Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
---
|
4 |
+
|
5 |
+
# Yi based MOE 2x34B with mixtral architecture
|
6 |
+
|
7 |
+
This is an English & Chinese MoE Model , slightly different with cloudyu/Mixtral_34Bx2_MoE_60B, and also based on
|
8 |
+
* [jondurbin/bagel-dpo-34b-v0.2]
|
9 |
+
* [SUSTech/SUS-Chat-34B]
|
10 |
+
|
11 |
+
|
12 |
+
gpu code example
|
13 |
+
|
14 |
+
```
|
15 |
+
import torch
|
16 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
17 |
+
import math
|
18 |
+
|
19 |
+
## v2 models
|
20 |
+
model_path = "cloudyu/Yi-34Bx2-MoE-60B"
|
21 |
+
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(
|
24 |
+
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
|
25 |
+
)
|
26 |
+
print(model)
|
27 |
+
prompt = input("please input prompt:")
|
28 |
+
while len(prompt) > 0:
|
29 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
|
30 |
+
|
31 |
+
generation_output = model.generate(
|
32 |
+
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
|
33 |
+
)
|
34 |
+
print(tokenizer.decode(generation_output[0]))
|
35 |
+
prompt = input("please input prompt:")
|
36 |
+
```
|
37 |
+
|
38 |
+
CPU example
|
39 |
+
|
40 |
+
```
|
41 |
+
import torch
|
42 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
43 |
+
import math
|
44 |
+
|
45 |
+
## v2 models
|
46 |
+
model_path = "cloudyu/Yi-34Bx2-MoE-60B"
|
47 |
+
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
|
49 |
+
model = AutoModelForCausalLM.from_pretrained(
|
50 |
+
model_path, torch_dtype=torch.bfloat16, device_map='cpu'
|
51 |
+
)
|
52 |
+
print(model)
|
53 |
+
prompt = input("please input prompt:")
|
54 |
+
while len(prompt) > 0:
|
55 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
56 |
+
|
57 |
+
generation_output = model.generate(
|
58 |
+
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
|
59 |
+
)
|
60 |
+
print(tokenizer.decode(generation_output[0]))
|
61 |
+
prompt = input("please input prompt:")
|
62 |
+
|
63 |
+
```
|
64 |
+
|