File size: 1,998 Bytes
61a871b 994feaf 61a871b c129880 ab8795e ec9be32 ab8795e bd107b6 ab8795e 8b05557 ab8795e 60a3ac7 ab8795e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
license: apache-2.0
datasets:
- climatebert/netzero_reduction_data
---
# Model Card for netzero-reduction
## Model Description
This is the fine-tuned ClimateBERT language model with a classification head for detecting sentences that are either related to emission net zero or reduction targets.
We use the [climatebert/distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) language model as a starting point and fine-tuned it on our human-annotated dataset.
## Citation Information
```bibtex
@article{schimanski2023climatebertnetzero,
title={ClimateBERT-NetZero: Detecting and Assessing Net Zero and Reduction Targets},
author={Tobias Schimanski and Julia Bingler and Camilla Hyslop and Mathias Kraus and Markus Leippold},
year={2023},
eprint={2310.08096},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
## How to Get Started With the Model
You can use the model with a pipeline for text classification:
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from transformers.pipelines.pt_utils import KeyDataset
import datasets
from tqdm.auto import tqdm
dataset_name = "climatebert/climate_detection"
tokenizer_name = "climatebert/distilroberta-base-climate-f"
model_name = "climatebert/netzero-reduction"
# If you want to use your own data, simply load them as 🤗 Datasets dataset, see https://huggingface.co/docs/datasets/loading
dataset = datasets.load_dataset(dataset_name, split="test")
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, max_len=512)
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0)
# See https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.pipeline
for i, out in enumerate(tqdm(pipe(KeyDataset(dataset, "text"), padding=True, truncation=True))):
print(dataset["text"][i])
print(out)
``` |