Update README.md
Browse files
README.md
CHANGED
@@ -8,6 +8,7 @@ tags:
|
|
8 |
- nllb
|
9 |
- hindi2kangri
|
10 |
- lowresourcelang
|
|
|
11 |
---
|
12 |
|
13 |
|
@@ -33,4 +34,31 @@ To use this model, you need to install the Hugging Face Transformers library alo
|
|
33 |
|
34 |
## Using the Model
|
35 |
You can use this model with the Hugging Face Transformers library in a Python script or a Jupyter notebook.
|
36 |
-
Below is a sample code snippet to demonstrate how to load and use the model for translation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
- nllb
|
9 |
- hindi2kangri
|
10 |
- lowresourcelang
|
11 |
+
library_name: transformers
|
12 |
---
|
13 |
|
14 |
|
|
|
34 |
|
35 |
## Using the Model
|
36 |
You can use this model with the Hugging Face Transformers library in a Python script or a Jupyter notebook.
|
37 |
+
Below is a sample code snippet to demonstrate how to load and use the model for translation.
|
38 |
+
|
39 |
+
```python
|
40 |
+
import torch
|
41 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
42 |
+
|
43 |
+
model_name = "cloghost/nllb-200-distilled-600M-hin-kang-v1"
|
44 |
+
|
45 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
47 |
+
|
48 |
+
device = 0 if torch.cuda.is_available() else -1 # 0 for GPU, -1 for CPU
|
49 |
+
|
50 |
+
translator = pipeline(
|
51 |
+
"translation",
|
52 |
+
model=model,
|
53 |
+
tokenizer=tokenizer,
|
54 |
+
src_lang="hin_Deva",
|
55 |
+
tgt_lang="kang_Deva",
|
56 |
+
device=device
|
57 |
+
)
|
58 |
+
|
59 |
+
text = """मगर हिमाचली भाषा तो पहले से बोली जा रही है।
|
60 |
+
लोग सदियों से ही इसके संग जी रहे हैं।
|
61 |
+
पहाड़ी भाषा का इतिहास हिन्दी साहित्य के आदिकाल ,जिसे सिद्ध चारण काल के नाम से भी जानते हैं
|
62 |
+
""" # Example text in Hindi
|
63 |
+
|
64 |
+
translation = translator(text)
|