Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
model-index:
|
3 |
+
- name: lince-zero
|
4 |
+
results: []
|
5 |
+
license: apache-2.0
|
6 |
+
language:
|
7 |
+
- es
|
8 |
+
thumbnail: https://huggingface.co/mrm8488/falcoder-7b/resolve/main/falcoder.png
|
9 |
+
pipeline_tag: text-generation
|
10 |
+
---
|
11 |
+
|
12 |
+
<div style="text-align:center;width:250px;height:250px;">
|
13 |
+
<img src="https://huggingface.co/mrm8488/falcoder-7b/resolve/main/falcoder.png" alt="falcoder logo"">
|
14 |
+
</div>
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# Lince Zero
|
20 |
+
**Lince** is model fine-tuned on a massive and original corpus of Spanish instructions.
|
21 |
+
|
22 |
+
## Model description 🧠
|
23 |
+
|
24 |
+
TBA
|
25 |
+
|
26 |
+
|
27 |
+
## Training and evaluation data 📚
|
28 |
+
|
29 |
+
We created an instruction dataset following the format or popular datasets in the field such as *Alpaca* and Dolly* and augmented it.
|
30 |
+
|
31 |
+
|
32 |
+
### Training hyperparameters ⚙
|
33 |
+
|
34 |
+
TBA
|
35 |
+
|
36 |
+
### Training results 🗒️
|
37 |
+
|
38 |
+
TBA
|
39 |
+
|
40 |
+
|
41 |
+
### Example of usage 👩💻
|
42 |
+
```py
|
43 |
+
import torch
|
44 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer
|
45 |
+
|
46 |
+
model_id = "clibrain/lince-zero"
|
47 |
+
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
49 |
+
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda")
|
51 |
+
|
52 |
+
|
53 |
+
def create_instruction(instruction: str, input_data: str = None, context: str = None) -> str:
|
54 |
+
sections = {
|
55 |
+
"Instrucción": instruction,
|
56 |
+
"Entrada": input_data,
|
57 |
+
"Contexto": context,
|
58 |
+
}
|
59 |
+
|
60 |
+
system_prompt = "A continuación hay una instrucción que describe una tarea, junto con una entrada que proporciona más contexto. Escriba una respuesta que complete adecuadamente la solicitud.\n\n"
|
61 |
+
prompt = system_prompt
|
62 |
+
|
63 |
+
for title, content in sections.items():
|
64 |
+
if content is not None:
|
65 |
+
prompt += f"### {title}:\n{content}\n\n"
|
66 |
+
|
67 |
+
prompt += "### Respuesta:\n"
|
68 |
+
|
69 |
+
return prompt
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
def generate(
|
74 |
+
instruction,
|
75 |
+
input=None,
|
76 |
+
context=None,
|
77 |
+
max_new_tokens=128,
|
78 |
+
temperature=0.1,
|
79 |
+
top_p=0.75,
|
80 |
+
top_k=40,
|
81 |
+
num_beams=4,
|
82 |
+
**kwargs
|
83 |
+
):
|
84 |
+
|
85 |
+
prompt = create_instruction(instruction, input, context)
|
86 |
+
print(prompt)
|
87 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
88 |
+
input_ids = inputs["input_ids"].to("cuda")
|
89 |
+
attention_mask = inputs["attention_mask"].to("cuda")
|
90 |
+
generation_config = GenerationConfig(
|
91 |
+
temperature=temperature,
|
92 |
+
top_p=top_p,
|
93 |
+
top_k=top_k,
|
94 |
+
num_beams=num_beams,
|
95 |
+
**kwargs,
|
96 |
+
)
|
97 |
+
with torch.no_grad():
|
98 |
+
generation_output = model.generate(
|
99 |
+
input_ids=input_ids,
|
100 |
+
attention_mask=attention_mask,
|
101 |
+
generation_config=generation_config,
|
102 |
+
return_dict_in_generate=True,
|
103 |
+
output_scores=True,
|
104 |
+
max_new_tokens=max_new_tokens,
|
105 |
+
early_stopping=True
|
106 |
+
)
|
107 |
+
s = generation_output.sequences[0]
|
108 |
+
output = tokenizer.decode(s)
|
109 |
+
return output.split("### Respuesta:")[1].lstrip("\n")
|
110 |
+
|
111 |
+
instruction = "Dame una lista de lugares a visitar en España."
|
112 |
+
print(generate(instruction))
|
113 |
+
```
|