claterza commited on
Commit
689385c
·
1 Parent(s): c798308

Upload PPO LunarLander-v2 1M trained agent

Browse files
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 249.60 +/- 43.80
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbcf2e275e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbcf2e27670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbcf2e27700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbcf2e27790>", "_build": "<function ActorCriticPolicy._build at 0x7fbcf2e27820>", "forward": "<function ActorCriticPolicy.forward at 0x7fbcf2e278b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbcf2e27940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbcf2e279d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbcf2e27a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbcf2e27af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbcf2e27b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbcf2e1de70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670781751866373490, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPku70pZBy6p+CiurPttbX+4+Y6ggy8OQAAgD8AAIA/mgPTvbnJZz9OoLw9XRvMvhF80rxtUAQ+AAAAAAAAAADNFzU9uQdxPmLE5r3taeC98U2ivUmgBjwAAAAAAAAAADNjgbsfBf63eLLeuvecFDVvP/c5yuwEOgAAgD8AAIA/TaaUPeFgmbr1xzQ8TY2OtJ18FLnQh0azAACAPwAAgD8z68G97Inbuecoj7nETUa04y8buid0pTgAAIA/AACAP+bJkL2FPe+7hp0YvHtyAT3/7EK94znUPQAAgD8AAIA/GitbPVzfULq3bDA7CcgSNTnd8jr1k0m6AACAPwAAgD+zEXQ97PnRuXu8krvUPMw42zdAu6j6GjoAAIA/AACAPz1iYb4zH14/z35BvZSDr74h2x2+iMPRPAAAAAAAAAAAzUWJvFwLXroxwKU4cwHDNWoKi7sPhr+3AACAPwAAgD9T2zG++2qOvONjg7vWvMW5pa7/PTrarzoAAIA/AACAP2algzyFK8i5Ne8bO3FktDXOUsK7Wty5NAAAgD8AAIA/mlZ6vXs2grqVF+W6FKHFN9l4arot4Ng3AACAPwAAgD+A4Sg99mxRurpBMryJCbC2IGBRusolITYAAIA/AACAP0CBOT78Oyw/hsklPV6hjb5J8ok94slhvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQKTfvg5SQ0CUhpRSlIwBbJRL1YwBdJRHQJBWzI/7iyZ1fZQoaAZoCWgPQwhYU1kUdp0/QJSGlFKUaBVL8GgWR0CQW2y4Wk8BdX2UKGgGaAloD0MITn6LTpaMXECUhpRSlGgVTegDaBZHQJBgQDifg751fZQoaAZoCWgPQwj9bOS6qTdlQJSGlFKUaBVN6ANoFkdAkGSgh8pkPXV9lChoBmgJaA9DCKYol8Yv9WBAlIaUUpRoFU3oA2gWR0CQZ2H+ZPVNdX2UKGgGaAloD0MIY/GbwsqCZUCUhpRSlGgVTegDaBZHQJBov+MqBmR1fZQoaAZoCWgPQwg17zhFR9tiQJSGlFKUaBVN6ANoFkdAkG9R3V09yXV9lChoBmgJaA9DCBxhURGnLznAlIaUUpRoFUvlaBZHQJBwfi5uqFR1fZQoaAZoCWgPQwjnNXaJaqxkQJSGlFKUaBVN6ANoFkdAkHFcgZCOWHV9lChoBmgJaA9DCAt+G2I8IWNAlIaUUpRoFU3oA2gWR0CQcoL9deIEdX2UKGgGaAloD0MI2xMktjsSYUCUhpRSlGgVTegDaBZHQJB1Dnq3VkN1fZQoaAZoCWgPQwhVoYFYtitkQJSGlFKUaBVN6ANoFkdAkHW1Sn+AE3V9lChoBmgJaA9DCDD2XnzRIVxAlIaUUpRoFU3oA2gWR0CQd8Gmk30gdX2UKGgGaAloD0MIuB/wwABvY0CUhpRSlGgVTegDaBZHQJB4alenhsJ1fZQoaAZoCWgPQwisxhLWRm5hQJSGlFKUaBVN6ANoFkdAkHnoNAkcCHV9lChoBmgJaA9DCNPddTZkIWFAlIaUUpRoFU3oA2gWR0CQfUFPBSDRdX2UKGgGaAloD0MI02weh8HcAkCUhpRSlGgVS71oFkdAkH75RXOnmHV9lChoBmgJaA9DCLLV5ZQAhWFAlIaUUpRoFU3oA2gWR0CQlDQoTfzjdX2UKGgGaAloD0MIVaTC2EIyQUCUhpRSlGgVTQQBaBZHQJCUQ6EJ0GN1fZQoaAZoCWgPQwiVRzfCIqRiQJSGlFKUaBVN6ANoFkdAkJ2ZMxoIwHV9lChoBmgJaA9DCJ6ymq4n3VtAlIaUUpRoFU3oA2gWR0CQos8yvcJudX2UKGgGaAloD0MIDag3o+ZzYkCUhpRSlGgVTegDaBZHQJCoRnOB19x1fZQoaAZoCWgPQwjl7QinBX5uQJSGlFKUaBVNxAFoFkdAkKtklu3tr3V9lChoBmgJaA9DCAVqMXiYvVtAlIaUUpRoFU3oA2gWR0CQsExD9fkWdX2UKGgGaAloD0MIvJaQD3oHYkCUhpRSlGgVTegDaBZHQJCx3LU1AJN1fZQoaAZoCWgPQwgPR1fp7rRjQJSGlFKUaBVN6ANoFkdAkLiQgs9SuXV9lChoBmgJaA9DCHO9baZCAmBAlIaUUpRoFU3oA2gWR0CQubq3VkMDdX2UKGgGaAloD0MIRxyygXRcZUCUhpRSlGgVTegDaBZHQJC6lddE9dN1fZQoaAZoCWgPQwhrKovCLqtiQJSGlFKUaBVN6ANoFkdAkLumsJY1YXV9lChoBmgJaA9DCIY5QZsc4V9AlIaUUpRoFU3oA2gWR0CQwJ9zOopAdX2UKGgGaAloD0MI+u/Ba5fcXkCUhpRSlGgVTegDaBZHQJDBTnoxHoZ1fZQoaAZoCWgPQwgmcyzvKh1hQJSGlFKUaBVN6ANoFkdAkMLoZuQ6qHV9lChoBmgJaA9DCCrkSj0Lg2JAlIaUUpRoFU3oA2gWR0CQxmLLpzLfdX2UKGgGaAloD0MI5eyd0VZ9Y0CUhpRSlGgVTegDaBZHQJDdTd9Dx9Z1fZQoaAZoCWgPQwijHTf8btNmQJSGlFKUaBVN6ANoFkdAkN1f7vXsgXV9lChoBmgJaA9DCDYjg9xFikFAlIaUUpRoFUvQaBZHQJDeJc7hegN1fZQoaAZoCWgPQwi6nui68N9CQJSGlFKUaBVNOwFoFkdAkOMOYx+KCXV9lChoBmgJaA9DCOAruvWabGBAlIaUUpRoFU3oA2gWR0CQ5h9LHuJDdX2UKGgGaAloD0MIYY2z6QhJZUCUhpRSlGgVTegDaBZHQJDq61MM7U51fZQoaAZoCWgPQwj3eCEdHoVfQJSGlFKUaBVN6ANoFkdAkPASWJJoTXV9lChoBmgJaA9DCIyd8BIcyGZAlIaUUpRoFU3oA2gWR0CQ8zu7HyVfdX2UKGgGaAloD0MIQrRWtDm9YUCUhpRSlGgVTegDaBZHQJD4KvvBrN51fZQoaAZoCWgPQwgDXJAtSxhjQJSGlFKUaBVN6ANoFkdAkPnaJ/G2kXV9lChoBmgJaA9DCMObNXhfrmNAlIaUUpRoFU3oA2gWR0CRAckQf6oEdX2UKGgGaAloD0MItVNzucFEYUCUhpRSlGgVTegDaBZHQJEDRj6N2kl1fZQoaAZoCWgPQwhz843onqNfQJSGlFKUaBVN6ANoFkdAkQRZYYBNmHV9lChoBmgJaA9DCKeWrfXF7GBAlIaUUpRoFU3oA2gWR0CRBblpXZGsdX2UKGgGaAloD0MIoDTUKCRZZkCUhpRSlGgVTegDaBZHQJEOzzXjENx1fZQoaAZoCWgPQwhVFoVdlLBhQJSGlFKUaBVN6ANoFkdAkRNwT238XXV9lChoBmgJaA9DCGCPiZRmNWNAlIaUUpRoFU3oA2gWR0CRGZfDDTBqdX2UKGgGaAloD0MIrz+Jz52rXkCUhpRSlGgVTegDaBZHQJEZqGgzxgB1fZQoaAZoCWgPQwibyw2GuhZmQJSGlFKUaBVN6ANoFkdAkRqej/MnqnV9lChoBmgJaA9DCN0/FqJDbV9AlIaUUpRoFU3oA2gWR0CRMrxoqTbGdX2UKGgGaAloD0MINL3EWCZ3YUCUhpRSlGgVTegDaBZHQJE2U3GXHBF1fZQoaAZoCWgPQwjYutQIfaJlQJSGlFKUaBVN6ANoFkdAkTu5gCwKSnV9lChoBmgJaA9DCKBTkJ+N7WNAlIaUUpRoFU3oA2gWR0CRQS7tAs06dX2UKGgGaAloD0MIE/JBz+b6YkCUhpRSlGgVTegDaBZHQJFEbXPJJXh1fZQoaAZoCWgPQwiQpKSHoW5mQJSGlFKUaBVN6ANoFkdAkUl4fOlfq3V9lChoBmgJaA9DCOV620wFkWNAlIaUUpRoFU3oA2gWR0CRSy8Gs3hodX2UKGgGaAloD0MIZqNzfgrkZUCUhpRSlGgVTegDaBZHQJFTGF9KEnN1fZQoaAZoCWgPQwgIH0q05JVfQJSGlFKUaBVN6ANoFkdAkVSN6cAimnV9lChoBmgJaA9DCB9LH7qgn2FAlIaUUpRoFU3oA2gWR0CRVZiS7oStdX2UKGgGaAloD0MIrptSXiskYUCUhpRSlGgVTegDaBZHQJFW9xgiNbV1fZQoaAZoCWgPQwgCDMuf7y1iQJSGlFKUaBVN6ANoFkdAkV+qfWcz7HV9lChoBmgJaA9DCGLboswGIGFAlIaUUpRoFU3oA2gWR0CRY8AmReTndX2UKGgGaAloD0MIJetwdJVkZUCUhpRSlGgVTegDaBZHQJFpPM4cWCV1fZQoaAZoCWgPQwiVRPZBFi5iQJSGlFKUaBVN6ANoFkdAkWlL61stTXV9lChoBmgJaA9DCCRfCaTEkGBAlIaUUpRoFU3oA2gWR0CRah+qBErodX2UKGgGaAloD0MI7YDripkrYkCUhpRSlGgVTegDaBZHQJGBvAFgUlB1fZQoaAZoCWgPQwjsFoGxvr9dQJSGlFKUaBVN6ANoFkdAkYTpswco6XV9lChoBmgJaA9DCO9WlugshGRAlIaUUpRoFU3oA2gWR0CRiebF0gbIdX2UKGgGaAloD0MIBduIJ7tSY0CUhpRSlGgVTegDaBZHQJGPBxMnJDF1fZQoaAZoCWgPQwi+TurLUjdhQJSGlFKUaBVN6ANoFkdAkZIGixmkFnV9lChoBmgJaA9DCE890uA2jmVAlIaUUpRoFU3oA2gWR0CRlogyM1jzdX2UKGgGaAloD0MIH0yKj88JZkCUhpRSlGgVTegDaBZHQJGYBBX0Xgt1fZQoaAZoCWgPQwh47j1c8sZkQJSGlFKUaBVN6ANoFkdAkZ+BtP557nV9lChoBmgJaA9DCBJnRdREpWBAlIaUUpRoFU3oA2gWR0CRoO1RceKbdX2UKGgGaAloD0MIm6p7ZHP+YUCUhpRSlGgVTegDaBZHQJGh79tMwlB1fZQoaAZoCWgPQwjImSZsv+NhQJSGlFKUaBVN6ANoFkdAkaM9fw7T2HV9lChoBmgJaA9DCAHcLF4saGVAlIaUUpRoFU3oA2gWR0CRrDU6gdwOdX2UKGgGaAloD0MIxqS/l0J8YUCUhpRSlGgVTegDaBZHQJGw1hz/6wd1fZQoaAZoCWgPQwiAC7Jl+UBjQJSGlFKUaBVN6ANoFkdAkbbUyYXwb3V9lChoBmgJaA9DCCy8y0V8u2RAlIaUUpRoFU3oA2gWR0CRtuT3IuGsdX2UKGgGaAloD0MIVryReeTlZ0CUhpRSlGgVTegDaBZHQJG3y8xsVL11fZQoaAZoCWgPQwjpKAezCapmQJSGlFKUaBVN6ANoFkdAkc/cBEKE4HV9lChoBmgJaA9DCOwYV1ycdGZAlIaUUpRoFU3oA2gWR0CR04G2kSEldX2UKGgGaAloD0MISWb1DjdBZ0CUhpRSlGgVTegDaBZHQJHZJEG7jDN1fZQoaAZoCWgPQwiuZTIcT9diQJSGlFKUaBVN6ANoFkdAkd8b3sXzlXV9lChoBmgJaA9DCL/WpUZogGNAlIaUUpRoFU3oA2gWR0CR4pxQzk6tdX2UKGgGaAloD0MI9WT+0bdpYUCUhpRSlGgVTegDaBZHQJHn8LG7z091fZQoaAZoCWgPQwgjumddo/ViQJSGlFKUaBVN6ANoFkdAkenLr5ZbIXV9lChoBmgJaA9DCFplprT+Z19AlIaUUpRoFU3oA2gWR0CR8hV6/qPfdX2UKGgGaAloD0MI04bD0kCJY0CUhpRSlGgVTegDaBZHQJHzjb9If8x1fZQoaAZoCWgPQwjPEfkupZdfQJSGlFKUaBVN6ANoFkdAkfSjWXkYGnV9lChoBmgJaA9DCNcxrri4F2RAlIaUUpRoFU3oA2gWR0CR9gFajesQdX2UKGgGaAloD0MIdvnWh3UKYECUhpRSlGgVTegDaBZHQJH+f2ugYgt1fZQoaAZoCWgPQwiH4SNiyg9hQJSGlFKUaBVN6ANoFkdAkgKljmSyMXV9lChoBmgJaA9DCKbVkLhHvmJAlIaUUpRoFU3oA2gWR0CSB/X+l0o0dX2UKGgGaAloD0MI4IEBhI/9YkCUhpRSlGgVTegDaBZHQJIIBanrIHV1fZQoaAZoCWgPQwhfXRWoxWVlQJSGlFKUaBVN6ANoFkdAkgjS704BFXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_lunar_lander_1M.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eb5dd54087303b1bbeba729a30d59107112a879866e85e5f3c81441b9bba8204
3
- size 147154
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76028ca3be95dd1ae0a89406bfb72ed58e9b150ed9e88b3312781d3998ee7c2a
3
+ size 147214
ppo_lunar_lander_1M/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo_lunar_lander_1M/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbcf2e275e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbcf2e27670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbcf2e27700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbcf2e27790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbcf2e27820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbcf2e278b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbcf2e27940>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbcf2e279d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbcf2e27a60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbcf2e27af0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbcf2e27b80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fbcf2e1de70>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670781751866373490,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPku70pZBy6p+CiurPttbX+4+Y6ggy8OQAAgD8AAIA/mgPTvbnJZz9OoLw9XRvMvhF80rxtUAQ+AAAAAAAAAADNFzU9uQdxPmLE5r3taeC98U2ivUmgBjwAAAAAAAAAADNjgbsfBf63eLLeuvecFDVvP/c5yuwEOgAAgD8AAIA/TaaUPeFgmbr1xzQ8TY2OtJ18FLnQh0azAACAPwAAgD8z68G97Inbuecoj7nETUa04y8buid0pTgAAIA/AACAP+bJkL2FPe+7hp0YvHtyAT3/7EK94znUPQAAgD8AAIA/GitbPVzfULq3bDA7CcgSNTnd8jr1k0m6AACAPwAAgD+zEXQ97PnRuXu8krvUPMw42zdAu6j6GjoAAIA/AACAPz1iYb4zH14/z35BvZSDr74h2x2+iMPRPAAAAAAAAAAAzUWJvFwLXroxwKU4cwHDNWoKi7sPhr+3AACAPwAAgD9T2zG++2qOvONjg7vWvMW5pa7/PTrarzoAAIA/AACAP2algzyFK8i5Ne8bO3FktDXOUsK7Wty5NAAAgD8AAIA/mlZ6vXs2grqVF+W6FKHFN9l4arot4Ng3AACAPwAAgD+A4Sg99mxRurpBMryJCbC2IGBRusolITYAAIA/AACAP0CBOT78Oyw/hsklPV6hjb5J8ok94slhvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQKTfvg5SQ0CUhpRSlIwBbJRL1YwBdJRHQJBWzI/7iyZ1fZQoaAZoCWgPQwhYU1kUdp0/QJSGlFKUaBVL8GgWR0CQW2y4Wk8BdX2UKGgGaAloD0MITn6LTpaMXECUhpRSlGgVTegDaBZHQJBgQDifg751fZQoaAZoCWgPQwj9bOS6qTdlQJSGlFKUaBVN6ANoFkdAkGSgh8pkPXV9lChoBmgJaA9DCKYol8Yv9WBAlIaUUpRoFU3oA2gWR0CQZ2H+ZPVNdX2UKGgGaAloD0MIY/GbwsqCZUCUhpRSlGgVTegDaBZHQJBov+MqBmR1fZQoaAZoCWgPQwg17zhFR9tiQJSGlFKUaBVN6ANoFkdAkG9R3V09yXV9lChoBmgJaA9DCBxhURGnLznAlIaUUpRoFUvlaBZHQJBwfi5uqFR1fZQoaAZoCWgPQwjnNXaJaqxkQJSGlFKUaBVN6ANoFkdAkHFcgZCOWHV9lChoBmgJaA9DCAt+G2I8IWNAlIaUUpRoFU3oA2gWR0CQcoL9deIEdX2UKGgGaAloD0MI2xMktjsSYUCUhpRSlGgVTegDaBZHQJB1Dnq3VkN1fZQoaAZoCWgPQwhVoYFYtitkQJSGlFKUaBVN6ANoFkdAkHW1Sn+AE3V9lChoBmgJaA9DCDD2XnzRIVxAlIaUUpRoFU3oA2gWR0CQd8Gmk30gdX2UKGgGaAloD0MIuB/wwABvY0CUhpRSlGgVTegDaBZHQJB4alenhsJ1fZQoaAZoCWgPQwisxhLWRm5hQJSGlFKUaBVN6ANoFkdAkHnoNAkcCHV9lChoBmgJaA9DCNPddTZkIWFAlIaUUpRoFU3oA2gWR0CQfUFPBSDRdX2UKGgGaAloD0MI02weh8HcAkCUhpRSlGgVS71oFkdAkH75RXOnmHV9lChoBmgJaA9DCLLV5ZQAhWFAlIaUUpRoFU3oA2gWR0CQlDQoTfzjdX2UKGgGaAloD0MIVaTC2EIyQUCUhpRSlGgVTQQBaBZHQJCUQ6EJ0GN1fZQoaAZoCWgPQwiVRzfCIqRiQJSGlFKUaBVN6ANoFkdAkJ2ZMxoIwHV9lChoBmgJaA9DCJ6ymq4n3VtAlIaUUpRoFU3oA2gWR0CQos8yvcJudX2UKGgGaAloD0MIDag3o+ZzYkCUhpRSlGgVTegDaBZHQJCoRnOB19x1fZQoaAZoCWgPQwjl7QinBX5uQJSGlFKUaBVNxAFoFkdAkKtklu3tr3V9lChoBmgJaA9DCAVqMXiYvVtAlIaUUpRoFU3oA2gWR0CQsExD9fkWdX2UKGgGaAloD0MIvJaQD3oHYkCUhpRSlGgVTegDaBZHQJCx3LU1AJN1fZQoaAZoCWgPQwgPR1fp7rRjQJSGlFKUaBVN6ANoFkdAkLiQgs9SuXV9lChoBmgJaA9DCHO9baZCAmBAlIaUUpRoFU3oA2gWR0CQubq3VkMDdX2UKGgGaAloD0MIRxyygXRcZUCUhpRSlGgVTegDaBZHQJC6lddE9dN1fZQoaAZoCWgPQwhrKovCLqtiQJSGlFKUaBVN6ANoFkdAkLumsJY1YXV9lChoBmgJaA9DCIY5QZsc4V9AlIaUUpRoFU3oA2gWR0CQwJ9zOopAdX2UKGgGaAloD0MI+u/Ba5fcXkCUhpRSlGgVTegDaBZHQJDBTnoxHoZ1fZQoaAZoCWgPQwgmcyzvKh1hQJSGlFKUaBVN6ANoFkdAkMLoZuQ6qHV9lChoBmgJaA9DCCrkSj0Lg2JAlIaUUpRoFU3oA2gWR0CQxmLLpzLfdX2UKGgGaAloD0MI5eyd0VZ9Y0CUhpRSlGgVTegDaBZHQJDdTd9Dx9Z1fZQoaAZoCWgPQwijHTf8btNmQJSGlFKUaBVN6ANoFkdAkN1f7vXsgXV9lChoBmgJaA9DCDYjg9xFikFAlIaUUpRoFUvQaBZHQJDeJc7hegN1fZQoaAZoCWgPQwi6nui68N9CQJSGlFKUaBVNOwFoFkdAkOMOYx+KCXV9lChoBmgJaA9DCOAruvWabGBAlIaUUpRoFU3oA2gWR0CQ5h9LHuJDdX2UKGgGaAloD0MIYY2z6QhJZUCUhpRSlGgVTegDaBZHQJDq61MM7U51fZQoaAZoCWgPQwj3eCEdHoVfQJSGlFKUaBVN6ANoFkdAkPASWJJoTXV9lChoBmgJaA9DCIyd8BIcyGZAlIaUUpRoFU3oA2gWR0CQ8zu7HyVfdX2UKGgGaAloD0MIQrRWtDm9YUCUhpRSlGgVTegDaBZHQJD4KvvBrN51fZQoaAZoCWgPQwgDXJAtSxhjQJSGlFKUaBVN6ANoFkdAkPnaJ/G2kXV9lChoBmgJaA9DCMObNXhfrmNAlIaUUpRoFU3oA2gWR0CRAckQf6oEdX2UKGgGaAloD0MItVNzucFEYUCUhpRSlGgVTegDaBZHQJEDRj6N2kl1fZQoaAZoCWgPQwhz843onqNfQJSGlFKUaBVN6ANoFkdAkQRZYYBNmHV9lChoBmgJaA9DCKeWrfXF7GBAlIaUUpRoFU3oA2gWR0CRBblpXZGsdX2UKGgGaAloD0MIoDTUKCRZZkCUhpRSlGgVTegDaBZHQJEOzzXjENx1fZQoaAZoCWgPQwhVFoVdlLBhQJSGlFKUaBVN6ANoFkdAkRNwT238XXV9lChoBmgJaA9DCGCPiZRmNWNAlIaUUpRoFU3oA2gWR0CRGZfDDTBqdX2UKGgGaAloD0MIrz+Jz52rXkCUhpRSlGgVTegDaBZHQJEZqGgzxgB1fZQoaAZoCWgPQwibyw2GuhZmQJSGlFKUaBVN6ANoFkdAkRqej/MnqnV9lChoBmgJaA9DCN0/FqJDbV9AlIaUUpRoFU3oA2gWR0CRMrxoqTbGdX2UKGgGaAloD0MINL3EWCZ3YUCUhpRSlGgVTegDaBZHQJE2U3GXHBF1fZQoaAZoCWgPQwjYutQIfaJlQJSGlFKUaBVN6ANoFkdAkTu5gCwKSnV9lChoBmgJaA9DCKBTkJ+N7WNAlIaUUpRoFU3oA2gWR0CRQS7tAs06dX2UKGgGaAloD0MIE/JBz+b6YkCUhpRSlGgVTegDaBZHQJFEbXPJJXh1fZQoaAZoCWgPQwiQpKSHoW5mQJSGlFKUaBVN6ANoFkdAkUl4fOlfq3V9lChoBmgJaA9DCOV620wFkWNAlIaUUpRoFU3oA2gWR0CRSy8Gs3hodX2UKGgGaAloD0MIZqNzfgrkZUCUhpRSlGgVTegDaBZHQJFTGF9KEnN1fZQoaAZoCWgPQwgIH0q05JVfQJSGlFKUaBVN6ANoFkdAkVSN6cAimnV9lChoBmgJaA9DCB9LH7qgn2FAlIaUUpRoFU3oA2gWR0CRVZiS7oStdX2UKGgGaAloD0MIrptSXiskYUCUhpRSlGgVTegDaBZHQJFW9xgiNbV1fZQoaAZoCWgPQwgCDMuf7y1iQJSGlFKUaBVN6ANoFkdAkV+qfWcz7HV9lChoBmgJaA9DCGLboswGIGFAlIaUUpRoFU3oA2gWR0CRY8AmReTndX2UKGgGaAloD0MIJetwdJVkZUCUhpRSlGgVTegDaBZHQJFpPM4cWCV1fZQoaAZoCWgPQwiVRPZBFi5iQJSGlFKUaBVN6ANoFkdAkWlL61stTXV9lChoBmgJaA9DCCRfCaTEkGBAlIaUUpRoFU3oA2gWR0CRah+qBErodX2UKGgGaAloD0MI7YDripkrYkCUhpRSlGgVTegDaBZHQJGBvAFgUlB1fZQoaAZoCWgPQwjsFoGxvr9dQJSGlFKUaBVN6ANoFkdAkYTpswco6XV9lChoBmgJaA9DCO9WlugshGRAlIaUUpRoFU3oA2gWR0CRiebF0gbIdX2UKGgGaAloD0MIBduIJ7tSY0CUhpRSlGgVTegDaBZHQJGPBxMnJDF1fZQoaAZoCWgPQwi+TurLUjdhQJSGlFKUaBVN6ANoFkdAkZIGixmkFnV9lChoBmgJaA9DCE890uA2jmVAlIaUUpRoFU3oA2gWR0CRlogyM1jzdX2UKGgGaAloD0MIH0yKj88JZkCUhpRSlGgVTegDaBZHQJGYBBX0Xgt1fZQoaAZoCWgPQwh47j1c8sZkQJSGlFKUaBVN6ANoFkdAkZ+BtP557nV9lChoBmgJaA9DCBJnRdREpWBAlIaUUpRoFU3oA2gWR0CRoO1RceKbdX2UKGgGaAloD0MIm6p7ZHP+YUCUhpRSlGgVTegDaBZHQJGh79tMwlB1fZQoaAZoCWgPQwjImSZsv+NhQJSGlFKUaBVN6ANoFkdAkaM9fw7T2HV9lChoBmgJaA9DCAHcLF4saGVAlIaUUpRoFU3oA2gWR0CRrDU6gdwOdX2UKGgGaAloD0MIxqS/l0J8YUCUhpRSlGgVTegDaBZHQJGw1hz/6wd1fZQoaAZoCWgPQwiAC7Jl+UBjQJSGlFKUaBVN6ANoFkdAkbbUyYXwb3V9lChoBmgJaA9DCCy8y0V8u2RAlIaUUpRoFU3oA2gWR0CRtuT3IuGsdX2UKGgGaAloD0MIVryReeTlZ0CUhpRSlGgVTegDaBZHQJG3y8xsVL11fZQoaAZoCWgPQwjpKAezCapmQJSGlFKUaBVN6ANoFkdAkc/cBEKE4HV9lChoBmgJaA9DCOwYV1ycdGZAlIaUUpRoFU3oA2gWR0CR04G2kSEldX2UKGgGaAloD0MISWb1DjdBZ0CUhpRSlGgVTegDaBZHQJHZJEG7jDN1fZQoaAZoCWgPQwiuZTIcT9diQJSGlFKUaBVN6ANoFkdAkd8b3sXzlXV9lChoBmgJaA9DCL/WpUZogGNAlIaUUpRoFU3oA2gWR0CR4pxQzk6tdX2UKGgGaAloD0MI9WT+0bdpYUCUhpRSlGgVTegDaBZHQJHn8LG7z091fZQoaAZoCWgPQwgjumddo/ViQJSGlFKUaBVN6ANoFkdAkenLr5ZbIXV9lChoBmgJaA9DCFplprT+Z19AlIaUUpRoFU3oA2gWR0CR8hV6/qPfdX2UKGgGaAloD0MI04bD0kCJY0CUhpRSlGgVTegDaBZHQJHzjb9If8x1fZQoaAZoCWgPQwjPEfkupZdfQJSGlFKUaBVN6ANoFkdAkfSjWXkYGnV9lChoBmgJaA9DCNcxrri4F2RAlIaUUpRoFU3oA2gWR0CR9gFajesQdX2UKGgGaAloD0MIdvnWh3UKYECUhpRSlGgVTegDaBZHQJH+f2ugYgt1fZQoaAZoCWgPQwiH4SNiyg9hQJSGlFKUaBVN6ANoFkdAkgKljmSyMXV9lChoBmgJaA9DCKbVkLhHvmJAlIaUUpRoFU3oA2gWR0CSB/X+l0o0dX2UKGgGaAloD0MI4IEBhI/9YkCUhpRSlGgVTegDaBZHQJIIBanrIHV1fZQoaAZoCWgPQwhfXRWoxWVlQJSGlFKUaBVN6ANoFkdAkgjS704BFXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo_lunar_lander_1M/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb15dd2793fb945378f110dbd5717d6bcb7587fba6af2b42347e4a7c37d3b2d4
3
+ size 87929
ppo_lunar_lander_1M/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:878d4f981420381d905bdc39b552f82f7aca39a337e3faa094eb1196943691ca
3
+ size 43201
ppo_lunar_lander_1M/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_lunar_lander_1M/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (248 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 249.60175621364283, "std_reward": 43.79666721834698, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-11T18:29:24.481873"}