQKFU00oBq9JoB03oA2gIR0CrwXk9ECvHdX2UKGgGR0CgkPZAhStOaAdN6ANoCEdAq8H6ArhBJXV9lChoBkdAoT8SRZEDyWgHTegDaAhHQKvDRRqoIfN1fZQoaAZHQKCP9ye7L+xoB03oA2gIR0Crx2QDmr80dX2UKGgGR0CgwFh5HEuQaAdN6ANoCEdAq81j9n9NvnV9lChoBkdAn2gcGcFyJmgHTegDaAhHQKvN5zz3AVR1fZQoaAZHQKBDigPEsJ9oB03oA2gIR0Crzyh4Uvf1dX2UKGgGR0Cgzc2MbWEsaAdN6ANoCEdAq9NHyRSxaHV9lChoBkdAoal9ImPYF2gHTegDaAhHQKvZB9G7SRd1fZQoaAZHQKBoQU6gdwNoB03oA2gIR0Cr2YVdonKGdX2UKGgGR0CeZqrtVrAQaAdN6ANoCEdAq9q9gfEGaHV9lChoBkdAoI74Zl4C62gHTegDaAhHQKve7akAPup1fZQoaAZHQKCSXF1B+nZoB03oA2gIR0Cr5Lkmx+rmdX2UKGgGR0CgfF5ZjhDPaAdN6ANoCEdAq+U1zjm0V3V9lChoBkdAm5XKn3ta6mgHTegDaAhHQKvmdL5hz/91fZQoaAZHQKCdQFwkxAVoB03oA2gIR0Cr6pVkc0cfdX2UKGgGR0CgIA8Empl0aAdN6ANoCEdAq/Bwntv4unV9lChoBkdAoRA2iWVu8GgHTegDaAhHQKvw8WDYh+x1fZQoaAZHQKCxu53C9AZoB03oA2gIR0Cr8jI/RmbtdX2UKGgGR0CeE1V3ljmTaAdN6ANoCEdAq/ZPpSrHVHV9lChoBkdAoJFob+98JGgHTegDaAhHQKv8L8PWhAZ1fZQoaAZHQKGAWqcVgx9oB03oA2gIR0Cr/KyZBsyjdX2UKGgGR0Ciaw6a1Cw9aAdN6ANoCEdAq/34o5PuX3V9lChoBkdAoT1v5DZ13mgHTegDaAhHQKwCMtSydFx1fZQoaAZHQKGPGNuLrHFoB03oA2gIR0CsCJ7DEWIodX2UKGgGR0ChIlH0TURWaAdN6ANoCEdArAlguM+/xnV9lChoBkdAoad7LGJemmgHTegDaAhHQKwLRyXlbNd1fZQoaAZHQKB/6jgQ6IZoB03oA2gIR0CsEZQp4KQadX2UKGgGR0CgiyjhUBGQaAdN6ANoCEdArBeirgflqHV9lChoBkdAoIbHO2RaHWgHTegDaAhHQKwYH9qk/KR1fZQoaAZHQJ9ByNNrTH9oB03oA2gIR0CsGZC2+fyxdX2UKGgGR0CgXDBhH9WIaAdN6ANoCEdArB23IbOu73V9lChoBkdAoT6hxgiNbWgHTegDaAhHQKwjv3t8eCF1fZQoaAZHQKECtXfZVXFoB03oA2gIR0CsJD5NGmUGdX2UKGgGR0CfB9C2c8T0aAdN6ANoCEdArCV81TBInXV9lChoBkdAoWSEYl6Z6WgHTegDaAhHQKwplZpztC11fZQoaAZHQKHEVboKUmloB03oA2gIR0CsL6eoUBXCdX2UKGgGR0CeyoYEW69TaAdN6ANoCEdArDAvitJWenV9lChoBkdAofi+rdWQwWgHTegDaAhHQKwxcCJ40Mx1fZQoaAZHQKBcCab4Ju5oB03oA2gIR0CsNX+ii7CjdX2UKGgGR0ChJ1tpVS4waAdN6ANoCEdArDts1TBInXV9lChoBkdAoVvKZfD1oWgHTegDaAhHQKw79LJ0W/J1fZQoaAZHQKHNADFqBVdoB03oA2gIR0CsPWTNUwSKdX2UKGgGR0Cg9hiPIXCTaAdN6ANoCEdArEHGenQ6ZHV9lChoBkdAn7vKVpsXSGgHTegDaAhHQKxIIaJhvzh1fZQoaAZHQKCNX5pJwsJoB03oA2gIR0CsSKbNr0rcdX2UKGgGR0ChKQZZ0SyuaAdN6ANoCEdArEnk5ZKWcHV9lChoBkdAoPgLtRekYWgHTegDaAhHQKxOStV7x/d1fZQoaAZHQJ5ICyxA0KtoB03oA2gIR0CsVEzGo73gdX2UKGgGR0CgUMFRP421aAdN6ANoCEdArFTRaX8fm3V9lChoBkdAoSqC3iJfpmgHTegDaAhHQKxWGKpDNQl1fZQoaAZHQJv84RQJokBoB03oA2gIR0CsWmGrCFbndX2UKGgGR0CgoVnWz4UOaAdN6ANoCEdArGBjjm0VrXV9lChoBkdAnxScqSX+l2gHTegDaAhHQKxg5+irT6V1fZQoaAZHQKBWGoFV1fVoB03oA2gIR0CsYjVU+9rXdX2UKGgGR0ChRnQIUrTZaAdN6ANoCEdArGZ0q4H5anV9lChoBkdAoSNa2SdOI2gHTegDaAhHQKxsi6eXiR51fZQoaAZHQJ08lfCyhSNoB03oA2gIR0CsbRL6tT1kdX2UKGgGR0CfjNLqlgtwaAdN6ANoCEdArG5YvtdAxHV9lChoBkdAnkFr+YMOPWgHTegDaAhHQKxyj4oqkM11fZQoaAZHQKA8w2Jiy6doB03oA2gIR0CseIHWSU1RdX2UKGgGR0Ce3bZpSJj2aAdN6ANoCEdArHkB6v7m+3V9lChoBkdAoUDg1YQrc2gHTegDaAhHQKx6Sf8uSOl1fZQoaAZHQJ9+Qy1uzhRoB03oA2gIR0CsfoMa0hNedX2UKGgGR0Cg3AMMqjJuaAdN6ANoCEdArISKxcE/0XV9lChoBkdAoYHJEUj9oGgHTegDaAhHQKyFDQgLZzx1fZQoaAZHQKEpFt4RmK9oB03oA2gIR0CshlIiC8ODdX2UKGgGR0ChwfGgzxgBaAdN6ANoCEdArIp5+4LCvXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1671bdd1bbe87ec161f66e82255a198c49de308aefd7cbc2890f50ef0152e69
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ba157e3b41a6b2a4afa2226927c19fead05c28faf98d87701f58f0f12d6d3dc
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4456c09ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4456c09d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4456c09dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4456c09e50>", "_build": "<function ActorCriticPolicy._build at 0x7f4456c09ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4456c09f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4456c0e040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4456c0e0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4456c0e160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4456c0e1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4456c0e280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4456c0e310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4456c048d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674855896935885895, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMjkxD7EunQ+Wf8APxOsvj8VNww/SZVsv/5Va7+DlD2+9Nh0PllGjL9Wf7C+ZaoAQN0+Oz9Bozu/HXsoPz7uiDxLYYU/QhWHv38anr82b6S/aJUhvyAJJD99GaI/fPFCvwzic792YB4/sPoFwH2IZz+leRk+Vxebv48gFz58aN0/NAumvrLlNT+r6NW9VJSovqGD9z7qukJA4WT0PuvGHD92VaW/cdxqPcYcDj+ULzC/IOTMvlw8wr4V5hs+l5QUQFehJL51pFM/7MyCv3NfWT0JXIY/JObOvz6T9D6yho2/eMQePiAuub13bxQ/QLdtPzD/2738iDU+NghMv6K8Gr69z+Q+2jEAwAyOVr8WR609w5f0PvhAor7Wryw/GEXavYZSpz//guS+xeYwvxk0JcAtJUK/7BSrPrPGcj+DjO4+DOJzv3ZgHj+w+gXAfYhnP3/P2b5zknC+MLQVP6xlvT1BJMY+C/g1vwJvUb9pfRE/UIF2Pv/KoT8eDCy/N8JvPlUpbj+xXjY+wHAXP2vrP73NFoE/6OQKPgHkbb8ChTs/x8PsvuYF/j+fIJI+232svwlchj92YB4/sPoFwH2IZz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAHCL+1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASTYjPQAAAAAB0ui/AAAAAGOBNLwAAAAA4KviPwAAAACpQrG9AAAAAOTU3T8AAAAAGVeovQAAAACeUt6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgyUItwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMTNyD0AAAAANDgAwAAAAABEXzO9AAAAABvk5z8AAAAAGleMvQAAAAC47eU/AAAAAMJTCz4AAAAARfXzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgFwbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICoDs09AAAAAI6l/b8AAAAAw1hWPQAAAADAIfw/AAAAAFQAk70AAAAAPrz4PwAAAABRJwA+AAAAAN1l2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMiYc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2EbJugAAAABLpe+/AAAAANSLpT0AAAAAdO/oPwAAAACXm1q9AAAAADYs3T8AAAAABq2CvAAAAAB6HADAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ+fcQNCqp+MAWyUTegDjAF0lEdAq2PWkxh2GXV9lChoBkdAoBdeZkTYd2gHTegDaAhHQKtkYWjXWe91fZQoaAZHQJ1PonkT6BRoB03oA2gIR0CrZavLX+VDdX2UKGgGR0CeeIpgCwKTaAdN6ANoCEdAq2m5qGlANXV9lChoBkdAoRivoJRfnmgHTegDaAhHQKtvfueBg/l1fZQoaAZHQKBfL7j1f3NoB03oA2gIR0Crb/wCSzPbdX2UKGgGR0Chi7cQqZtvaAdN6ANoCEdAq3E3bVSXMXV9lChoBkdAn5mOdPLxJGgHTegDaAhHQKt1Yuuieup1fZQoaAZHQKEIH2vB7/poB03oA2gIR0Crey00vXbudX2UKGgGR0Cg6UX1J17qaAdN6ANoCEdAq3uoLJCBw3V9lChoBkdAn8/GyTpxFWgHTegDaAhHQKt88TibUgB1fZQoaAZHQKD2IRYA80VoB03oA2gIR0CrgRjM/yG0dX2UKGgGR0Chc6qlgtvoaAdN6ANoCEdAq4b+SMcZL3V9lChoBkdAoOqHCyhSL2gHTegDaAhHQKuHkJJGvwF1fZQoaAZHQKGLvhVENONoB03oA2gIR0CriNl+/gzhdX2UKGgGR0CbyQpHI6sAaAdN6ANoCEdAq40MCFK02XV9lChoBkdAolI2k56t1mgHTegDaAhHQKuS7fu1F6R1fZQoaAZHQKI9dEMspXpoB03oA2gIR0Crk2nP3SKFdX2UKGgGR0Chs7a9TP0JaAdN6ANoCEdAq5Sj1yvLYHV9lChoBkdAoeLjRa5f+mgHTegDaAhHQKuYv6lchTx1fZQoaAZHQJ+8Yl2NedFoB03oA2gIR0CrnnfmLcbjdX2UKGgGR0ChWj+98JD3aAdN6ANoCEdAq570TviLl3V9lChoBkdAoa64fGMn7mgHTegDaAhHQKugMM2m52B1fZQoaAZHQJ7MD6WPcSJoB03oA2gIR0CrpFLzwtrcdX2UKGgGR0CfgG+10DEFaAdN6ANoCEdAq6oGDpTuOXV9lChoBkdAndyf2Cdz4mgHTegDaAhHQKuqgufVZs91fZQoaAZHQKABz5Rjz7NoB03oA2gIR0Crq75+YtxudX2UKGgGR0CgEsDqv/zbaAdN6ANoCEdAq6/h7XxvvXV9lChoBkdAoTRibF0gbWgHTegDaAhHQKu1y3azu4R1fZQoaAZHQJ2mwqCpWFNoB03oA2gIR0Crtk7rC3w1dX2UKGgGR0CfiIVmjCYUaAdN6ANoCEdAq7eTc9GI9HV9lChoBkdAn/UqTKT0QWgHTegDaAhHQKu7sHARChN1fZQoaAZHQKFU00oBq9JoB03oA2gIR0CrwXk9ECvHdX2UKGgGR0CgkPZAhStOaAdN6ANoCEdAq8H6ArhBJXV9lChoBkdAoT8SRZEDyWgHTegDaAhHQKvDRRqoIfN1fZQoaAZHQKCP9ye7L+xoB03oA2gIR0Crx2QDmr80dX2UKGgGR0CgwFh5HEuQaAdN6ANoCEdAq81j9n9NvnV9lChoBkdAn2gcGcFyJmgHTegDaAhHQKvN5zz3AVR1fZQoaAZHQKBDigPEsJ9oB03oA2gIR0Crzyh4Uvf1dX2UKGgGR0Cgzc2MbWEsaAdN6ANoCEdAq9NHyRSxaHV9lChoBkdAoal9ImPYF2gHTegDaAhHQKvZB9G7SRd1fZQoaAZHQKBoQU6gdwNoB03oA2gIR0Cr2YVdonKGdX2UKGgGR0CeZqrtVrAQaAdN6ANoCEdAq9q9gfEGaHV9lChoBkdAoI74Zl4C62gHTegDaAhHQKve7akAPup1fZQoaAZHQKCSXF1B+nZoB03oA2gIR0Cr5Lkmx+rmdX2UKGgGR0CgfF5ZjhDPaAdN6ANoCEdAq+U1zjm0V3V9lChoBkdAm5XKn3ta6mgHTegDaAhHQKvmdL5hz/91fZQoaAZHQKCdQFwkxAVoB03oA2gIR0Cr6pVkc0cfdX2UKGgGR0CgIA8Empl0aAdN6ANoCEdAq/Bwntv4unV9lChoBkdAoRA2iWVu8GgHTegDaAhHQKvw8WDYh+x1fZQoaAZHQKCxu53C9AZoB03oA2gIR0Cr8jI/RmbtdX2UKGgGR0CeE1V3ljmTaAdN6ANoCEdAq/ZPpSrHVHV9lChoBkdAoJFob+98JGgHTegDaAhHQKv8L8PWhAZ1fZQoaAZHQKGAWqcVgx9oB03oA2gIR0Cr/KyZBsyjdX2UKGgGR0Ciaw6a1Cw9aAdN6ANoCEdAq/34o5PuX3V9lChoBkdAoT1v5DZ13mgHTegDaAhHQKwCMtSydFx1fZQoaAZHQKGPGNuLrHFoB03oA2gIR0CsCJ7DEWIodX2UKGgGR0ChIlH0TURWaAdN6ANoCEdArAlguM+/xnV9lChoBkdAoad7LGJemmgHTegDaAhHQKwLRyXlbNd1fZQoaAZHQKB/6jgQ6IZoB03oA2gIR0CsEZQp4KQadX2UKGgGR0CgiyjhUBGQaAdN6ANoCEdArBeirgflqHV9lChoBkdAoIbHO2RaHWgHTegDaAhHQKwYH9qk/KR1fZQoaAZHQJ9ByNNrTH9oB03oA2gIR0CsGZC2+fyxdX2UKGgGR0CgXDBhH9WIaAdN6ANoCEdArB23IbOu73V9lChoBkdAoT6hxgiNbWgHTegDaAhHQKwjv3t8eCF1fZQoaAZHQKECtXfZVXFoB03oA2gIR0CsJD5NGmUGdX2UKGgGR0CfB9C2c8T0aAdN6ANoCEdArCV81TBInXV9lChoBkdAoWSEYl6Z6WgHTegDaAhHQKwplZpztC11fZQoaAZHQKHEVboKUmloB03oA2gIR0CsL6eoUBXCdX2UKGgGR0CeyoYEW69TaAdN6ANoCEdArDAvitJWenV9lChoBkdAofi+rdWQwWgHTegDaAhHQKwxcCJ40Mx1fZQoaAZHQKBcCab4Ju5oB03oA2gIR0CsNX+ii7CjdX2UKGgGR0ChJ1tpVS4waAdN6ANoCEdArDts1TBInXV9lChoBkdAoVvKZfD1oWgHTegDaAhHQKw79LJ0W/J1fZQoaAZHQKHNADFqBVdoB03oA2gIR0CsPWTNUwSKdX2UKGgGR0Cg9hiPIXCTaAdN6ANoCEdArEHGenQ6ZHV9lChoBkdAn7vKVpsXSGgHTegDaAhHQKxIIaJhvzh1fZQoaAZHQKCNX5pJwsJoB03oA2gIR0CsSKbNr0rcdX2UKGgGR0ChKQZZ0SyuaAdN6ANoCEdArEnk5ZKWcHV9lChoBkdAoPgLtRekYWgHTegDaAhHQKxOStV7x/d1fZQoaAZHQJ5ICyxA0KtoB03oA2gIR0CsVEzGo73gdX2UKGgGR0CgUMFRP421aAdN6ANoCEdArFTRaX8fm3V9lChoBkdAoSqC3iJfpmgHTegDaAhHQKxWGKpDNQl1fZQoaAZHQJv84RQJokBoB03oA2gIR0CsWmGrCFbndX2UKGgGR0CgoVnWz4UOaAdN6ANoCEdArGBjjm0VrXV9lChoBkdAnxScqSX+l2gHTegDaAhHQKxg5+irT6V1fZQoaAZHQKBWGoFV1fVoB03oA2gIR0CsYjVU+9rXdX2UKGgGR0ChRnQIUrTZaAdN6ANoCEdArGZ0q4H5anV9lChoBkdAoSNa2SdOI2gHTegDaAhHQKxsi6eXiR51fZQoaAZHQJ08lfCyhSNoB03oA2gIR0CsbRL6tT1kdX2UKGgGR0CfjNLqlgtwaAdN6ANoCEdArG5YvtdAxHV9lChoBkdAnkFr+YMOPWgHTegDaAhHQKxyj4oqkM11fZQoaAZHQKA8w2Jiy6doB03oA2gIR0CseIHWSU1RdX2UKGgGR0Ce3bZpSJj2aAdN6ANoCEdArHkB6v7m+3V9lChoBkdAoUDg1YQrc2gHTegDaAhHQKx6Sf8uSOl1fZQoaAZHQJ9+Qy1uzhRoB03oA2gIR0CsfoMa0hNedX2UKGgGR0Cg3AMMqjJuaAdN6ANoCEdArISKxcE/0XV9lChoBkdAoYHJEUj9oGgHTegDaAhHQKyFDQgLZzx1fZQoaAZHQKEpFt4RmK9oB03oA2gIR0CshlIiC8ODdX2UKGgGR0ChwfGgzxgBaAdN6ANoCEdArIp5+4LCvXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c96a9170f1817af172a25fc9fbafd6aaccd3c47020b2aa9cc76deb6d85fe22aa
3
+ size 1057376
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2318.826693191318, "std_reward": 119.34011192169508, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-27T22:38:37.675075"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6d2cfb1952811e1b0148d8fe169e7d33ebf2e75d808c037982203b5e0b5fadf
3
+ size 2136