brezende commited on
Commit
3e93211
Β·
verified Β·
1 Parent(s): 1800b89

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +124 -3
README.md CHANGED
@@ -1,3 +1,124 @@
1
- ---
2
- license: bsl-1.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsl-1.0
3
+ language:
4
+ - en
5
+ metrics:
6
+ - accuracy
7
+ ---
8
+ ---
9
+
10
+ # **Web3 Trade Specialist Model**
11
+ ## Revolutionizing Crypto Trading with AI-Powered Predictions
12
+
13
+ This repository soon has contains the code and documentation for the **Web3 Trade Specialist**, an AI-powered model designed to predict cryptocurrency market trends with recommendation scores ranging from **-10 (strong sell)** to **+10 (strong buy)**, with **0 indicating neutral market conditions**.
14
+
15
+ ---
16
+
17
+ ## **Table of Contents**
18
+ 1. [Introduction](#introduction)
19
+ 2. [Features](#features)
20
+ 3. [Requirements](#requirements)
21
+ 4. [Model Training](#model-training)
22
+ 5. [Real-Time Execution](#real-time-execution)
23
+ 6. [File Structure](#file-structure)
24
+ 7. [Example Data](#example-data)
25
+ 8. [Future Enhancements](#future-enhancements)
26
+ 9. [Disclaimer](#disclaimer)
27
+
28
+ ---
29
+
30
+ ## **Introduction**
31
+ The **Web3 Trade Specialist Model** leverages **Long Short-Term Memory (LSTM)** networks for time-series analysis of cryptocurrency data. It processes historical data to extract features, predict market trends, and provide actionable insights for traders. The real-time capabilities of this model enable near-instantaneous decision-making in dynamic markets.
32
+
33
+ ---
34
+
35
+ ## **Features**
36
+ - **Predictive Recommendations**: Generates buy/sell/hold signals with scores ranging from -10 to +10.
37
+ - **Historical Data Processing**: Aggregates and analyzes data such as prices, volumes, market caps, and liquidity.
38
+ - **Real-Time Execution**: Processes live market data to make predictions.
39
+ - **GPU Acceleration**: Utilizes GPU for faster model training and prediction.
40
+
41
+ ---
42
+
43
+ ## **Requirements**
44
+ ### **Hardware**
45
+ - GPU-enabled system for efficient training and execution.
46
+
47
+ ### **Software**
48
+ 1. Python (>= 3.8)
49
+ 2. TensorFlow (>= 2.9)
50
+ 3. Pandas, NumPy, Scikit-learn
51
+ 4. Requests (for live data fetching)
52
+ 5. Any CSV editor (for preparing historical data)
53
+
54
+ Install dependencies using:
55
+ ```bash
56
+ pip install -r requirements.txt
57
+ ```
58
+
59
+ ---
60
+
61
+ ## **Model Training**
62
+ ### **Steps to Train the Model**
63
+ 1. **Prepare Historical Data**: Organize data with fields for `timestamp`, `price`, `volume`, `market_cap`, and `liquidity`.
64
+ 2. **Create Indicators**: Use the training script to process data and generate features such as moving averages and targets.
65
+ 3. **Train the Model**: Execute the training script to train an LSTM-based model with historical data.
66
+
67
+ ### **Command**
68
+ Run the training script:
69
+ ```bash
70
+ python train_model.py
71
+ ```
72
+
73
+ - The trained model is saved as `web3_trade_specialist_v1.0.0.h5`.
74
+
75
+ ---
76
+
77
+ ## **Real-Time Execution**
78
+ ### **Steps to Execute in Real-Time**
79
+ 1. **Set API Credentials**: Configure the API endpoint (e.g., Binance) for live data.
80
+ 2. **Run the Real-Time Script**: Continuously fetch live market data, preprocess it, and make predictions.
81
+
82
+ ### **Command**
83
+ Run the real-time script:
84
+ ```bash
85
+ python real_time_prediction.py
86
+ ```
87
+
88
+ - The model provides real-time recommendations based on live market data.
89
+
90
+ ---
91
+
92
+ ## **File Structure**
93
+ ```
94
+ root/
95
+ β”‚
96
+ β”œβ”€β”€ train_model.py # Script for model training
97
+ β”œβ”€β”€ real_time_prediction.py # Script for real-time execution
98
+ β”œβ”€β”€ historical_data/ # Directory for historical data CSV files
99
+ β”œβ”€β”€ web3_trade_specialist_v1.0.0.h5 # Trained model
100
+ β”œβ”€β”€ requirements.txt # Dependencies list
101
+ └── README.md # Documentation
102
+ ```
103
+
104
+ ---
105
+
106
+ ## **Example Data**
107
+ Download a sample CSV file with simulated cryptocurrency data for training:
108
+ [Download Simulated Crypto Data](sandbox:/mnt/data/simulated_crypto_data.csv)
109
+
110
+ ---
111
+
112
+ ## **Future Enhancements**
113
+ 1. **Integration with Popular Trading Platforms**: Automate trade execution.
114
+ 2. **Advanced Risk Management**: Implement dynamic stop-loss and risk assessment.
115
+ 3. **Improved Accuracy**: Enhance predictive performance by integrating new data sources.
116
+ 4. **User-Friendly API**: Develop an API for easier integration with trading systems.
117
+
118
+ ---
119
+
120
+ ## **Disclaimer**
121
+ 1. The model's predictions are based on historical data and may not guarantee future performance.
122
+ 2. Cryptocurrency trading carries significant financial risk. Use the model with caution and trade responsibly.
123
+
124
+ ---