File size: 6,692 Bytes
1afbf8c 8503c87 b0f53fc 1afbf8c e71b20e 5d5fc17 e71b20e 1afbf8c 7efb8bc c135611 67cca49 7efb8bc 1afbf8c df35948 be58ab6 588ca27 be58ab6 fb1a56e 588ca27 61fb08c 588ca27 1afbf8c 0734649 3ba2b1a 588ca27 8bfa0d8 2618fd6 588ca27 0734649 3ba2b1a 4e5911d 7efb8bc 588ca27 8bfa0d8 2618fd6 588ca27 5d5fc17 7efb8bc b357920 7efb8bc b357920 7efb8bc b357920 7efb8bc b357920 7efb8bc b357920 7efb8bc b357920 4c3df75 b7804e2 4c3df75 f62b764 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
---
language: fr
license: mit
datasets:
- amazon_reviews_multi
- allocine
widget:
- text: "Je pensais lire un livre nul, mais finalement je l'ai trouvé super !"
- text: "Cette banque est très bien, mais elle n'offre pas les services de paiements sans contact."
- text: "Cette banque est très bien et elle offre en plus les services de paiements sans contact."
---
DistilCamemBERT-Sentiment
=========================
We present DistilCamemBERT-Sentiment which is [DistilCamemBERT](https://huggingface.co/cmarkea/distilcamembert-base) fine tuned for the sentiment analysis task for the French language. This model is constructed over 2 datasets: [Amazon Reviews](https://huggingface.co/datasets/amazon_reviews_multi) and [Allociné.fr](https://huggingface.co/datasets/allocine) in order to minimize the bias. Indeed, Amazon reviews are very similar in the messages and relatively shorts, contrary to Allociné critics which are long and rich texts.
This modelization is close to [tblard/tf-allocine](https://huggingface.co/tblard/tf-allocine) based on [CamemBERT](https://huggingface.co/camembert-base) model. The problem of the modelizations based on CamemBERT is at the scaling moment, for the production phase for example. Indeed, inference cost can be a technological issue. To counteract this effect, we propose this modelization which **divides the inference time by 2** with the same consumption power thanks to [DistilCamemBERT](https://huggingface.co/cmarkea/distilcamembert-base).
Dataset
-------
The dataset is composed of 204,993 reviews for training and 4,999 reviews for the test coming from Amazon, and respectively 235,516 and 4,729 critics from [Allocine website](https://www.allocine.fr/). The dataset is labeled into 5 categories:
* 1 star: represents a very bad appreciation,
* 2 stars: bad appreciation,
* 3 stars: neutral appreciation,
* 4 stars: good appreciation,
* 5 stars: very good appreciation.
Evaluation results
------------------
In addition of accuracy (called here *exact accuracy*) in order to be robust to +/-1 star estimation errors, we will take the following definition as a performance measure:
$$\mathrm{top\!-\!2\; acc}=\frac{1}{|\mathcal{O}|}\sum_{i\in\mathcal{O}}\sum_{0\leq l < 2}\mathbb{1}(\hat{f}_{i,l}=y_i)$$
where \\(\hat{f}_l\\) is the l-th largest predicted label, \\(y\\) the true label, \\(\mathcal{O}\\) is the test set of the observations and \\(\mathbb{1}\\) is the indicator function.
| **class** | **exact accuracy (%)** | **top-2 acc (%)** | **support** |
| :---------: | :--------------------: | :---------------: | :---------: |
| **global** | 61.01 | 88.80 | 9,698 |
| **1 star** | 87.21 | 77.17 | 1,905 |
| **2 stars** | 79.19 | 84.75 | 1,935 |
| **3 stars** | 77.85 | 78.98 | 1,974 |
| **4 stars** | 78.61 | 90.22 | 1,952 |
| **5 stars** | 85.96 | 82.92 | 1,932 |
Benchmark
---------
This model is compared to 3 reference models (see below). As each model doesn't have the same definition of targets, we detail the performance measure used for each of them. For the mean inference time measure, an **AMD Ryzen 5 4500U @ 2.3GHz with 6 cores** was used.
#### bert-base-multilingual-uncased-sentiment
[nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) is based on BERT model in the multilingual and uncased version. This sentiment analyzer is trained on Amazon reviews similarly to our model, hence the targets and their definitions are the same.
| **model** | **time (ms)** | **exact accuracy (%)** | **top-2 acc (%)** |
| :-------: | :-----------: | :--------------------: | :---------------: |
| [cmarkea/distilcamembert-base-sentiment](https://huggingface.co/cmarkea/distilcamembert-base-sentiment) | **95.56** | **61.01** | **88.80** |
| [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) | 187.70 | 54.41 | 82.82 |
#### tf-allociné and barthez-sentiment-classification
[tblard/tf-allocine](https://huggingface.co/tblard/tf-allocine) based on [CamemBERT](https://huggingface.co/camembert-base) model and [moussaKam/barthez-sentiment-classification](https://huggingface.co/moussaKam/barthez-sentiment-classification) based on [BARThez](https://huggingface.co/moussaKam/barthez) use the same bi-class definition between them. To bring this back to a two-class problem, we will only consider the *"1 star"* and *"2 stars"* labels for the *negative* sentiments and *"4 stars"* and *"5 stars"* for *positive* sentiments. We exclude the *"3 stars"* which can be interpreted as a *neutral* class. In this context, the problem of +/-1 star estimation errors disappears. Then we use only the classical accuracy definition.
| **model** | **time (ms)** | **exact accuracy (%)** |
| :-------: | :-----------: | :--------------------: |
| [cmarkea/distilcamembert-base-sentiment](https://huggingface.co/cmarkea/distilcamembert-base-sentiment) | **95.56** | **97.52** |
| [tblard/tf-allocine](https://huggingface.co/tblard/tf-allocine) | 329.74 | 95.69 |
| [moussaKam/barthez-sentiment-classification](https://huggingface.co/moussaKam/barthez-sentiment-classification) | 197.95 | 94.29 |
How to use DistilCamemBERT-Sentiment
------------------------------------
```python
from transformers import pipeline
analyzer = pipeline(
task='text-classification',
model="cmarkea/distilcamembert-base-sentiment",
tokenizer="cmarkea/distilcamembert-base-sentiment"
)
result = analyzer(
"J'aime me promener en forêt même si ça me donne mal aux pieds.",
return_all_scores=True
)
result
[{'label': '1 star',
'score': 0.047529436647892},
{'label': '2 stars',
'score': 0.14150355756282806},
{'label': '3 stars',
'score': 0.3586442470550537},
{'label': '4 stars',
'score': 0.3181498646736145},
{'label': '5 stars',
'score': 0.13417290151119232}]
```
Citation
--------
```bibtex
@inproceedings{delestre:hal-03674695,
TITLE = {{DistilCamemBERT : une distillation du mod{\`e}le fran{\c c}ais CamemBERT}},
AUTHOR = {Delestre, Cyrile and Amar, Abibatou},
URL = {https://hal.archives-ouvertes.fr/hal-03674695},
BOOKTITLE = {{CAp (Conf{\'e}rence sur l'Apprentissage automatique)}},
ADDRESS = {Vannes, France},
YEAR = {2022},
MONTH = Jul,
KEYWORDS = {NLP ; Transformers ; CamemBERT ; Distillation},
PDF = {https://hal.archives-ouvertes.fr/hal-03674695/file/cap2022.pdf},
HAL_ID = {hal-03674695},
HAL_VERSION = {v1},
}
``` |