{ "name": "root", "gauges": { "Pyramids.Policy.Entropy.mean": { "value": 0.5796468257904053, "min": 0.5776888132095337, "max": 1.4805067777633667, "count": 33 }, "Pyramids.Policy.Entropy.sum": { "value": 17472.873046875, "min": 17358.392578125, "max": 44912.65234375, "count": 33 }, "Pyramids.Step.mean": { "value": 989999.0, "min": 29952.0, "max": 989999.0, "count": 33 }, "Pyramids.Step.sum": { "value": 989999.0, "min": 29952.0, "max": 989999.0, "count": 33 }, "Pyramids.Policy.ExtrinsicValueEstimate.mean": { "value": 0.3169468641281128, "min": -0.11680218577384949, "max": 0.3169468641281128, "count": 33 }, "Pyramids.Policy.ExtrinsicValueEstimate.sum": { "value": 83.04007720947266, "min": -28.266128540039062, "max": 83.04007720947266, "count": 33 }, "Pyramids.Policy.RndValueEstimate.mean": { "value": 0.008593330159783363, "min": -0.014173561707139015, "max": 0.2885436415672302, "count": 33 }, "Pyramids.Policy.RndValueEstimate.sum": { "value": 2.2514524459838867, "min": -3.486696243286133, "max": 69.25047302246094, "count": 33 }, "Pyramids.Losses.PolicyLoss.mean": { "value": 0.07040219646566578, "min": 0.06528724816647859, "max": 0.07415676041852216, "count": 33 }, "Pyramids.Losses.PolicyLoss.sum": { "value": 1.0560329469849867, "min": 0.4944393681623202, "max": 1.0560329469849867, "count": 33 }, "Pyramids.Losses.ValueLoss.mean": { "value": 0.013976128632511855, "min": 0.00047259594567965917, "max": 0.014166723930386416, "count": 33 }, "Pyramids.Losses.ValueLoss.sum": { "value": 0.20964192948767782, "min": 0.006143747293835569, "max": 0.20964192948767782, "count": 33 }, "Pyramids.Policy.LearningRate.mean": { "value": 7.527397490899999e-06, "min": 7.527397490899999e-06, "max": 0.00029515063018788575, "count": 33 }, "Pyramids.Policy.LearningRate.sum": { "value": 0.00011291096236349998, "min": 0.00011291096236349998, "max": 0.0032562509145831, "count": 33 }, "Pyramids.Policy.Epsilon.mean": { "value": 0.1025091, "min": 0.1025091, "max": 0.19838354285714285, "count": 33 }, "Pyramids.Policy.Epsilon.sum": { "value": 1.5376365, "min": 1.3691136000000002, "max": 2.3854169, "count": 33 }, "Pyramids.Policy.Beta.mean": { "value": 0.00026065909, "min": 0.00026065909, "max": 0.00983851593142857, "count": 33 }, "Pyramids.Policy.Beta.sum": { "value": 0.00390988635, "min": 0.00390988635, "max": 0.10856314831000001, "count": 33 }, "Pyramids.Losses.RNDLoss.mean": { "value": 0.012977433390915394, "min": 0.012977433390915394, "max": 0.43007662892341614, "count": 33 }, "Pyramids.Losses.RNDLoss.sum": { "value": 0.19466149806976318, "min": 0.1819048821926117, "max": 3.0105364322662354, "count": 33 }, "Pyramids.Environment.EpisodeLength.mean": { "value": 494.6271186440678, "min": 494.6271186440678, "max": 999.0, "count": 33 }, "Pyramids.Environment.EpisodeLength.sum": { "value": 29183.0, "min": 15984.0, "max": 33571.0, "count": 33 }, "Pyramids.Environment.CumulativeReward.mean": { "value": 1.2341016650957577, "min": -1.0000000521540642, "max": 1.2831812312360853, "count": 33 }, "Pyramids.Environment.CumulativeReward.sum": { "value": 72.8119982406497, "min": -32.000001668930054, "max": 82.12359879910946, "count": 33 }, "Pyramids.Policy.ExtrinsicReward.mean": { "value": 1.2341016650957577, "min": -1.0000000521540642, "max": 1.2831812312360853, "count": 33 }, "Pyramids.Policy.ExtrinsicReward.sum": { "value": 72.8119982406497, "min": -32.000001668930054, "max": 82.12359879910946, "count": 33 }, "Pyramids.Policy.RndReward.mean": { "value": 0.0670958287871869, "min": 0.0670958287871869, "max": 8.421874239109457, "count": 33 }, "Pyramids.Policy.RndReward.sum": { "value": 3.9586538984440267, "min": 3.9586538984440267, "max": 134.7499878257513, "count": 33 }, "Pyramids.IsTraining.mean": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 33 }, "Pyramids.IsTraining.sum": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 33 } }, "metadata": { "timer_format_version": "0.1.0", "start_time_seconds": "1674100052", "python_version": "3.8.10 (default, Nov 14 2022, 12:59:47) \n[GCC 9.4.0]", "command_line_arguments": "/usr/local/bin/mlagents-learn ./config/ppo/PyramidsRND.yaml --env=./training-envs-executables/linux/Pyramids/Pyramids --run-id=Pyramids Training --no-graphics", "mlagents_version": "0.29.0.dev0", "mlagents_envs_version": "0.29.0.dev0", "communication_protocol_version": "1.5.0", "pytorch_version": "1.8.1+cu102", "numpy_version": "1.21.6", "end_time_seconds": "1674102295" }, "total": 2243.3575468699996, "count": 1, "self": 0.44156413900009284, "children": { "run_training.setup": { "total": 0.11697659599997223, "count": 1, "self": 0.11697659599997223 }, "TrainerController.start_learning": { "total": 2242.7990061349997, "count": 1, "self": 1.5679157619861144, "children": { "TrainerController._reset_env": { "total": 10.679894170000011, "count": 1, "self": 10.679894170000011 }, "TrainerController.advance": { "total": 2230.4620356350138, "count": 63421, "self": 1.6665844139706678, "children": { "env_step": { "total": 1532.9269513530112, "count": 63421, "self": 1408.2036648770172, "children": { "SubprocessEnvManager._take_step": { "total": 123.7561339909987, "count": 63421, "self": 4.988088462967198, "children": { "TorchPolicy.evaluate": { "total": 118.76804552803151, "count": 62563, "self": 39.58451526699588, "children": { "TorchPolicy.sample_actions": { "total": 79.18353026103563, "count": 62563, "self": 79.18353026103563 } } } } }, "workers": { "total": 0.9671524849953244, "count": 63421, "self": 0.0, "children": { "worker_root": { "total": 2237.495885190973, "count": 63421, "is_parallel": true, "self": 946.3047359679686, "children": { "run_training.setup": { "total": 0.0, "count": 0, "is_parallel": true, "self": 0.0, "children": { "steps_from_proto": { "total": 0.005418995999946219, "count": 1, "is_parallel": true, "self": 0.0032116189998987466, "children": { "_process_rank_one_or_two_observation": { "total": 0.0022073770000474724, "count": 8, "is_parallel": true, "self": 0.0022073770000474724 } } }, "UnityEnvironment.step": { "total": 0.05148142899997765, "count": 1, "is_parallel": true, "self": 0.000516736999998102, "children": { "UnityEnvironment._generate_step_input": { "total": 0.0004913120000082927, "count": 1, "is_parallel": true, "self": 0.0004913120000082927 }, "communicator.exchange": { "total": 0.04871858999996448, "count": 1, "is_parallel": true, "self": 0.04871858999996448 }, "steps_from_proto": { "total": 0.0017547900000067784, "count": 1, "is_parallel": true, "self": 0.00047309099994663484, "children": { "_process_rank_one_or_two_observation": { "total": 0.0012816990000601436, "count": 8, "is_parallel": true, "self": 0.0012816990000601436 } } } } } } }, "UnityEnvironment.step": { "total": 1291.1911492230042, "count": 63420, "is_parallel": true, "self": 31.031749090042922, "children": { "UnityEnvironment._generate_step_input": { "total": 25.50559577099358, "count": 63420, "is_parallel": true, "self": 25.50559577099358 }, "communicator.exchange": { "total": 1128.2101073439983, "count": 63420, "is_parallel": true, "self": 1128.2101073439983 }, "steps_from_proto": { "total": 106.4436970179695, "count": 63420, "is_parallel": true, "self": 26.274784624006998, "children": { "_process_rank_one_or_two_observation": { "total": 80.1689123939625, "count": 507360, "is_parallel": true, "self": 80.1689123939625 } } } } } } } } } } }, "trainer_advance": { "total": 695.8684998680319, "count": 63421, "self": 2.7910029020392813, "children": { "process_trajectory": { "total": 157.79834694999226, "count": 63421, "self": 157.58141982699271, "children": { "RLTrainer._checkpoint": { "total": 0.2169271229995502, "count": 2, "self": 0.2169271229995502 } } }, "_update_policy": { "total": 535.2791500160004, "count": 441, "self": 206.59106406301112, "children": { "TorchPPOOptimizer.update": { "total": 328.68808595298924, "count": 22767, "self": 328.68808595298924 } } } } } } }, "trainer_threads": { "total": 9.589998626324814e-07, "count": 1, "self": 9.589998626324814e-07 }, "TrainerController._save_models": { "total": 0.08915960900003483, "count": 1, "self": 0.0015788949999659962, "children": { "RLTrainer._checkpoint": { "total": 0.08758071400006884, "count": 1, "self": 0.08758071400006884 } } } } } } }