--- base_model: openai/whisper-large-v3 datasets: - clt013/malay-speech-3k-rows-dataset_v2 language: - ms library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: Whisper Large v3 FT Malay - CLT013 results: [] --- # Whisper Large v3 FT Malay - CLT013 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Malay Speech 3k dataset. It achieves the following results on the evaluation set: - Loss: 0.7194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.5614 | 0.0933 | 25 | 2.6198 | | 2.9109 | 0.1866 | 50 | 2.5967 | | 2.5414 | 0.2799 | 75 | 2.5518 | | 2.4919 | 0.3731 | 100 | 2.4742 | | 2.5861 | 0.4664 | 125 | 2.3639 | | 2.454 | 0.5597 | 150 | 2.2213 | | 2.32 | 0.6530 | 175 | 2.0616 | | 2.1081 | 0.7463 | 200 | 1.8668 | | 1.7976 | 0.8396 | 225 | 1.6736 | | 1.7597 | 0.9328 | 250 | 1.5280 | | 1.469 | 1.0261 | 275 | 1.4172 | | 1.4484 | 1.1194 | 300 | 1.3275 | | 1.2641 | 1.2127 | 325 | 1.2592 | | 1.1853 | 1.3060 | 350 | 1.1972 | | 1.184 | 1.3993 | 375 | 1.1449 | | 1.1733 | 1.4925 | 400 | 1.0964 | | 1.0707 | 1.5858 | 425 | 1.0568 | | 0.9975 | 1.6791 | 450 | 1.0172 | | 0.9897 | 1.7724 | 475 | 0.9855 | | 1.0223 | 1.8657 | 500 | 0.9524 | | 0.875 | 1.9590 | 525 | 0.9232 | | 0.9242 | 2.0522 | 550 | 0.8968 | | 0.8829 | 2.1455 | 575 | 0.8709 | | 0.8491 | 2.2388 | 600 | 0.8454 | | 0.7793 | 2.3321 | 625 | 0.8236 | | 0.7733 | 2.4254 | 650 | 0.7993 | | 0.7085 | 2.5187 | 675 | 0.7787 | | 0.7403 | 2.6119 | 700 | 0.7596 | | 0.7019 | 2.7052 | 725 | 0.7415 | | 0.722 | 2.7985 | 750 | 0.7309 | | 0.6403 | 2.8918 | 775 | 0.7220 | | 0.699 | 2.9851 | 800 | 0.7194 | ### Framework versions - PEFT 0.13.0 - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1