clementWizard commited on
Commit
a421d34
·
verified ·
1 Parent(s): 1561dc7

End of training

Browse files
README.md CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.6696
21
- - Answer: {'precision': 0.7092896174863388, 'recall': 0.8022249690976514, 'f1': 0.7529002320185615, 'number': 809}
22
- - Header: {'precision': 0.26618705035971224, 'recall': 0.31092436974789917, 'f1': 0.2868217054263566, 'number': 119}
23
- - Question: {'precision': 0.7788632326820604, 'recall': 0.8234741784037559, 'f1': 0.8005476951163851, 'number': 1065}
24
- - Overall Precision: 0.7170
25
- - Overall Recall: 0.7842
26
- - Overall F1: 0.7491
27
- - Overall Accuracy: 0.8090
28
 
29
  ## Model description
30
 
@@ -54,28 +54,28 @@ The following hyperparameters were used during training:
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
- |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
- | 1.7756 | 1.0 | 10 | 1.5443 | {'precision': 0.022977022977022976, 'recall': 0.02843016069221261, 'f1': 0.025414364640883976, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.18486486486486486, 'recall': 0.16056338028169015, 'f1': 0.17185929648241205, 'number': 1065} | 0.1007 | 0.0973 | 0.0990 | 0.3934 |
60
- | 1.4156 | 2.0 | 20 | 1.2218 | {'precision': 0.2844311377245509, 'recall': 0.3522867737948084, 'f1': 0.3147432357813363, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4658151765589782, 'recall': 0.5821596244131455, 'f1': 0.5175292153589315, 'number': 1065} | 0.3879 | 0.4541 | 0.4184 | 0.5974 |
61
- | 1.0947 | 3.0 | 30 | 0.9351 | {'precision': 0.45348837209302323, 'recall': 0.5784919653893696, 'f1': 0.5084193373166758, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5731800766283525, 'recall': 0.7023474178403756, 'f1': 0.6312236286919831, 'number': 1065} | 0.5155 | 0.6101 | 0.5588 | 0.7042 |
62
- | 0.8401 | 4.0 | 40 | 0.8011 | {'precision': 0.5671361502347417, 'recall': 0.7466007416563659, 'f1': 0.6446104589114193, 'number': 809} | {'precision': 0.03636363636363636, 'recall': 0.01680672268907563, 'f1': 0.022988505747126436, 'number': 119} | {'precision': 0.6641285956006768, 'recall': 0.7370892018779343, 'f1': 0.6987093902981754, 'number': 1065} | 0.6043 | 0.6979 | 0.6477 | 0.7447 |
63
- | 0.6784 | 5.0 | 50 | 0.7088 | {'precision': 0.6298568507157464, 'recall': 0.761433868974042, 'f1': 0.689423614997202, 'number': 809} | {'precision': 0.13333333333333333, 'recall': 0.08403361344537816, 'f1': 0.10309278350515463, 'number': 119} | {'precision': 0.6869009584664537, 'recall': 0.8075117370892019, 'f1': 0.7423392317652138, 'number': 1065} | 0.6447 | 0.7456 | 0.6915 | 0.7832 |
64
- | 0.5803 | 6.0 | 60 | 0.6837 | {'precision': 0.632512315270936, 'recall': 0.7935723114956736, 'f1': 0.7039473684210525, 'number': 809} | {'precision': 0.17, 'recall': 0.14285714285714285, 'f1': 0.15525114155251143, 'number': 119} | {'precision': 0.7255244755244755, 'recall': 0.7793427230046949, 'f1': 0.7514712539610684, 'number': 1065} | 0.6591 | 0.7471 | 0.7004 | 0.7899 |
65
- | 0.5058 | 7.0 | 70 | 0.6616 | {'precision': 0.6632337796086509, 'recall': 0.796044499381953, 'f1': 0.7235955056179776, 'number': 809} | {'precision': 0.22935779816513763, 'recall': 0.21008403361344538, 'f1': 0.2192982456140351, 'number': 119} | {'precision': 0.7556917688266199, 'recall': 0.8103286384976526, 'f1': 0.7820570910738559, 'number': 1065} | 0.6895 | 0.7687 | 0.7269 | 0.8049 |
66
- | 0.4504 | 8.0 | 80 | 0.6497 | {'precision': 0.6694045174537988, 'recall': 0.8059332509270705, 'f1': 0.7313516545148627, 'number': 809} | {'precision': 0.24778761061946902, 'recall': 0.23529411764705882, 'f1': 0.2413793103448276, 'number': 119} | {'precision': 0.7757255936675461, 'recall': 0.828169014084507, 'f1': 0.8010899182561309, 'number': 1065} | 0.7023 | 0.7837 | 0.7408 | 0.8126 |
67
- | 0.4046 | 9.0 | 90 | 0.6455 | {'precision': 0.6864406779661016, 'recall': 0.8009888751545118, 'f1': 0.7393040501996578, 'number': 809} | {'precision': 0.25396825396825395, 'recall': 0.2689075630252101, 'f1': 0.2612244897959184, 'number': 119} | {'precision': 0.7812223206377326, 'recall': 0.828169014084507, 'f1': 0.8040109389243391, 'number': 1065} | 0.7103 | 0.7837 | 0.7452 | 0.8152 |
68
- | 0.3936 | 10.0 | 100 | 0.6659 | {'precision': 0.6867088607594937, 'recall': 0.8046971569839307, 'f1': 0.7410358565737052, 'number': 809} | {'precision': 0.24193548387096775, 'recall': 0.25210084033613445, 'f1': 0.2469135802469136, 'number': 119} | {'precision': 0.7786811201445348, 'recall': 0.8093896713615023, 'f1': 0.7937384898710865, 'number': 1065} | 0.7081 | 0.7742 | 0.7397 | 0.8078 |
69
- | 0.3364 | 11.0 | 110 | 0.6591 | {'precision': 0.6890308839190629, 'recall': 0.799752781211372, 'f1': 0.7402745995423341, 'number': 809} | {'precision': 0.2824427480916031, 'recall': 0.31092436974789917, 'f1': 0.29600000000000004, 'number': 119} | {'precision': 0.7735682819383259, 'recall': 0.8244131455399061, 'f1': 0.7981818181818181, 'number': 1065} | 0.7084 | 0.7837 | 0.7442 | 0.8115 |
70
- | 0.3265 | 12.0 | 120 | 0.6682 | {'precision': 0.6912393162393162, 'recall': 0.799752781211372, 'f1': 0.7415472779369628, 'number': 809} | {'precision': 0.26666666666666666, 'recall': 0.3025210084033613, 'f1': 0.28346456692913385, 'number': 119} | {'precision': 0.7784697508896797, 'recall': 0.8215962441314554, 'f1': 0.7994518044769301, 'number': 1065} | 0.7098 | 0.7817 | 0.7440 | 0.8077 |
71
- | 0.3079 | 13.0 | 130 | 0.6711 | {'precision': 0.7035830618892508, 'recall': 0.8009888751545118, 'f1': 0.7491329479768787, 'number': 809} | {'precision': 0.26717557251908397, 'recall': 0.29411764705882354, 'f1': 0.28, 'number': 119} | {'precision': 0.7762114537444934, 'recall': 0.8272300469483568, 'f1': 0.8009090909090909, 'number': 1065} | 0.7151 | 0.7847 | 0.7483 | 0.8090 |
72
- | 0.2868 | 14.0 | 140 | 0.6677 | {'precision': 0.704225352112676, 'recall': 0.8034610630407911, 'f1': 0.7505773672055426, 'number': 809} | {'precision': 0.2835820895522388, 'recall': 0.31932773109243695, 'f1': 0.30039525691699603, 'number': 119} | {'precision': 0.7804444444444445, 'recall': 0.8244131455399061, 'f1': 0.8018264840182647, 'number': 1065} | 0.7177 | 0.7858 | 0.7502 | 0.8111 |
73
- | 0.2863 | 15.0 | 150 | 0.6696 | {'precision': 0.7092896174863388, 'recall': 0.8022249690976514, 'f1': 0.7529002320185615, 'number': 809} | {'precision': 0.26618705035971224, 'recall': 0.31092436974789917, 'f1': 0.2868217054263566, 'number': 119} | {'precision': 0.7788632326820604, 'recall': 0.8234741784037559, 'f1': 0.8005476951163851, 'number': 1065} | 0.7170 | 0.7842 | 0.7491 | 0.8090 |
74
 
75
 
76
  ### Framework versions
77
 
78
- - Transformers 4.43.2
79
- - Pytorch 2.3.1+cu121
80
  - Datasets 2.20.0
81
  - Tokenizers 0.19.1
 
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.6748
21
+ - Answer: {'precision': 0.7245575221238938, 'recall': 0.8096415327564895, 'f1': 0.7647402218330415, 'number': 809}
22
+ - Header: {'precision': 0.3464566929133858, 'recall': 0.3697478991596639, 'f1': 0.35772357723577236, 'number': 119}
23
+ - Question: {'precision': 0.7756183745583038, 'recall': 0.8244131455399061, 'f1': 0.7992717341829768, 'number': 1065}
24
+ - Overall Precision: 0.7291
25
+ - Overall Recall: 0.7913
26
+ - Overall F1: 0.7589
27
+ - Overall Accuracy: 0.8136
28
 
29
  ## Model description
30
 
 
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.7656 | 1.0 | 10 | 1.5482 | {'precision': 0.030390738060781478, 'recall': 0.02595797280593325, 'f1': 0.028, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.31988041853512705, 'recall': 0.20093896713615023, 'f1': 0.24682814302191464, 'number': 1065} | 0.1728 | 0.1179 | 0.1402 | 0.3707 |
60
+ | 1.4041 | 2.0 | 20 | 1.1664 | {'precision': 0.15247252747252749, 'recall': 0.13720642768850433, 'f1': 0.14443721535458687, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.46790409899458624, 'recall': 0.568075117370892, 'f1': 0.5131467345207804, 'number': 1065} | 0.3539 | 0.3593 | 0.3566 | 0.6164 |
61
+ | 1.0549 | 3.0 | 30 | 0.8895 | {'precision': 0.521044992743106, 'recall': 0.4437577255871446, 'f1': 0.479305740987984, 'number': 809} | {'precision': 0.25, 'recall': 0.08403361344537816, 'f1': 0.12578616352201258, 'number': 119} | {'precision': 0.5932336742722266, 'recall': 0.707981220657277, 'f1': 0.6455479452054794, 'number': 1065} | 0.5615 | 0.5635 | 0.5625 | 0.7226 |
62
+ | 0.8144 | 4.0 | 40 | 0.7445 | {'precision': 0.621978021978022, 'recall': 0.6996291718170581, 'f1': 0.658522396742292, 'number': 809} | {'precision': 0.2753623188405797, 'recall': 0.15966386554621848, 'f1': 0.20212765957446807, 'number': 119} | {'precision': 0.6641477749790092, 'recall': 0.7427230046948357, 'f1': 0.7012411347517731, 'number': 1065} | 0.6341 | 0.6904 | 0.6611 | 0.7620 |
63
+ | 0.6601 | 5.0 | 50 | 0.6786 | {'precision': 0.6608505997818975, 'recall': 0.7490729295426453, 'f1': 0.7022016222479722, 'number': 809} | {'precision': 0.34615384615384615, 'recall': 0.226890756302521, 'f1': 0.27411167512690354, 'number': 119} | {'precision': 0.6853932584269663, 'recall': 0.8018779342723005, 'f1': 0.7390739939420164, 'number': 1065} | 0.6635 | 0.7461 | 0.7024 | 0.7912 |
64
+ | 0.558 | 6.0 | 60 | 0.6751 | {'precision': 0.6495375128468653, 'recall': 0.7812113720642769, 'f1': 0.7093153759820426, 'number': 809} | {'precision': 0.34615384615384615, 'recall': 0.226890756302521, 'f1': 0.27411167512690354, 'number': 119} | {'precision': 0.7348017621145374, 'recall': 0.7830985915492957, 'f1': 0.7581818181818181, 'number': 1065} | 0.6830 | 0.7491 | 0.7145 | 0.7873 |
65
+ | 0.4876 | 7.0 | 70 | 0.6439 | {'precision': 0.6867469879518072, 'recall': 0.7750309023485785, 'f1': 0.7282229965156795, 'number': 809} | {'precision': 0.2672413793103448, 'recall': 0.2605042016806723, 'f1': 0.26382978723404255, 'number': 119} | {'precision': 0.735144312393888, 'recall': 0.8131455399061033, 'f1': 0.7721801159161837, 'number': 1065} | 0.6905 | 0.7647 | 0.7257 | 0.8059 |
66
+ | 0.431 | 8.0 | 80 | 0.6333 | {'precision': 0.7019650655021834, 'recall': 0.7948084054388134, 'f1': 0.7455072463768115, 'number': 809} | {'precision': 0.3157894736842105, 'recall': 0.3025210084033613, 'f1': 0.30901287553648066, 'number': 119} | {'precision': 0.7440878378378378, 'recall': 0.8272300469483568, 'f1': 0.7834593152512227, 'number': 1065} | 0.7046 | 0.7827 | 0.7416 | 0.8119 |
67
+ | 0.3849 | 9.0 | 90 | 0.6338 | {'precision': 0.713495575221239, 'recall': 0.7972805933250927, 'f1': 0.7530647985989491, 'number': 809} | {'precision': 0.3465346534653465, 'recall': 0.29411764705882354, 'f1': 0.3181818181818182, 'number': 119} | {'precision': 0.7697022767075307, 'recall': 0.8253521126760563, 'f1': 0.7965564114182148, 'number': 1065} | 0.7261 | 0.7822 | 0.7531 | 0.8189 |
68
+ | 0.3741 | 10.0 | 100 | 0.6533 | {'precision': 0.7054429028815368, 'recall': 0.8170580964153276, 'f1': 0.7571592210767468, 'number': 809} | {'precision': 0.31092436974789917, 'recall': 0.31092436974789917, 'f1': 0.31092436974789917, 'number': 119} | {'precision': 0.7736185383244206, 'recall': 0.8150234741784037, 'f1': 0.7937814357567444, 'number': 1065} | 0.7190 | 0.7858 | 0.7509 | 0.8133 |
69
+ | 0.3184 | 11.0 | 110 | 0.6556 | {'precision': 0.7065803667745415, 'recall': 0.8096415327564895, 'f1': 0.7546082949308756, 'number': 809} | {'precision': 0.3203125, 'recall': 0.3445378151260504, 'f1': 0.33198380566801616, 'number': 119} | {'precision': 0.7630901287553649, 'recall': 0.8347417840375587, 'f1': 0.7973094170403587, 'number': 1065} | 0.7140 | 0.7953 | 0.7524 | 0.8104 |
70
+ | 0.3038 | 12.0 | 120 | 0.6681 | {'precision': 0.72271714922049, 'recall': 0.8022249690976514, 'f1': 0.7603983596953721, 'number': 809} | {'precision': 0.3305084745762712, 'recall': 0.3277310924369748, 'f1': 0.32911392405063294, 'number': 119} | {'precision': 0.7851387645478961, 'recall': 0.8234741784037559, 'f1': 0.8038496791934006, 'number': 1065} | 0.7337 | 0.7852 | 0.7586 | 0.8155 |
71
+ | 0.2922 | 13.0 | 130 | 0.6667 | {'precision': 0.7233809001097695, 'recall': 0.8145859085290482, 'f1': 0.7662790697674419, 'number': 809} | {'precision': 0.36036036036036034, 'recall': 0.33613445378151263, 'f1': 0.34782608695652173, 'number': 119} | {'precision': 0.7810599478714162, 'recall': 0.844131455399061, 'f1': 0.8113718411552348, 'number': 1065} | 0.7354 | 0.8018 | 0.7672 | 0.8150 |
72
+ | 0.2685 | 14.0 | 140 | 0.6738 | {'precision': 0.7296996662958843, 'recall': 0.8108776266996292, 'f1': 0.7681498829039812, 'number': 809} | {'precision': 0.3384615384615385, 'recall': 0.3697478991596639, 'f1': 0.35341365461847385, 'number': 119} | {'precision': 0.7788546255506608, 'recall': 0.8300469483568075, 'f1': 0.8036363636363637, 'number': 1065} | 0.7320 | 0.7948 | 0.7621 | 0.8131 |
73
+ | 0.2668 | 15.0 | 150 | 0.6748 | {'precision': 0.7245575221238938, 'recall': 0.8096415327564895, 'f1': 0.7647402218330415, 'number': 809} | {'precision': 0.3464566929133858, 'recall': 0.3697478991596639, 'f1': 0.35772357723577236, 'number': 119} | {'precision': 0.7756183745583038, 'recall': 0.8244131455399061, 'f1': 0.7992717341829768, 'number': 1065} | 0.7291 | 0.7913 | 0.7589 | 0.8136 |
74
 
75
 
76
  ### Framework versions
77
 
78
+ - Transformers 4.43.3
79
+ - Pytorch 2.4.0+cu121
80
  - Datasets 2.20.0
81
  - Tokenizers 0.19.1
logs/events.out.tfevents.1722229489.josh-machine.25140.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e098fc95aa3e99d825d432c64bfb9b9bdcb6e1e9d249de0d78898f6f71dc91e4
3
- size 14991
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:141b81e762e9dcff133b7ef8dee58c3bb272e4c99cf86f2c46dfca75c0c42156
3
+ size 16060
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fa0f5cbb477106c448889900150984f339f2310ec5e725ac8de39c34333daa52
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:defb8a92fbb731a6f08b8822714ac46818dd9837904ceee64b4ee4a5d0098cc0
3
  size 450558212