elsayedissa
commited on
Commit
·
94065aa
1
Parent(s):
75154fc
Update README.md
Browse files
README.md
CHANGED
@@ -58,7 +58,7 @@ The following hyperparameters were used during training:
|
|
58 |
| 0.1361 | 0.56 | 4000 | 0.2372 | 0.1330 |
|
59 |
| 0.1211 | 0.69 | 5000 | 0.2297 | 0.1282 |
|
60 |
|
61 |
-
### Transcription
|
62 |
|
63 |
```python
|
64 |
from datasets import load_dataset, Audio
|
@@ -79,7 +79,7 @@ commonvoice_eval = commonvoice_eval.cast_column("audio", Audio(sampling_rate=160
|
|
79 |
sample = next(iter(commonvoice_eval))["audio"]
|
80 |
|
81 |
# features and generate token ids
|
82 |
-
input_features = processor(sample["array"], sampling_rate=
|
83 |
predicted_ids = model.generate(input_features.to(device), forced_decoder_ids=forced_decoder_ids)
|
84 |
|
85 |
# decode
|
@@ -88,6 +88,64 @@ transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
|
88 |
|
89 |
print(transcription)
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
```
|
92 |
|
93 |
### Framework versions
|
|
|
58 |
| 0.1361 | 0.56 | 4000 | 0.2372 | 0.1330 |
|
59 |
| 0.1211 | 0.69 | 5000 | 0.2297 | 0.1282 |
|
60 |
|
61 |
+
### Transcription:
|
62 |
|
63 |
```python
|
64 |
from datasets import load_dataset, Audio
|
|
|
79 |
sample = next(iter(commonvoice_eval))["audio"]
|
80 |
|
81 |
# features and generate token ids
|
82 |
+
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
|
83 |
predicted_ids = model.generate(input_features.to(device), forced_decoder_ids=forced_decoder_ids)
|
84 |
|
85 |
# decode
|
|
|
88 |
|
89 |
print(transcription)
|
90 |
|
91 |
+
```
|
92 |
+
|
93 |
+
### Evaluation:
|
94 |
+
|
95 |
+
Evaluates this model on `mozilla-foundation/common_voice_11_0` test split.
|
96 |
+
|
97 |
+
```python
|
98 |
+
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
|
99 |
+
from datasets import load_dataset, Audio
|
100 |
+
import evaluate
|
101 |
+
import torch
|
102 |
+
import re
|
103 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
104 |
+
|
105 |
+
# device
|
106 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
107 |
+
|
108 |
+
# metric
|
109 |
+
wer_metric = evaluate.load("wer")
|
110 |
+
|
111 |
+
# model
|
112 |
+
processor = WhisperProcessor.from_pretrained("clu-ling/whisper-large-v2-spanish-5k-steps")
|
113 |
+
model = WhisperForConditionalGeneration.from_pretrained("clu-ling/whisper-large-v2-spanish-5k-steps")
|
114 |
+
|
115 |
+
# dataset
|
116 |
+
dataset = load_dataset("mozilla-foundation/common_voice_11_0", "es", split="test", )#cache_dir=args.cache_dir
|
117 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
|
118 |
+
|
119 |
+
#for debuggings: it gets some examples
|
120 |
+
#dataset = dataset.shard(num_shards=10000, index=0)
|
121 |
+
#print(dataset)
|
122 |
+
|
123 |
+
def normalize(batch):
|
124 |
+
"""Normalizes GOLD"""
|
125 |
+
batch["gold_text"] = whisper_norm(batch['sentence'])
|
126 |
+
return batch
|
127 |
+
|
128 |
+
def map_wer(batch):
|
129 |
+
model.to(args.device)
|
130 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language = "es", task = "transcribe")
|
131 |
+
inputs = processor(batch["audio"]["array"], sampling_rate=batch["audio"]["sampling_rate"], return_tensors="pt").input_features
|
132 |
+
with torch.no_grad():
|
133 |
+
generated_ids = model.generate(inputs=inputs.to(device), forced_decoder_ids=forced_decoder_ids)
|
134 |
+
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
135 |
+
batch["predicted_text"] = whisper_norm(transcription)
|
136 |
+
return batch
|
137 |
+
|
138 |
+
# process GOLD text
|
139 |
+
processed_dataset = dataset.map(normalize)
|
140 |
+
# get predictions
|
141 |
+
predicted_dataset = processed_dataset.map(map_wer)
|
142 |
+
|
143 |
+
# word error rate
|
144 |
+
wer = wer_metric.compute(references=predicted_dataset['gold_text'], predictions=predicted_dataset['predicted_text'])
|
145 |
+
wer = round(100 * wer, 2)
|
146 |
+
print("WER:", wer)
|
147 |
+
|
148 |
+
|
149 |
```
|
150 |
|
151 |
### Framework versions
|