closertodeath commited on
Commit
9723bd3
·
verified ·
1 Parent(s): 6165be6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +122 -3
README.md CHANGED
@@ -1,3 +1,122 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ library_name: transformers
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - VILA
7
+ - VLM
8
+ ---
9
+
10
+ # VILA Model Card
11
+
12
+ ## Model details
13
+
14
+ **Model type:**
15
+ VILA is a visual language model (VLM) pretrained with interleaved image-text data at scale, enabling multi-image VLM. VILA is deployable on the edge, including Jetson Orin and laptop by AWQ 4bit quantization through TinyChat framework. We find: (1) image-text pairs are not enough, interleaved image-text is essential; (2) unfreezing LLM during interleaved image-text pre-training enables in-context learning; (3)re-blending text-only instruction data is crucial to boost both VLM and text-only performance. VILA unveils appealing capabilities, including: multi-image reasoning, in-context learning, visual chain-of-thought, and better world knowledge.
16
+
17
+ **Model date:**
18
+ Model was trained in Aug 2024.
19
+
20
+ **Paper or resources for more information:**
21
+ https://github.com/NVLabs/VILA
22
+ https://arxiv.org/abs/2408.10188
23
+
24
+ ```
25
+ @misc{lin2023vila,
26
+ title={VILA: On Pre-training for Visual Language Models},
27
+ author={Ji Lin and Hongxu Yin and Wei Ping and Yao Lu and Pavlo Molchanov and Andrew Tao and Huizi Mao and Jan Kautz and Mohammad Shoeybi and Song Han},
28
+ year={2023},
29
+ eprint={2312.07533},
30
+ archivePrefix={arXiv},
31
+ primaryClass={cs.CV}
32
+ }
33
+
34
+ @article{longvila,
35
+ title={LongVILA: Scaling Long-Context Visual Language Models for Long Videos},
36
+ author={Fuzhao Xue and Yukang Chen and Dacheng Li and Qinghao Hu and Ligeng Zhu and Xiuyu Li and Yunhao Fang and Haotian Tang and Shang Yang and Zhijian Liu and Yihui He and Hongxu Yin and Pavlo Molchanov and Jan Kautz and Linxi Fan and Yuke Zhu and Yao Lu and Song Han},
37
+ year={2024},
38
+ eprint={},
39
+ archivePrefix={arXiv},
40
+ primaryClass={cs.CV}
41
+ }
42
+ ```
43
+
44
+ ## License
45
+ - The code is released under the Apache 2.0 license as found in the [LICENSE](./LICENSE) file.
46
+ - The pretrained weights are released under the [CC-BY-NC-SA-4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en).
47
+ - The service is a research preview intended for non-commercial use only, and is subject to the following licenses and terms:
48
+ - [Model License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA
49
+ - [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI
50
+ - [Dataset Licenses](https://github.com/Efficient-Large-Model/VILA/blob/main/data_prepare/LICENSE) for each one used during training.
51
+
52
+ **Where to send questions or comments about the model:**
53
+ https://github.com/NVLabs/VILA/issues
54
+
55
+ ## Intended use
56
+ **Primary intended uses:**
57
+ The primary use of VILA is research on large multimodal models and chatbots.
58
+
59
+ **Primary intended users:**
60
+ The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
61
+
62
+ ## Model Architecture:
63
+ **Architecture Type:** Transformer
64
+ **Network Architecture:** siglip, Llama3
65
+
66
+ ## Input:
67
+ **Input Type:** Image, Video, Text
68
+ **Input Format:** Red, Green, Blue; MP4 ;String
69
+ **Input Parameters:** 2D, 3D
70
+
71
+ ## Output:
72
+ **Output Type:** Text
73
+ **Output Format:** String
74
+
75
+ **Supported Hardware Microarchitecture Compatibility:**
76
+ * Ampere
77
+ * Jetson
78
+ * Hopper
79
+ * Lovelace
80
+
81
+ **[Preferred/Supported] Operating System(s):** <br>
82
+ Linux
83
+
84
+ ## Model Version(s):
85
+ * Llama-3-LongVILA-8B-128frames
86
+ * Llama-3-LongVILA-8B-256frames
87
+ * Llama-3-LongVILA-8B-1024frames
88
+
89
+ ## Training dataset
90
+ See [Dataset Preparation](https://github.com/NVLabs/VILA/blob/main/data_prepare/README.md) for more details.
91
+
92
+ ** Data Collection Method by dataset
93
+ * [Hybrid: Automated, Human]
94
+
95
+ ** Labeling Method by dataset
96
+ * [Hybrid: Automated, Human]
97
+
98
+ **Properties (Quantity, Dataset Descriptions, Sensor(s)):**
99
+ 53 million image-text pairs or interleaved image text content.
100
+
101
+
102
+ ## Evaluation dataset
103
+ A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs.
104
+
105
+ ## Inference:
106
+ **Engine:** [Tensor(RT), Triton, Or List Other Here]
107
+ * PyTorch
108
+ * TensorRT-LLM
109
+ * TinyChat
110
+
111
+ **Test Hardware:**
112
+ * A100
113
+ * Jetson Orin
114
+ * RTX 4090
115
+
116
+ ## Ethical Considerations
117
+ NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
118
+
119
+
120
+ ## Built with Meta Llama 3
121
+
122
+ This model uses weights from [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B). Llama 3 is licensed under the LLAMA 3 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved