Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +96 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.42 +/- 0.14
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d919da3bb6f9c9684997f23fd712fea38d4e7d0bb333347e0a951f230fefad0f
|
3 |
+
size 109525
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe0a49c0f70>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe0a49c6600>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
+
"optimizer_kwargs": {
|
19 |
+
"alpha": 0.99,
|
20 |
+
"eps": 1e-05,
|
21 |
+
"weight_decay": 0
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
26 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
27 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
28 |
+
"_shape": null,
|
29 |
+
"dtype": null,
|
30 |
+
"_np_random": null
|
31 |
+
},
|
32 |
+
"action_space": {
|
33 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
34 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
35 |
+
"dtype": "float32",
|
36 |
+
"_shape": [
|
37 |
+
3
|
38 |
+
],
|
39 |
+
"low": "[-1. -1. -1.]",
|
40 |
+
"high": "[1. 1. 1.]",
|
41 |
+
"bounded_below": "[ True True True]",
|
42 |
+
"bounded_above": "[ True True True]",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 4,
|
46 |
+
"num_timesteps": 1000000,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678608982071079812,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwLHYPj+eFjy32Q4/wLHYPj+eFjy32Q4/wLHYPj+eFjy32Q4/wLHYPj+eFjy32Q4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAE7G/PgEiib9eesw/mPiiv+IdYr69gn8/vXOKv43Qn78SDsm/Od+Nv9F91z75XsI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADAsdg+P54WPLfZDj9uZaU92wA6uoMbhD3Asdg+P54WPLfZDj9uZaU92wA6uoMbhD3Asdg+P54WPLfZDj9uZaU92wA6uoMbhD3Asdg+P54WPLfZDj9uZaU92wA6uoMbhD2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[0.42323112 0.009193 0.55800956]\n [0.42323112 0.009193 0.55800956]\n [0.42323112 0.009193 0.55800956]\n [0.42323112 0.009193 0.55800956]]",
|
62 |
+
"desired_goal": "[[ 0.37439784 -1.0713502 1.5974844 ]\n [-1.2732115 -0.22081712 0.99808866]\n [-1.081657 -1.248552 -1.5707419 ]\n [-1.1083747 0.42088178 0.37963083]]",
|
63 |
+
"observation": "[[ 0.42323112 0.009193 0.55800956 0.08075987 -0.00070955 0.0645056 ]\n [ 0.42323112 0.009193 0.55800956 0.08075987 -0.00070955 0.0645056 ]\n [ 0.42323112 0.009193 0.55800956 0.08075987 -0.00070955 0.0645056 ]\n [ 0.42323112 0.009193 0.55800956 0.08075987 -0.00070955 0.0645056 ]]"
|
64 |
+
},
|
65 |
+
"_last_episode_starts": {
|
66 |
+
":type:": "<class 'numpy.ndarray'>",
|
67 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
68 |
+
},
|
69 |
+
"_last_original_obs": {
|
70 |
+
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARE8HvbiCiL1xgYU+VmWKuyGTE7tUzdA92C97vexAzT1lUVk+bRnkvYhN27vKWnM9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[-0.03303458 -0.06665558 0.26075318]\n [-0.00422351 -0.00225181 0.10195413]\n [-0.06132492 0.10022148 0.21222456]\n [-0.11137662 -0.00669259 0.05941276]]",
|
74 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
+
},
|
76 |
+
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
+
"sde_sample_freq": -1,
|
79 |
+
"_current_progress_remaining": 0.0,
|
80 |
+
"ep_info_buffer": {
|
81 |
+
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGLDkKha/xb+UhpRSlIwBbJRLMowBdJRHQKnqwGHHmzV1fZQoaAZoCWgPQwiBWgwepv3hv5SGlFKUaBVLMmgWR0Cp6oUmdAgQdX2UKGgGaAloD0MIm1lLAWn/3r+UhpRSlGgVSzJoFkdAqeo6QNkOJHV9lChoBmgJaA9DCGgFhqxu9eq/lIaUUpRoFUsyaBZHQKnp/45cTrV1fZQoaAZoCWgPQwhckgN2NXnTv5SGlFKUaBVLMmgWR0Cp7ShO58SgdX2UKGgGaAloD0MIKA6g3/dv5L+UhpRSlGgVSzJoFkdAqezvBi1Aq3V9lChoBmgJaA9DCLqEQ2/xcOq/lIaUUpRoFUsyaBZHQKnspE/jbSJ1fZQoaAZoCWgPQwhCsKpefqfev5SGlFKUaBVLMmgWR0Cp7GsOXmeUdX2UKGgGaAloD0MIryZPWU3X7L+UhpRSlGgVSzJoFkdAqe9poEjgRHV9lChoBmgJaA9DCFw65jxjX92/lIaUUpRoFUsyaBZHQKnvL2nsLOR1fZQoaAZoCWgPQwg+7IUCtoPWv5SGlFKUaBVLMmgWR0Cp7uR5cC5mdX2UKGgGaAloD0MILjnulA7W1L+UhpRSlGgVSzJoFkdAqe6o5Jbt7nV9lChoBmgJaA9DCG2QSUbOwuW/lIaUUpRoFUsyaBZHQKnxUvduYQd1fZQoaAZoCWgPQwgKhnMNM7Tgv5SGlFKUaBVLMmgWR0Cp8RbpmmLtdX2UKGgGaAloD0MIwD46deUz5b+UhpRSlGgVSzJoFkdAqfDMETxoZnV9lChoBmgJaA9DCEKwql5+p96/lIaUUpRoFUsyaBZHQKnwkDcuand1fZQoaAZoCWgPQwgLz0vFxrzlv5SGlFKUaBVLMmgWR0Cp8xcSPEKmdX2UKGgGaAloD0MIKLuZ0Y+Gy7+UhpRSlGgVSzJoFkdAqfLbZ8KG+XV9lChoBmgJaA9DCDntKTkn9uK/lIaUUpRoFUsyaBZHQKnykLeANG51fZQoaAZoCWgPQwgEkNrEyf3Yv5SGlFKUaBVLMmgWR0Cp8lVHnU2DdX2UKGgGaAloD0MIQFHZsKay7r+UhpRSlGgVSzJoFkdAqfTj2xptanV9lChoBmgJaA9DCCUDQBU3bti/lIaUUpRoFUsyaBZHQKn0qFFDv3J1fZQoaAZoCWgPQwgFwk6xahDhv5SGlFKUaBVLMmgWR0Cp9F2OAAhjdX2UKGgGaAloD0MIcVga+FEN3L+UhpRSlGgVSzJoFkdAqfQiJsO5KHV9lChoBmgJaA9DCN6rVib8UuC/lIaUUpRoFUsyaBZHQKn2nqh11W91fZQoaAZoCWgPQwgSF4BG6dLgv5SGlFKUaBVLMmgWR0Cp9mL0jC53dX2UKGgGaAloD0MIkuf6Phyk5L+UhpRSlGgVSzJoFkdAqfYYQxveg3V9lChoBmgJaA9DCBH8byU7tuS/lIaUUpRoFUsyaBZHQKn13KISDh91fZQoaAZoCWgPQwgzG2SSkbPlv5SGlFKUaBVLMmgWR0Cp9/EnCwbEdX2UKGgGaAloD0MIQu23dqIk0b+UhpRSlGgVSzJoFkdAqfe0lzEJjXV9lChoBmgJaA9DCKQczCbAsO2/lIaUUpRoFUsyaBZHQKn3aPzWf9R1fZQoaAZoCWgPQwiyDdyBOuXLv5SGlFKUaBVLMmgWR0Cp9yyQ5myxdX2UKGgGaAloD0MIDoRkARO457+UhpRSlGgVSzJoFkdAqfj4RGtp23V9lChoBmgJaA9DCCdp/pjWpuO/lIaUUpRoFUsyaBZHQKn4u59Vmz11fZQoaAZoCWgPQwh7hJohVZTkv5SGlFKUaBVLMmgWR0Cp+G/tx+8XdX2UKGgGaAloD0MIbQN3oE7557+UhpRSlGgVSzJoFkdAqfgzgflp5HV9lChoBmgJaA9DCHcSEf5F0O2/lIaUUpRoFUsyaBZHQKn6FTXrdFh1fZQoaAZoCWgPQwj6sx8pIsPdv5SGlFKUaBVLMmgWR0Cp+di5uqFRdX2UKGgGaAloD0MIdsWM8PYg6r+UhpRSlGgVSzJoFkdAqfmND+irUHV9lChoBmgJaA9DCPcBSG3i5O2/lIaUUpRoFUsyaBZHQKn5UK1og3d1fZQoaAZoCWgPQwhJu9HHfMDmv5SGlFKUaBVLMmgWR0Cp+yUa6z3RdX2UKGgGaAloD0MITb7Z5sb047+UhpRSlGgVSzJoFkdAqfrotBfKIXV9lChoBmgJaA9DCKUWSiandtG/lIaUUpRoFUsyaBZHQKn6nR0EHMV1fZQoaAZoCWgPQwhxOzQsRl3mv5SGlFKUaBVLMmgWR0Cp+mCF0xM4dX2UKGgGaAloD0MItcGJ6NfW47+UhpRSlGgVSzJoFkdAqfwygwoLHHV9lChoBmgJaA9DCL8PBwlRvte/lIaUUpRoFUsyaBZHQKn79eu3c591fZQoaAZoCWgPQwiPVN/5RYnlv5SGlFKUaBVLMmgWR0Cp+6prDZUUdX2UKGgGaAloD0MI+5EiMqzi4b+UhpRSlGgVSzJoFkdAqfttyxRl6XV9lChoBmgJaA9DCFg89UiD29m/lIaUUpRoFUsyaBZHQKn9PnGsFMZ1fZQoaAZoCWgPQwhkQPZ698frv5SGlFKUaBVLMmgWR0Cp/QIDHOrydX2UKGgGaAloD0MItW/urx734L+UhpRSlGgVSzJoFkdAqfy2P91loXV9lChoBmgJaA9DCBppqbwdYeC/lIaUUpRoFUsyaBZHQKn8eZG8VYZ1fZQoaAZoCWgPQwi8P96rVibnv5SGlFKUaBVLMmgWR0Cp/lTbWVeKdX2UKGgGaAloD0MIRj8aTpmb5L+UhpRSlGgVSzJoFkdAqf4YjY7JXHV9lChoBmgJaA9DCI0ngjgPp+C/lIaUUpRoFUsyaBZHQKn9zOryUcJ1fZQoaAZoCWgPQwiN74tLVVrov5SGlFKUaBVLMmgWR0Cp/ZCIcinpdX2UKGgGaAloD0MIqmbWUkDa3L+UhpRSlGgVSzJoFkdAqf+BE+gUUXV9lChoBmgJaA9DCKdAZmfRO82/lIaUUpRoFUsyaBZHQKn/RJuEVWV1fZQoaAZoCWgPQwgG2Eenrvznv5SGlFKUaBVLMmgWR0Cp/vm2b5M2dX2UKGgGaAloD0MIG/Sltz8X17+UhpRSlGgVSzJoFkdAqf69M23rlnV9lChoBmgJaA9DCEolPKHXn9+/lIaUUpRoFUsyaBZHQKoAkC8OCoV1fZQoaAZoCWgPQwjdByC1iZPav5SGlFKUaBVLMmgWR0CqAFPGQ0XQdX2UKGgGaAloD0MI1O/C1mzl6r+UhpRSlGgVSzJoFkdAqgAH+GXXy3V9lChoBmgJaA9DCOCBAYQPJd6/lIaUUpRoFUsyaBZHQKn/y3MINVl1fZQoaAZoCWgPQwjQYimSrwTnv5SGlFKUaBVLMmgWR0CqAZn4O+ZgdX2UKGgGaAloD0MIBKkUOxqHzL+UhpRSlGgVSzJoFkdAqgFdQhwEQ3V9lChoBmgJaA9DCDShSWJJuee/lIaUUpRoFUsyaBZHQKoBEWoFV1h1fZQoaAZoCWgPQwgBofXwZSLhv5SGlFKUaBVLMmgWR0CqANTw+dK/dX2UKGgGaAloD0MIkQw5tp6h4L+UhpRSlGgVSzJoFkdAqgKnJA+pwXV9lChoBmgJaA9DCAspP6n26du/lIaUUpRoFUsyaBZHQKoCaqMFUyZ1fZQoaAZoCWgPQwhwmj474LrXv5SGlFKUaBVLMmgWR0CqAh7ayrxRdX2UKGgGaAloD0MIbeNPVDasz7+UhpRSlGgVSzJoFkdAqgHiXWvr4XV9lChoBmgJaA9DCKH4MeauJeW/lIaUUpRoFUsyaBZHQKoDpf8/D+B1fZQoaAZoCWgPQwh/oUeMnlvav5SGlFKUaBVLMmgWR0CqA2mS6lLwdX2UKGgGaAloD0MIVpkprb8l2L+UhpRSlGgVSzJoFkdAqgMeAmReTnV9lChoBmgJaA9DCLNAu0OKAdu/lIaUUpRoFUsyaBZHQKoC4cR15jZ1fZQoaAZoCWgPQwjOp45VSs/Wv5SGlFKUaBVLMmgWR0CqBUaXjU/fdX2UKGgGaAloD0MIyXN9Hw4S0L+UhpRSlGgVSzJoFkdAqgUKrLhaT3V9lChoBmgJaA9DCL9lTpfFROW/lIaUUpRoFUsyaBZHQKoEv9GZuyh1fZQoaAZoCWgPQwgykj1CzZDRv5SGlFKUaBVLMmgWR0CqBIQzDXOGdX2UKGgGaAloD0MI93XgnBGl17+UhpRSlGgVSzJoFkdAqgcR+z+m33V9lChoBmgJaA9DCHui68IPzta/lIaUUpRoFUsyaBZHQKoG1fO2RaJ1fZQoaAZoCWgPQwhfCg+aXffOv5SGlFKUaBVLMmgWR0CqBosj/uLKdX2UKGgGaAloD0MIvoV1492R2b+UhpRSlGgVSzJoFkdAqgZPTuv2XnV9lChoBmgJaA9DCMk4RrJHqNi/lIaUUpRoFUsyaBZHQKoI5tm+TNd1fZQoaAZoCWgPQwiTq1j8prDcv5SGlFKUaBVLMmgWR0CqCKtnf2sadX2UKGgGaAloD0MI8Ps3L05857+UhpRSlGgVSzJoFkdAqghgagmJFnV9lChoBmgJaA9DCE/N5QZDHdu/lIaUUpRoFUsyaBZHQKoIJPci4ax1fZQoaAZoCWgPQwjNdoU+WEbgv5SGlFKUaBVLMmgWR0CqCq+aBqbjdX2UKGgGaAloD0MIfQiqRq8G1r+UhpRSlGgVSzJoFkdAqgp0SK3uu3V9lChoBmgJaA9DCH5WmSmtv9u/lIaUUpRoFUsyaBZHQKoKKYaYNRZ1fZQoaAZoCWgPQwiEtwchIN/iv5SGlFKUaBVLMmgWR0CqCe3ztkWidX2UKGgGaAloD0MIbMuAs5Qs3r+UhpRSlGgVSzJoFkdAqgyO9YfW+XV9lChoBmgJaA9DCHl5OleUEtC/lIaUUpRoFUsyaBZHQKoMU5PM0P91fZQoaAZoCWgPQwgsSDMWTWfcv5SGlFKUaBVLMmgWR0CqDAjZtelbdX2UKGgGaAloD0MIYY2z6Qjg4L+UhpRSlGgVSzJoFkdAqgvNGd7OV3V9lChoBmgJaA9DCDxNZryt9Ne/lIaUUpRoFUsyaBZHQKoOY+B6KLt1fZQoaAZoCWgPQwgCnrRwWYXjv5SGlFKUaBVLMmgWR0CqDigsCkoGdX2UKGgGaAloD0MIzLipgeZz2b+UhpRSlGgVSzJoFkdAqg3dMZgogHV9lChoBmgJaA9DCDYBhuXPt9W/lIaUUpRoFUsyaBZHQKoNoUaAFxJ1ZS4="
|
83 |
+
},
|
84 |
+
"ep_success_buffer": {
|
85 |
+
":type:": "<class 'collections.deque'>",
|
86 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
+
},
|
88 |
+
"_n_updates": 31250,
|
89 |
+
"n_steps": 8,
|
90 |
+
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
+
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
+
"max_grad_norm": 0.5,
|
95 |
+
"normalize_advantage": false
|
96 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be67fbdb02f0ee0eb9344c0f973e1d494a07f7f4fa6df5018deac64665f1edf2
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fe83bf93307cbe7d4ebfbf4d4cac1b5075f33121701f58a9e03ef4bb480fcc6
|
3 |
+
size 46718
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe0a49c0f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe0a49c6600>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678608982071079812, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwLHYPj+eFjy32Q4/wLHYPj+eFjy32Q4/wLHYPj+eFjy32Q4/wLHYPj+eFjy32Q4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAE7G/PgEiib9eesw/mPiiv+IdYr69gn8/vXOKv43Qn78SDsm/Od+Nv9F91z75XsI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADAsdg+P54WPLfZDj9uZaU92wA6uoMbhD3Asdg+P54WPLfZDj9uZaU92wA6uoMbhD3Asdg+P54WPLfZDj9uZaU92wA6uoMbhD3Asdg+P54WPLfZDj9uZaU92wA6uoMbhD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42323112 0.009193 0.55800956]\n [0.42323112 0.009193 0.55800956]\n [0.42323112 0.009193 0.55800956]\n [0.42323112 0.009193 0.55800956]]", "desired_goal": "[[ 0.37439784 -1.0713502 1.5974844 ]\n [-1.2732115 -0.22081712 0.99808866]\n [-1.081657 -1.248552 -1.5707419 ]\n [-1.1083747 0.42088178 0.37963083]]", "observation": "[[ 0.42323112 0.009193 0.55800956 0.08075987 -0.00070955 0.0645056 ]\n [ 0.42323112 0.009193 0.55800956 0.08075987 -0.00070955 0.0645056 ]\n [ 0.42323112 0.009193 0.55800956 0.08075987 -0.00070955 0.0645056 ]\n [ 0.42323112 0.009193 0.55800956 0.08075987 -0.00070955 0.0645056 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARE8HvbiCiL1xgYU+VmWKuyGTE7tUzdA92C97vexAzT1lUVk+bRnkvYhN27vKWnM9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03303458 -0.06665558 0.26075318]\n [-0.00422351 -0.00225181 0.10195413]\n [-0.06132492 0.10022148 0.21222456]\n [-0.11137662 -0.00669259 0.05941276]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGLDkKha/xb+UhpRSlIwBbJRLMowBdJRHQKnqwGHHmzV1fZQoaAZoCWgPQwiBWgwepv3hv5SGlFKUaBVLMmgWR0Cp6oUmdAgQdX2UKGgGaAloD0MIm1lLAWn/3r+UhpRSlGgVSzJoFkdAqeo6QNkOJHV9lChoBmgJaA9DCGgFhqxu9eq/lIaUUpRoFUsyaBZHQKnp/45cTrV1fZQoaAZoCWgPQwhckgN2NXnTv5SGlFKUaBVLMmgWR0Cp7ShO58SgdX2UKGgGaAloD0MIKA6g3/dv5L+UhpRSlGgVSzJoFkdAqezvBi1Aq3V9lChoBmgJaA9DCLqEQ2/xcOq/lIaUUpRoFUsyaBZHQKnspE/jbSJ1fZQoaAZoCWgPQwhCsKpefqfev5SGlFKUaBVLMmgWR0Cp7GsOXmeUdX2UKGgGaAloD0MIryZPWU3X7L+UhpRSlGgVSzJoFkdAqe9poEjgRHV9lChoBmgJaA9DCFw65jxjX92/lIaUUpRoFUsyaBZHQKnvL2nsLOR1fZQoaAZoCWgPQwg+7IUCtoPWv5SGlFKUaBVLMmgWR0Cp7uR5cC5mdX2UKGgGaAloD0MILjnulA7W1L+UhpRSlGgVSzJoFkdAqe6o5Jbt7nV9lChoBmgJaA9DCG2QSUbOwuW/lIaUUpRoFUsyaBZHQKnxUvduYQd1fZQoaAZoCWgPQwgKhnMNM7Tgv5SGlFKUaBVLMmgWR0Cp8RbpmmLtdX2UKGgGaAloD0MIwD46deUz5b+UhpRSlGgVSzJoFkdAqfDMETxoZnV9lChoBmgJaA9DCEKwql5+p96/lIaUUpRoFUsyaBZHQKnwkDcuand1fZQoaAZoCWgPQwgLz0vFxrzlv5SGlFKUaBVLMmgWR0Cp8xcSPEKmdX2UKGgGaAloD0MIKLuZ0Y+Gy7+UhpRSlGgVSzJoFkdAqfLbZ8KG+XV9lChoBmgJaA9DCDntKTkn9uK/lIaUUpRoFUsyaBZHQKnykLeANG51fZQoaAZoCWgPQwgEkNrEyf3Yv5SGlFKUaBVLMmgWR0Cp8lVHnU2DdX2UKGgGaAloD0MIQFHZsKay7r+UhpRSlGgVSzJoFkdAqfTj2xptanV9lChoBmgJaA9DCCUDQBU3bti/lIaUUpRoFUsyaBZHQKn0qFFDv3J1fZQoaAZoCWgPQwgFwk6xahDhv5SGlFKUaBVLMmgWR0Cp9F2OAAhjdX2UKGgGaAloD0MIcVga+FEN3L+UhpRSlGgVSzJoFkdAqfQiJsO5KHV9lChoBmgJaA9DCN6rVib8UuC/lIaUUpRoFUsyaBZHQKn2nqh11W91fZQoaAZoCWgPQwgSF4BG6dLgv5SGlFKUaBVLMmgWR0Cp9mL0jC53dX2UKGgGaAloD0MIkuf6Phyk5L+UhpRSlGgVSzJoFkdAqfYYQxveg3V9lChoBmgJaA9DCBH8byU7tuS/lIaUUpRoFUsyaBZHQKn13KISDh91fZQoaAZoCWgPQwgzG2SSkbPlv5SGlFKUaBVLMmgWR0Cp9/EnCwbEdX2UKGgGaAloD0MIQu23dqIk0b+UhpRSlGgVSzJoFkdAqfe0lzEJjXV9lChoBmgJaA9DCKQczCbAsO2/lIaUUpRoFUsyaBZHQKn3aPzWf9R1fZQoaAZoCWgPQwiyDdyBOuXLv5SGlFKUaBVLMmgWR0Cp9yyQ5myxdX2UKGgGaAloD0MIDoRkARO457+UhpRSlGgVSzJoFkdAqfj4RGtp23V9lChoBmgJaA9DCCdp/pjWpuO/lIaUUpRoFUsyaBZHQKn4u59Vmz11fZQoaAZoCWgPQwh7hJohVZTkv5SGlFKUaBVLMmgWR0Cp+G/tx+8XdX2UKGgGaAloD0MIbQN3oE7557+UhpRSlGgVSzJoFkdAqfgzgflp5HV9lChoBmgJaA9DCHcSEf5F0O2/lIaUUpRoFUsyaBZHQKn6FTXrdFh1fZQoaAZoCWgPQwj6sx8pIsPdv5SGlFKUaBVLMmgWR0Cp+di5uqFRdX2UKGgGaAloD0MIdsWM8PYg6r+UhpRSlGgVSzJoFkdAqfmND+irUHV9lChoBmgJaA9DCPcBSG3i5O2/lIaUUpRoFUsyaBZHQKn5UK1og3d1fZQoaAZoCWgPQwhJu9HHfMDmv5SGlFKUaBVLMmgWR0Cp+yUa6z3RdX2UKGgGaAloD0MITb7Z5sb047+UhpRSlGgVSzJoFkdAqfrotBfKIXV9lChoBmgJaA9DCKUWSiandtG/lIaUUpRoFUsyaBZHQKn6nR0EHMV1fZQoaAZoCWgPQwhxOzQsRl3mv5SGlFKUaBVLMmgWR0Cp+mCF0xM4dX2UKGgGaAloD0MItcGJ6NfW47+UhpRSlGgVSzJoFkdAqfwygwoLHHV9lChoBmgJaA9DCL8PBwlRvte/lIaUUpRoFUsyaBZHQKn79eu3c591fZQoaAZoCWgPQwiPVN/5RYnlv5SGlFKUaBVLMmgWR0Cp+6prDZUUdX2UKGgGaAloD0MI+5EiMqzi4b+UhpRSlGgVSzJoFkdAqfttyxRl6XV9lChoBmgJaA9DCFg89UiD29m/lIaUUpRoFUsyaBZHQKn9PnGsFMZ1fZQoaAZoCWgPQwhkQPZ698frv5SGlFKUaBVLMmgWR0Cp/QIDHOrydX2UKGgGaAloD0MItW/urx734L+UhpRSlGgVSzJoFkdAqfy2P91loXV9lChoBmgJaA9DCBppqbwdYeC/lIaUUpRoFUsyaBZHQKn8eZG8VYZ1fZQoaAZoCWgPQwi8P96rVibnv5SGlFKUaBVLMmgWR0Cp/lTbWVeKdX2UKGgGaAloD0MIRj8aTpmb5L+UhpRSlGgVSzJoFkdAqf4YjY7JXHV9lChoBmgJaA9DCI0ngjgPp+C/lIaUUpRoFUsyaBZHQKn9zOryUcJ1fZQoaAZoCWgPQwiN74tLVVrov5SGlFKUaBVLMmgWR0Cp/ZCIcinpdX2UKGgGaAloD0MIqmbWUkDa3L+UhpRSlGgVSzJoFkdAqf+BE+gUUXV9lChoBmgJaA9DCKdAZmfRO82/lIaUUpRoFUsyaBZHQKn/RJuEVWV1fZQoaAZoCWgPQwgG2Eenrvznv5SGlFKUaBVLMmgWR0Cp/vm2b5M2dX2UKGgGaAloD0MIG/Sltz8X17+UhpRSlGgVSzJoFkdAqf69M23rlnV9lChoBmgJaA9DCEolPKHXn9+/lIaUUpRoFUsyaBZHQKoAkC8OCoV1fZQoaAZoCWgPQwjdByC1iZPav5SGlFKUaBVLMmgWR0CqAFPGQ0XQdX2UKGgGaAloD0MI1O/C1mzl6r+UhpRSlGgVSzJoFkdAqgAH+GXXy3V9lChoBmgJaA9DCOCBAYQPJd6/lIaUUpRoFUsyaBZHQKn/y3MINVl1fZQoaAZoCWgPQwjQYimSrwTnv5SGlFKUaBVLMmgWR0CqAZn4O+ZgdX2UKGgGaAloD0MIBKkUOxqHzL+UhpRSlGgVSzJoFkdAqgFdQhwEQ3V9lChoBmgJaA9DCDShSWJJuee/lIaUUpRoFUsyaBZHQKoBEWoFV1h1fZQoaAZoCWgPQwgBofXwZSLhv5SGlFKUaBVLMmgWR0CqANTw+dK/dX2UKGgGaAloD0MIkQw5tp6h4L+UhpRSlGgVSzJoFkdAqgKnJA+pwXV9lChoBmgJaA9DCAspP6n26du/lIaUUpRoFUsyaBZHQKoCaqMFUyZ1fZQoaAZoCWgPQwhwmj474LrXv5SGlFKUaBVLMmgWR0CqAh7ayrxRdX2UKGgGaAloD0MIbeNPVDasz7+UhpRSlGgVSzJoFkdAqgHiXWvr4XV9lChoBmgJaA9DCKH4MeauJeW/lIaUUpRoFUsyaBZHQKoDpf8/D+B1fZQoaAZoCWgPQwh/oUeMnlvav5SGlFKUaBVLMmgWR0CqA2mS6lLwdX2UKGgGaAloD0MIVpkprb8l2L+UhpRSlGgVSzJoFkdAqgMeAmReTnV9lChoBmgJaA9DCLNAu0OKAdu/lIaUUpRoFUsyaBZHQKoC4cR15jZ1fZQoaAZoCWgPQwjOp45VSs/Wv5SGlFKUaBVLMmgWR0CqBUaXjU/fdX2UKGgGaAloD0MIyXN9Hw4S0L+UhpRSlGgVSzJoFkdAqgUKrLhaT3V9lChoBmgJaA9DCL9lTpfFROW/lIaUUpRoFUsyaBZHQKoEv9GZuyh1fZQoaAZoCWgPQwgykj1CzZDRv5SGlFKUaBVLMmgWR0CqBIQzDXOGdX2UKGgGaAloD0MI93XgnBGl17+UhpRSlGgVSzJoFkdAqgcR+z+m33V9lChoBmgJaA9DCHui68IPzta/lIaUUpRoFUsyaBZHQKoG1fO2RaJ1fZQoaAZoCWgPQwhfCg+aXffOv5SGlFKUaBVLMmgWR0CqBosj/uLKdX2UKGgGaAloD0MIvoV1492R2b+UhpRSlGgVSzJoFkdAqgZPTuv2XnV9lChoBmgJaA9DCMk4RrJHqNi/lIaUUpRoFUsyaBZHQKoI5tm+TNd1fZQoaAZoCWgPQwiTq1j8prDcv5SGlFKUaBVLMmgWR0CqCKtnf2sadX2UKGgGaAloD0MI8Ps3L05857+UhpRSlGgVSzJoFkdAqghgagmJFnV9lChoBmgJaA9DCE/N5QZDHdu/lIaUUpRoFUsyaBZHQKoIJPci4ax1fZQoaAZoCWgPQwjNdoU+WEbgv5SGlFKUaBVLMmgWR0CqCq+aBqbjdX2UKGgGaAloD0MIfQiqRq8G1r+UhpRSlGgVSzJoFkdAqgp0SK3uu3V9lChoBmgJaA9DCH5WmSmtv9u/lIaUUpRoFUsyaBZHQKoKKYaYNRZ1fZQoaAZoCWgPQwiEtwchIN/iv5SGlFKUaBVLMmgWR0CqCe3ztkWidX2UKGgGaAloD0MIbMuAs5Qs3r+UhpRSlGgVSzJoFkdAqgyO9YfW+XV9lChoBmgJaA9DCHl5OleUEtC/lIaUUpRoFUsyaBZHQKoMU5PM0P91fZQoaAZoCWgPQwgsSDMWTWfcv5SGlFKUaBVLMmgWR0CqDAjZtelbdX2UKGgGaAloD0MIYY2z6Qjg4L+UhpRSlGgVSzJoFkdAqgvNGd7OV3V9lChoBmgJaA9DCDxNZryt9Ne/lIaUUpRoFUsyaBZHQKoOY+B6KLt1fZQoaAZoCWgPQwgCnrRwWYXjv5SGlFKUaBVLMmgWR0CqDigsCkoGdX2UKGgGaAloD0MIzLipgeZz2b+UhpRSlGgVSzJoFkdAqg3dMZgogHV9lChoBmgJaA9DCDYBhuXPt9W/lIaUUpRoFUsyaBZHQKoNoUaAFxJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (289 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.42393896675202997, "std_reward": 0.14206642902812974, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-12T09:14:45.830786"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96058f0769eaaccce36f342649d46416593aa4ff9c8c4219d5abf8173952e632
|
3 |
+
size 3056
|